1
|
Park JY, Lee SJ. Myricetin alleviates the mechanism of IL-1β production caused by the endocrine-disrupting chemical Di(2-ethylhexyl) phthalate in RAW 264.7 cells. Tissue Cell 2025; 93:102683. [PMID: 39675255 DOI: 10.1016/j.tice.2024.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Myricetin, a flavonoid present in numerous fruits, vegetables, and medicinal plants, is recognized for its potent antioxidant, anti-inflammatory, and anti-cancer activities. Nevertheless, its involvement in mitigating inflammation caused by the endocrine-disrupting chemical Di(2-ethylhexyl) phthalate (DEHP), commonly used in polyvinyl chloride (PVC) manufacturing to improve flexibility, has not been investigated. Here, we found that DEHP markedly increased IL-1β production through inflammatory pathways in RAW 264.7 murine macrophages. Treatment with myricetin at a concentration of 10 μM significantly reduced the elevated IL-1β levels. Myricetin achieves this by inhibiting the activation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK), which are driven by reactive oxygen species (ROS), thereby suppressing IL-1β transcription via nuclear factor-kappa B (NF-κB). Additionally, myricetin prevents ROS-induced activation of the NLRP3 inflammasome and subsequent caspase-1 activation, further decreasing IL-1β production. These dual actions highlight myricetin's therapeutic potential in countering the oxidative stress-mediated inflammatory pathways triggered by environmental toxins like DEHP.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Major of Human Bio-convergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Sei-Jung Lee
- Major of Human Bio-convergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
3
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Makinde E, Ma L, Mellick GD, Feng Y. A High-Throughput Screening of a Natural Products Library for Mitochondria Modulators. Biomolecules 2024; 14:440. [PMID: 38672457 PMCID: PMC11048375 DOI: 10.3390/biom14040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mitochondrial dysfunction in the pathogenesis of various diseases, including Parkinson's disease (PD), underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated with available treatments for mitochondrial dysfunction-associated diseases, the search for new potent alternatives has become imperative. In this report, we embarked on an extensive screening of 4224 fractions from 384 Australian marine organisms and plant samples to identify natural products with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using 6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents of the most active fraction from each of the eight biotas. This meticulous approach led to the discovery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective effects. Our findings highlight the vast potential of natural products derived from Australian marine organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuel Makinde
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (E.M.); (L.M.); (G.D.M.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (E.M.); (L.M.); (G.D.M.)
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - George D. Mellick
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (E.M.); (L.M.); (G.D.M.)
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; (E.M.); (L.M.); (G.D.M.)
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Zhou P, Yu X, Song T, Hou X. Safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. PLoS One 2024; 19:e0296926. [PMID: 38547138 PMCID: PMC10977718 DOI: 10.1371/journal.pone.0296926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE To systematically evaluate the safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder (ADHD). METHODS Randomized controlled trials and prospective studies on antioxidant therapy in children and adolescents with ADHD were searched in PubMed, Embase, and Cochrane Library from the inception of databases to November 12, 2022. Two investigators independently screened the literature, extracted data, and evaluated the quality of the included studies. Network meta-analysis (PROSPERO registration number CRD 42023382824) was carried out by using R Studio 4.2.1. RESULTS 48 studies involving 12 antioxidant drugs (resveratrol, pycnogenol, omega-3, omega-6, quercetin, phosphatidylserine, almond, vitamin D, zinc, folic acid, ginkgo biloba, Acetyl-L-carnitine) were finally included, with 3,650 patients. Network meta-analysis showed that omega-6 (0.18), vitamin D (0.19), and quercetin (0.24) were the top three safest drugs according to SUCRA. The omega-3 (SUCRA 0.35), pycnogenol (SUCRA 0.36), and vitamin D (SUCRA 0.27) were the most effective in improving attention, hyperactivity, and total score of Conners' parent rating scale (CPRS), respectively. In terms of improving attention, hyperactivity, and total score of Conners' teacher rating scale (CTRS), pycnogenol (SUCRA 0.32), phosphatidylserine+omega-3 (SUCRA 0.26), and zinc (SUCRA 0.34) were the most effective, respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Parent, the optimal agents were phosphatidylserine (SUCRA 0.39), resveratrol+MPH (SUCRA 0.24), and phosphatidylserine (SUCRA 0.34), respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Teacher, pycnogenol (SUCRA 0.32), vitamin D (SUCRA 0.31) and vitamin D (SUCRA 0.18) were the optimal agents, respectively. The response rate of omega-3+6 was the highest in CGI (SUCRA 0.95) and CPT (SUCRA 0.42). CONCLUSION The rankings of safety and efficacy of the 12 antioxidants vary. Due to the low methodological quality of the included studies, the probability ranking cannot fully explain the clinical efficacy, and the results need to be interpreted with caution. More high-quality studies are still needed to verify our findings.
