1
|
Bouzikri S, Ouasfi N, Khamliche L. Statistical physics modeling study of an environmentally friendly and efficient adsorbent derived from the brown macroalgae Bifurcaria bifurcata for the removal of Bisphenol A. MARINE POLLUTION BULLETIN 2024; 199:116025. [PMID: 38232650 DOI: 10.1016/j.marpolbul.2024.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
The brown macroalgae Bifurcaria bifurcata was valued and used to develop a carbonaceous material activated by H2SO4 (AC-BB@H2SO4), with the goal of assessing its adsorption ability against Bisphenol A (BPA). During the adsorption experiments, the effects of the adsorbent dose, solution pH, and contact time were examined, and the results were m = 0.4 g/L, pH = 8.3, and t = 120 min, with an elimination yield of 91.6 %. With comparatively high R2 values, the pseudo-second-order kinetic model perfectly fitted the experimental data. Langmuir's model was found to be the best appropriate for describing the adsorption equilibrium of BPA on AC-BB@H2SO4. The thermodynamic findings show that BPA adsorption on AC-BB@H2SO4 was spontaneous, favorable, and endothermic in nature. Even after six cycles of reuse, regeneration testing demonstrated that our adsorbent could eliminate BPA by >50 %. The BPA adsorption mechanism's statistical physics control parameters were determined and analyzed. BPA's adsorption energies were <40 kJ/mol, indicating that the interactions between BPA and AC-BB@H2SO4 were governed by physical forces (i.e., hydrogen bonding and van der Waals and electrostatic interactions). All of these intriguing findings indicate that our carbonaceous material might have direct ramifications in the field of wastewater treatment, notably for the clearance of BPA, which is difficult to biodegrade.
Collapse
Affiliation(s)
- Said Bouzikri
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco.
| | - Nadia Ouasfi
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco; Higher Institute of Nursing Professions and Health Techniques, ISPITS of Agadir, Morocco
| | - Layachi Khamliche
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco
| |
Collapse
|
2
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
3
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131568. [PMID: 37187121 DOI: 10.1016/j.jhazmat.2023.131568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Water is a crucial elemental contributor for all sectors; however, the agricultural sector alone accounts for 70% of the world's total water withdrawal. The anthropogenic activity from various industries including agriculture, textiles, plastics, leather, and defence has resulted in the release of contaminants into water systems, resulting harm to the ecosystem and biotic community. Algae-based organic pollutant removal uses several methods, such as biosorption, bioaccumulation, biotransformation, and biodegradation. The adsorption of methylene blue by algal species Chlamydomonas sp. showed a maximum adsorption capacity of 2744.5 mg/g with 96.13% removal efficiency; on the other hand, Isochrysis galbana demonstrated a maximum of 707 µg/g nonylphenol accumulation in the cell with 77% removal efficiency indicating the potential of algal systems as efficient retrieval system for organic contaminants. This paper is a compilation of detailed information about biosorption, bioaccumulation, biotransformation, biodegradation, and their mechanism, along with the genetic alteration of algal biomass. Where the genetic engineering and mutations on algae can be advantageously utilized for the enhancement of removal efficiency without any secondary toxicity.
Collapse
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
4
|
Gan C, Tuo B, Wang J, Tang Y, Nie G, Deng Z. Photocatalytic degradation of reactive brilliant blue KN-R by Ti-doped Bi 2O 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34338-34349. [PMID: 36512283 DOI: 10.1007/s11356-022-24632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, different compositions of Ti-doped Bi2O3 photocatalytic materials were prepared by chemical solution decomposition method. It was used to degrade reactive brilliant blue KN-R, and then characterized by XRD, SEM, UV-vis DRS, XPS, photocurrent, and other detection methods. The results show that when the catalyst dosage is 1.0 g/L and the initial concentration of reactive brilliant blue KN-R is 20 mg/L, the degradation rate of pure Bi2O3 to reactive brilliant blue KN-R is 75.30%; the Ti doping amount is 4% (4Ti/Bi2O3), 4Ti/Bi2O3 had the best degradation effect on reactive brilliant blue KN-R, and the degradation rate could reach 93.27%. When 4Ti/Bi2O3 was reused for 4 times, the degradation rate of reactive brilliant blue KN-R only decreased by 6.91%. Doping Ti can inhibit the growth of Bi2O3 grains, making the XRD peak of Ti/Bi2O3 material wider. The pure Bi2O3 particles are larger and the surface is smooth. With the increase of Ti doping content, the surface of Ti/Bi2O3 material grows from roughness to nanofibrous Bi4Ti3O12. The visible light absorption performance and electron separation and transfer ability of Bi2O3 are significantly improved by doping Ti ions. The band gap is reduced from 2.81 to 2.75 eV. In conclusion, doping Ti enhances the visible light absorption and electron separation and transfer capabilities of Bi2O3, reduces the band gap, and improves the surface morphology, which makes Bi2O3 have higher photocatalytic performance.
