1
|
Türkmen R, Birdane YO, Atik O, Demirel HH, Baser DF. Protective effects of chlorogenic acid against glyphosate-induced organ and blood toxicity in Wistar rats. Arh Hig Rada Toksikol 2025; 76:44-52. [PMID: 40222180 PMCID: PMC11994238 DOI: 10.2478/aiht-2025-76-3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/01/2025] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
Glyphosate, a widely used herbicide against broadleaf weeds and grasses, has been associated with various harmful effects. Our study examines the efficacy of chlorogenic acid (CGA) in alleviating the toxicity of a glyphosate-based herbicide (GBH) in 42 Wistar rats across six groups of seven animals receiving either no treatment (control), CGA alone (50 mg/kg), GBH alone (800 mg/kg), or their combinations varying three CGA doses (12.5, 25, or 50 mg/kg) (CGA12.5+GBH, CGA25+GBH, and CGA50+GBH, respectively) by oral gavage over 49 days in a row. At the end of the experiment, samples of blood, brain, heart, liver, and kidney tissues were collected and analysed for oxidative stress indicators (MDA, GSH, SOD, CAT), oxidative DNA damage (8-OHdG), liver and kidney function markers (AST, ALT, ALP, urea, and creatinine) as well as for histopathological changes. As expected, GBH increased AST ALT, ALP, urea, creatinine, 8-OHdG, and MDA levels, and lowered GSH levels and SOD and CAT activities, leaving histopathological changes in the brain, heart, liver, and kidney tissues. CGA dose-dependently improved biochemical and oxidative stress parameters and reversed histopathological changes in GBH-treated albino rats. Our findings consistently confirm the potential of CGA as a promising natural agent against the adverse health effects associated with exposure to glyphosate. Future research should focus on long-term glyphosate exposure and CGA treatment using molecular methods and on the signalling pathways associated with oxidative stress.
Collapse
Affiliation(s)
- Ruhi Türkmen
- Afyon Kocatepe University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyonkarahisar, Turkey
| | - Yavuz Osman Birdane
- Afyon Kocatepe University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyonkarahisar, Turkey
| | - Orkun Atik
- Afyon Kocatepe University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyonkarahisar, Turkey
| | | | - Durmus Fatih Baser
- Afyon Kocatepe University Faculty of Veterinary Medicine, Department of Internal Medicine, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Güngör Ş, Kırıkkulak M, Denk B, Gülhan MF, Güleş Ö, Budak D, İnanç ME, Avdatek F, Yeni D, Taşdemir U. Potential Protective Effect of Hesperidin (Vitamin P) against Glyphosate-Induced Spermatogenesis Damage in Male Rats: Biochemical and Histopathological Findings on Reproductive Parameters. Life (Basel) 2024; 14:1190. [PMID: 39337973 PMCID: PMC11433275 DOI: 10.3390/life14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to investigate the effectiveness of hesperidin (HES) on testicular histopathological changes, biochemical changes, and semen characteristics in rats exposed to glyphosate (GLP). The control group was given a normal diet devoid of GLP and HES, the HES group was given 100 mg/kg/day HES with the normal diet, the GLP group was given GLP at the LD50/10 dose of normal feed, which was 787.85 mg/kg/day, and the GLP + HES group was given normal feed containing 787.85 mg/kg/day LD50/10 dose of GLP in addition to 100 mg/kg/day HES. GLP administration reduced sperm motility, sperm plasma membrane integrity, glutathione levels, and total antioxidant levels in the testicular tissues of rats. Moreover, it caused an increase in right testis and left epididymis weights, abnormal sperm counts, malondialdehyde levels, total oxidant status, and DNA damage. The HES treatment showed curative effects on these parameters. Furthermore, HES was effective in lessening the histopathological damage that was caused by GLP. The results showedthat HES protects spermatological parameters and DNA integrity, improves antioxidant defenses, and lowers the damage and lipid peroxidation caused by GLP in testicular tissue.