Collapse
Affiliation(s)
- Peike Zhou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaohui Yu
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tao Song
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaoli Hou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Bayav I, Darendelioğlu E, Caglayan C. 18β-Glycyrrhetinic acid exerts cardioprotective effects against BPA-induced cardiotoxicity through antiapoptotic and antioxidant mechanisms. J Biochem Mol Toxicol 2024; 38:e23655. [PMID: 38348715 DOI: 10.1002/jbt.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18β-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.
Collapse
Affiliation(s)
- Ibrahim Bayav
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
7
|
Li F, Li D, Yan X, Zhu F, Tang S, Liu J, Yan J, Chen H. Quercetin Promotes the Repair of Mitochondrial Function in H9c2 Cells Through the miR-92a-3p/Mfn1 Axis. Curr Pharm Biotechnol 2024; 25:1858-1866. [PMID: 38173217 DOI: 10.2174/0113892010266863231030052150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.
Collapse
Affiliation(s)
- Fen Li
- Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Xisheng Yan
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Fen Zhu
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Shifan Tang
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Jianguang Liu
- Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Jie Yan
- Department of Forensic Science, Changsha, 410013, Hunan, China
| | - Haifeng Chen
- Department of Clinical Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| |
Collapse
|
8
|
Mao T, Xie L, Guo Y, Ji X, Wan J, Cui X, Fan Q, Liu W, Wang S, Han W, Lin Q, Jia W. Mechanistic exploration of Yiqi Liangxue Shengji prescription on restenosis after balloon injury by integrating metabolomics with network pharmacology. PHARMACEUTICAL BIOLOGY 2023; 61:1260-1273. [PMID: 37602438 PMCID: PMC10443980 DOI: 10.1080/13880209.2023.2244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Yiqi Liangxue Shengji prescription (YQLXSJ) is a traditional Chinese medicine (TCM) formula that has long been used for treatment after percutaneous coronary intervention (PCI). OBJECTIVE To investigate the putative pharmacological mechanism of YQLXSJ on restenosis through an integrated approach utilizing metabolomics and network pharmacology. MATERIALS AND METHODS Forty male Sprague-Dawley rats were divided into sham, model, YQLXSJ, and positive groups. YQLXSJ group received the treatment of YQLXSJ (6 g/kg/d, i.g.) and the positive group was treated with atorvastatin (2 mg/kg/d, i.g.). After 4 weeks, the improvement in intimal hyperplasia was evaluated by ultrasound, H&E staining, and immunofluorescence. UPLC-MS/MS technology was utilized to screen the differential metabolites. Network pharmacology was conducted using TCMSP, GeneCards, and Metascape, etc., in combination with metabolomics. Eventually, the core targets were acquired and validated. RESULTS Compared to models, YQLXSJ exhibited decreased intima-media thickness on ultrasound (0.23 ± 0.02 mm vs. 0.20 ± 0.01 mm, p < 0.01) and reduced intima thickness by H&E (30.12 ± 6.05 μm vs. 14.32 ± 1.37 μm, p < 0.01). We identified 18 differential metabolites and 5 core targets such as inducible nitric oxide synthase (NOS2), endothelial nitric oxide synthase (NOS3), vascular endothelial growth factor-A (VEGFA), ornithine decarboxylase-1 (ODC1) and group IIA secretory phospholipase A2 (PLA2G2A). These targets were further confirmed by molecular docking and ELISA. DISCUSSION AND CONCLUSIONS This study confirms the effects of YQLXSJ on restenosis and reveals some biomarkers. TCM has great potential in the prevention and treatment of restenosis by improving metabolic disorders.
Collapse
Affiliation(s)
- Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yanqiong Guo
- Department of Cardiology, Beijing Fengtai District Hospital of Chinese Medicine, Beijing, P.R. China
| | - Xiang Ji
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xiaoyun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Qian Fan
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wei Liu
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Shuai Wang
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wenbo Han
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wenhao Jia
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| |
Collapse
|
9
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
10
|
Ali F, Wang D, Cheng Y, Wu M, Saleem MZ, Wei L, Xie Y, Yan M, Chu J, Yang Y, Shen A, Peng J. Quercetin attenuates angiotensin II-induced proliferation of vascular smooth muscle cells and p53 pathway activation in vitro and in vivo. Biofactors 2023; 49:956-970. [PMID: 37296538 DOI: 10.1002/biof.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/23/2023] [Indexed: 06/12/2023]
Abstract
Quercetin is an essential flavonoid mostly found in herbal plants, fruits, and vegetables, which exhibits anti-hypertension properties. However, its pharmacological impact on angiotensin II (Ang II) induced the increase of blood pressure along with in-depth mechanism needs further exploration. The present study pointed out the anti-hypertensive role of quercetin and its comprehensive fundamental mechanisms. Our data showed that quercetin treatment substantially reduced the increase in blood pressure, pulse wave velocity, and aortic thickness of abdominal aorta in Ang II-infused C57BL/6 mice. RNA sequencing revealed that quercetin treatment reversed 464 differentially expressed transcripts in the abdominal aorta of Ang II-infused mice. Moreover, overlapping KEGG-enriched signaling pathways identified multiple common pathways between the comparison of Ang II versus control and Ang II + quercetin versus Ang II. Likewise, these pathways included cell cycle as well as p53 pathways. Transcriptome was further validated by immunohistochemistry, indicating that quercetin treatment significantly decreased the Ang II-induced expression of proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase-4 (CDK4), and cyclin D1, while increased protein expression of p53, and p21 in abdominal aortic tissues of mice. In vitro, quercetin treatment meaningfully decreased the cell viability, arrested cell cycle at G0/G1 phase, and up-regulated the p53 and p21 proteins expression, as well as down-regulated the protein expression of cell cycle-related markers, for example, CDK4, cyclin D1 in Ang II stimulated vascular smooth muscle cells (VSMCs). This study addresses pharmacologic and mechanistic perspectives of quercetin against Ang-II-induced vascular injury and the increase of blood pressure.