Collapse
Affiliation(s)
- Cheng Gan
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
| | - Biyang Tuo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China.
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China.
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China.
| | - Jianli Wang
- College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Yun Tang
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| | - Guanghua Nie
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| | - Zhengbin Deng
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| |
Collapse
|
5
|
Moussa Z, Ghoniem AA, Elsayed A, Alotaibi AS, Alenzi AM, Hamed SE, Elattar KM, Saber WIA. Innovative binary sorption of Cobalt(II) and methylene blue by Sargassum latifolium using Taguchi and hybrid artificial neural network paradigms. Sci Rep 2022; 12:18291. [PMID: 36316520 PMCID: PMC9622854 DOI: 10.1038/s41598-022-22662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
The present investigation has been designed by Taguchi and hybrid artificial neural network (ANN) paradigms to improve and optimize the binary sorption of Cobalt(II) and methylene blue (MB) from an aqueous solution, depending on modifying physicochemical conditions to generate an appropriate constitution for a highly efficient biosorption by the alga; Sargassum latifolium. Concerning Taguchi's design, the predicted values of the two responses were comparable to actual ones. The biosorption of Cobalt(II) ions was more efficient than MB, the supreme biosorption of Cobalt(II) was verified in run L21 (93.28%), with the highest S/N ratio being 39.40. The highest biosorption of MB was reached in run L22 (74.04%), with a S/N ratio of 37.39. The R2 and adjusted R2 were in reasonable values, indicating the validity of the model. The hybrid ANN model has exclusively emerged herein to optimize the biosorption of both Cobalt(II) and MB simultaneously, therefore, the ANN model was better than the Taguchi design. The predicted values of Cobalt(II) and MB biosorption were more obedience to the ANN model. The SEM analysis of the surface of S. latifolium showed mosaic form with massive particles, as crosslinking of biomolecules of the algal surface in the presence of Cobalt(II) and MB. Viewing FTIR analysis showed active groups e.g., hydroxyl, α, β-unsaturated ester, α, β-unsaturated ketone, N-O, and aromatic amine. To the best of our knowledge, there are no reports deeming the binary sorption of Cobalt(II) and MB ions by S. latifolium during Taguchi orthogonal arrays and hybrid ANN.
Collapse
Affiliation(s)
- Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt.
| | - Amenah S Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Sahar E Hamed
- Chemistry Department, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ID: 60019332), Giza, 12619, Egypt.
| |
Collapse
|
6
|
Sales DA, Lima PNS, Silva LS, Marques TMF, Gusmão SBS, Ferreira OP, Ghosh A, Guerra Y, Morais AÍS, Bezerra RDS, Silva-Filho EC, Viana BC. Amino-Functionalized Titanate Nanotubes: pH and Kinetic Study of a Promising Adsorbent for Acid Dye in Aqueous Solution. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6393. [PMID: 36143705 PMCID: PMC9503076 DOI: 10.3390/ma15186393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
This work reports the functionalization of sodium titanate nanotubes with amine groups obtained from the reaction of titanate nanotubes with [3-(2-Aminoethylamino)propyl]trimethoxysilane, NaTiNT-2NH, and 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane, NaTiNT-3NH. It was verified that the crystalline and morphological structures of NaTiNT were preserved after the functionalization, spectroscopies showed that aminosilane interacted covalently with the surface of NaTiNT, and the incorporation of the aminosilane groups on the surface of NaTiNT can be confirmed. The adsorbent matrices NaTiNT-2NH and NaTiNT-3NH were used to remove the anionic dye from remazol blue R (RB) in aqueous medium, and the highest adsorption capacity was around 365.84 mg g-1 (NaTiNT-2NH) and 440.70 mg g-1 (NaTiNT-3NH) in the range of pH 5.0 to 10.0 and the equilibrium time was reached in 210 min (NaTiNT-2NH) and 270 min (NaTiNT-3NH). Furthermore, the Elovich model, which reports the adsorption in heterogeneous sites and with different activation energies in the chemisorption process, was the most appropriate to describe the adsorption kinetics. Thus, these adsorbent matrices can be used as an alternative potential for dye removal RB in aqueous solution.