Collapse
Affiliation(s)
- Şükrü Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Murat Kırıkkulak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Mehmet Fuat Gülhan
- Department of Medicinal and Aromatic Plants, Technical Sciences Vocational School, Aksaray University, Aksaray 68100, Türkiye
| | - Özay Güleş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09016, Türkiye
| | - Duygu Budak
- Department of Zootechnics and Animal Nutrition, Faculty of Veterinary Medicine, Aksaray University, Aksaray 68100, Türkiye
| | - Muhammed Enes İnanç
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, AfyonKocatepe University, Afyonkarahisar 03200, Türkiye
| | - Umut Taşdemir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
5
|
Adewale OO, Adebisi OA, Ojurongbe TA, Adekomi DA, Babatunde IO, Adebayo EO. Xylopia aethiopica suppresses markers of oxidative stress, inflammation, and cell death in the brain of Wistar rats exposed to glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60946-60957. [PMID: 37042920 DOI: 10.1007/s11356-023-26470-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
The herbicide "Roundup" is used extensively in agriculture to control weeds. However, by translocation, it can be deposited in plants, their proceeds, and the soil, thus provoking organ toxicities in exposed individuals. Neurotoxicity among others is one of the side effects of roundup which has led to an increasing global concern about the contamination of food by herbicides. Xylopia aethiopica is known to have medicinal properties due to its antioxidative and anti-inflammatory properties, and it is hypothesized to neutralize roundup-induced neurotoxicity. Thirty-six (36) Wistar rats were used for this study. The animals were shared equally into six groups with six rats each. Glyphosate administration to three of the six groups was done orally and for 1 week. Either Xylopia aethiopica or vitamin C was co-administered to two of the three groups and also administered to two other groups and the final group served as the control. Our studies demonstrated that glyphosate administration led to a significant decrease in antioxidants such as catalase, superoxide dismutase, glutathione, and glutathione peroxidase. We also observed a significant increase in inflammatory markers such as tumor necrosis factor-α, interleukin 6, C-reactive protein, and immunohistochemical expression of caspase-3, cox-2, and p53 proteins (p < 0.05). However, Xylopia aethiopica co-administration with glyphosate was able to ameliorate the aforementioned changes when compared to the control (p < 0.05). Degenerative changes were also observed in the cerebellum, hippocampus, and cerebral cortex upon glyphosate administration. These changes were not observed in the groups treated with Xylopia aethiopica and vitamin C. Taken together, Xylopia aethiopica could possess anti-oxidative and anti-inflammatory properties that could be used in combating glyphosate neurotoxicity.
Collapse
Affiliation(s)
- Omowumi Oyeronke Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria.
| | - Oluwaseun Abraham Adebisi
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Taiwo A Ojurongbe
- Department of Statistics, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Damilare Adedayo Adekomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Isaac Olawale Babatunde
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Emmanuel O Adebayo
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
6
|
Kimura T, Suzuki M, Yokoyama T, Kanetsuna Y, Tanemoto M. Lessons for the clinical nephrologist: acute kidney injury by a glyphosate-surfactant herbicide. J Nephrol 2022; 35:323-325. [PMID: 33555576 DOI: 10.1007/s40620-021-00975-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Takahide Kimura
- Division of Nephrology, Department of Internal Medicine, International University of Health and Welfare School of Medicine, 13-1 Higashi-Kaigan-Cho, Atami, Shizuoka, 413-0012, Japan
| | - Marie Suzuki
- Division of Nephrology, Department of Internal Medicine, International University of Health and Welfare School of Medicine, 13-1 Higashi-Kaigan-Cho, Atami, Shizuoka, 413-0012, Japan
| | - Takeshi Yokoyama
- Division of Nephrology, Department of Internal Medicine, International University of Health and Welfare School of Medicine, 13-1 Higashi-Kaigan-Cho, Atami, Shizuoka, 413-0012, Japan
| | - Yukiko Kanetsuna
- Department of Pathology, International University of Health and Welfare School of Medicine, Atami, Shizuoka, Japan
| | - Masayuki Tanemoto
- Division of Nephrology, Department of Internal Medicine, International University of Health and Welfare School of Medicine, 13-1 Higashi-Kaigan-Cho, Atami, Shizuoka, 413-0012, Japan.
| |
Collapse
|
7
|
Malik NS, Ahmad M, Alqahtani MS, Mahmood A, Barkat K, Khan MT, Tulain UR, Rashid A. β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation. Drug Deliv 2021; 28:1093-1108. [PMID: 34114907 PMCID: PMC8205001 DOI: 10.1080/10717544.2021.1921074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, series of pH-responsive hydrogels (FMA1-FMA9) were synthesized, characterized, and evaluated as potential carrier for oral delivery of an antiviral drug, acyclovir (ACV). Different proportions of β-cyclodextrin (β-CD), chitosan (CS), methacrylic acid (MAA) and N' N'-methylenebis-acrylamide (MBA) were used to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy confirmed fabrication of new polymeric network, with successful incorporation of ACV. Scanning electron microscopy (SEM) indicated presence of slightly porous structure. Thermal analysis indicated enhanced thermal stability of polymeric network. Swelling studies were carried out at 37 °C in simulated gastric and intestinal fluids. The drug release data was found best fit to zero-order kinetics. The preliminary investigation of developed hydrogels showed a pH-dependent swelling behavior and drug release pattern. Acute oral toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of Wistar rats. Pharmacokinetic study indicated that developed hydrogels caused a significant increase in oral bioavailability of ACV in rabbit plasma as compared to oral suspension when both were administered at a single oral dose of 20 mg kg-1 bodyweight. Hence, developed hydrogel formulation could be used as potential candidate for controlled drug delivery of an antiviral drug acyclovir.
Collapse
Affiliation(s)
- Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Tariq Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Ayesha Rashid
- Department of Pharmacy, The Women University, Multan, Pakistan
| |
Collapse
|
8
|
Saleh SMM, Elghareeb TA, Atia MM, Ahmed MAI. Impact of Glyphosate-Roundup® in the Ileal Structure of Male and Female Rats: A Morphological and Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-17. [PMID: 34550058 DOI: 10.1017/s1431927621012782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The current study was aimed to evaluate the effects of variable doses of the weedicide glyphosate on the ileal (the final section of the small intestine) structure of rats of both sexes, using histological, histochemical, and ultrastructural methods. Forty animals were classified into four groups of 10 animals per group (five males and five females). The first group acted as a control, and the remaining groups were treated with glyphosate-Roundup® 25, 50, and 100 mg/kg body weight daily for 15 days. The results indicated extinct histopathological changes manifested in the deformation of villi, foci of leukocytic infiltration in the core of villi, and hyperplasia of goblet cells. Histochemical examination (Alcian blue and Periodic acid-Schiff stain) revealed a strong positive reaction of goblet cells and an increase in their number in all treated groups. In addition, the immunohistochemical investigation revealed the immunoreactivity of matrix metalloproteinase-9 expression. Furthermore, electron microscopic alternations were represented by the deformation of nuclei, destruction of microvilli, and deposition of lipid droplets. Collectively, the present findings indicate that treatment with glyphosate results in extensive morphological alternations to the ileal structure of rats of both sexes and that female rats are more affected than male rats are.
Collapse
Affiliation(s)
- Shaimaa M M Saleh
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut71516, Egypt
| | - Tasneem A Elghareeb
- Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut71526, Egypt
| | - Mona M Atia
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut71516, Egypt
| | | |
Collapse
|
9
|
Kale OE, Vongdip M, Ogundare TF, Osilesi O. The use of combined high-fructose diet and glyphosate to model rats type 2 diabetes symptomatology. Toxicol Mech Methods 2021; 31:126-137. [PMID: 33138673 DOI: 10.1080/15376516.2020.1845889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
An ideal food-chemical combination that will promote insulin resistance and its consequent development of pancreatic beta-cell dysfunction may open a new vista for Type 2 diabetes (T2D) research. Thus, we investigated the modulatory effects of a high-fructose diet (FRC) combined with glyphosate (GP). Male albino Wistar rats were randomly divided into five groups of eight/group and received distilled water, FRC, GP, and their combinations orally for eight consecutive weeks. We assessed the changes in fasting blood glucose levels (FBGLs), biochemical indices, oxidative stress parameters, and organ histopathology. From the results obtained, FBGLs and serum insulin levels were increased in the FRC-GP (2.3-3.1 and 1.9-2.2 folds) treated rats compared with the control baseline group. Also, the FRC-GP high dose increased FBGLs (1.9 folds), insulin (1.4 folds), triglycerides (1.5 folds), and uric acid (2 folds) levels compared with the FRC group. Malondialdehyde levels increased in the pancreas (54% and 78%) and liver (31.3% and 56.6%) of the FRC-GP treated rats. The FRC-GP treatments reduced serum high-density lipoprotein (57%), total protein (47%), and antioxidant parameters (non-enzymatic and enzymatic, 1.6-1.9 folds) respectively in the treated animals. The weight of the pancreas relative to the body increased (2-3 folds) while we observed mild inflammation and vascular congestion in vital organs in the treated rats. Overall, these results demonstrate the potential of FRC-GP-diet to induce conditions of rats T2D. Also, this novel finding suggests a cost-effective GP as an alternative in this model type and provides further insight into understanding FRC-GP interactions.
Collapse
Affiliation(s)
- Oluwafemi Ezekiel Kale
- Department of Pharmacology, Babcock University Benjamin S Carson Senior School of Medicine, Ilishan-Remo, Nigeria
| | - Mary Vongdip
- Biochemistry, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ikeja, Nigeria
| | - Temitope Funmi Ogundare
- Department of Pharmacology, Babcock University Benjamin S Carson Senior School of Medicine, Ilishan-Remo, Nigeria
| | - Odutola Osilesi
- Biochemistry, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ikeja, Nigeria
| |
Collapse
|