Collapse
Affiliation(s)
- Débora A. Sales
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Paloma N. S. Lima
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | | | | | - Suziete B. S. Gusmão
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Odair P. Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA), Departament of Physics, Federal University of Ceará (UFC), Fortaleza 60455-900, CE, Brazil
| | - Anupama Ghosh
- Laboratório de Materiais Funcionais Avançados (LaMFA), Departament of Physics, Federal University of Ceará (UFC), Fortaleza 60455-900, CE, Brazil
- Central Analítica, Federal University of Ceará (UFC), Fortaleza 60455-900, CE, Brazil
| | - Yuset Guerra
- Department of Physics, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Alan Í. S. Morais
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí (IFPI), Teresina 64000-040, PI, Brazil
| | - Edson C. Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Bartolomeu C. Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
- Department of Physics, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| |
Collapse
|
7
|
Seoane R, Santaeufemia S, Abalde J, Torres E. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga Chlamydomonas moewusii: Kinetics and Equilibrium Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052653. [PMID: 35270343 PMCID: PMC8909845 DOI: 10.3390/ijerph19052653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
The efficiency of the living biomass of the microalga Chlamydomonas moewusii in removing methylene blue dye is determined. The kinetics, equilibrium isotherms, and the effects on this process of the pH, contact time, and initial concentration of the dye are studied. Fourier transform infrared spectrometry and point of zero charge are used to characterize the biomass and explore the process. The maximum removal capacity derived from the Langmuir isotherm is 212.41 ± 4.55 mg/g after 7 h of contact time at pH 7. The removal process is rapid because kinetic studies revealed that the best fit of the data is with pseudo-third-order kinetics. The removal efficiency is dependent on the pH; as the pH increased, the efficiency is higher. These results show that the living biomass of this microalga is a very efficient biosorbent and therefore very suitable for the removal of methylene blue from aqueous solutions.
Collapse
|
8
|
Chandarana H, Senthil Kumar P, Seenuvasan M, Anil Kumar M. Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using Casuarina equisetifolia pines. CHEMOSPHERE 2021; 285:131480. [PMID: 34265726 DOI: 10.1016/j.chemosphere.2021.131480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Casuarina equisetifolia pines are degradable biopolymeric substance with dye-sequestering property was utilized as biosorbent to expel a cationic dye; methylene blue dye from simulated wastewater. The prepared adsorbent material was characterized for their structural, morphological and elemental features to understand their suitability in augmenting in dye-wastewater remediation. The results infer that 0.5 g/L biosorbent was proficient in removing 100 mg/L methylene blue (pH 7.0 ± 0.2) when agitated at 150 rpm for 120 min. Isothermal behavior were evaluated using non-linear isotherm models like Temkin, Langmuir and Freundlich models while the rate-limiting steps were found using kinetic models. Temkin isotherm and pseudo-first order model explained the removal mechanism among the models evaluated, which infers that the biosorption followed physisorption with the maximum adsorption capacity of 41.35 mg/g. Thermodynamic behavior of methylene blue removal by C. equisetifolia pines powder described the feasibility of biosorption as well as the type of heat involved. Equilibrium sorption capacities, rate constants and correlation coefficients explains that MB dye removal by C. equisetifolia pines is presumably physisorption, spontaneous and endothermic in nature.
Collapse
Affiliation(s)
- Helly Chandarana
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641 032, Tamil Nadu, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Li S, Zhu Q, Luo J, Shu Y, Guo K, Xie J, Xiao F, He S. Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater. Indian J Microbiol 2021; 61:417-426. [PMID: 34744197 DOI: 10.1007/s12088-021-00969-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.
Collapse
Affiliation(s)
- Shanshan Li
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Qiqi Zhu
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jiaqi Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Yangzhen Shu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Kexin Guo
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jingxi Xie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Fangzhu Xiao
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Shuya He
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
10
|
Nour HF, E. Abdel Mageid R, Radwan EK, Khattab TA, Olson MA, El Malah T. Adsorption isotherms and kinetic studies for the removal of toxic reactive dyestuffs from contaminated water using a viologen-based covalent polymer. NEW J CHEM 2021. [DOI: 10.1039/d1nj02488d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A polyviologen-based adsorbent was prepared via polymerization of a viologen-dialdehyde with a hydroxyl-substituted aryl-dihydrazide in acidified water.
Collapse
Affiliation(s)
- Hany F. Nour
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Randa E. Abdel Mageid
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Emad K. Radwan
- National Research Centre, Water Pollution Research Department, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Tawfik A. Khattab
- National Research Centre, Dyeing, Printing and Auxiliaries Department, Textile Industries Research Division, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Mark A. Olson
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, lL 60208, USA
| | - Tamer El Malah
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| |
Collapse
|
11
|
Abstract
Biosorption is a variant of sorption techniques in which the sorbent is a material of biological origin. This technique is considered to be low cost and environmentally friendly, and it can be used to remove pollutants from aqueous solutions. The objective of this review is to report on the most significant recent works and most recent advances that have occurred in the last couple of years (2019–2020) in the field of biosorption. Biosorption of metals and organic compounds (dyes, antibiotics and other emerging contaminants) is considered in this review. In addition, the use and possibilities of different forms of biomass (live or dead, modified or immobilized) are also considered.
Collapse
|