Collapse
Affiliation(s)
- Farman Ali
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Di Wang
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Ying Cheng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Meizhu Wu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Muhammad Zubair Saleem
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, China
| | - Lihui Wei
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Xie
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Mengchao Yan
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Jiangfeng Chu
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| | - Yanyan Yang
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Aling Shen
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
- Center for Innovation and Transformation of Science and Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Clinical Research Institute, the Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Abouhamzeh B, Zare Z, Mohammadi M, Moosazadeh M, Nourian A. Bisphenol-S Influence on Oxidative Stress and Endocrine Biomarkers of Reproductive System: A Systematic Review and Meta-Analysis. Int J Prev Med 2023; 14:37. [PMID: 37351052 PMCID: PMC10284209 DOI: 10.4103/ijpvm.ijpvm_271_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Bisphenol-S (BPS), as a new human public health concern, was introduced to the plastic industry by BPA-free labeled products following the restrictions of Bisphenol-A (BPA) as a safe alternative. However, recent research has revealed a controversial issue. In this regard, the present study aimed to review the relationship between BPS exposure and reproductive system dis/malfunction. Methods PubMed and other databases were searched up to January 2021. The standard mean difference (SMD) with a 95% confidence interval (CI) was calculated for the main parameters using the random-effects model. Finally, 12 studies with 420 subjects were included in this research. Forest plot, meta-regression, and non-linear dose-response effect were calculated for each parameter by random-effects model. Results Based on the results of in vitro assessment, a significant increase was found in the oxidative stress parameters, including superoxide dismutase (SMD: 0.63, 95% CI: 0.321, 0.939), thiobarbituric acid reactive substances (SMD: 0.760, 95% CI: 0.423, 1.096), and reactive oxygen species (SMD: 0.484, 95% CI: 0.132, 0.835). In addition, the hormonal assessment revealed a significant decrease in male testosterone concertation (SMD: -0.476, 95% CI: -0.881, -0.071). Moreover, in vivo examination revealed a significant decrease in hormonal parameters, such as female testosterone (SMD: -0.808, 95% CI: -1.149, -0.467), female estrogen (SMD: -2.608, 95% CI: -4.588, -0.628), female luteinizing hormone (SMD: -0.386, 95% CI: -0.682, -0.089), and female follicle-stimulating hormone (FSH) (SMD: -0.418, 95% CI: -0.716, -0.119). Besides, linear and non-linear correlations were detected in the main parameters. Conclusion In conclusion, based on the current meta-analysis, BPS was suggested to be toxic for the reproductive system, similar to the other bisphenols. Moreover, a possible correlation was indicated between oxidative and hormonal status disruption induced by BPS in male and female reproductive systems dis/malfunction.
Collapse
Affiliation(s)
- Beheshteh Abouhamzeh
- Alireza Nourian Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, School of Medicine, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Department of Epidemiology, Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Nourian
- Alireza Nourian Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lokman MS, Althagafi HA, Alharthi F, Habotta OA, Hassan AA, Elhefny MA, Al Sberi H, Theyab A, Mufti AH, Alhazmi A, Hawsawi YM, Khafaga AF, Gewaily MS, Alsharif KF, Albrakati A, Kassab RB. Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17657-17669. [PMID: 36197616 DOI: 10.1007/s11356-022-23314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy used to treat many types of cancer. Cardiotoxicity is one of the common drawbacks of 5-FU therapy. Quercetin (Qu) is a bioflavonoid with striking biological activities. This research aimed to assess the ameliorative effect of Qu against 5-FU-mediated cardiotoxicity. Thirty-five rats were allocated into five groups: control group (normal saline), 5-FU group (30 mg/kg, intraperitoneally), Qu group (50 mg/kg, oral), 25 mg/kg Qu+5-FU group, and 50 mg/kg Qu+5-FU. The experimental animals were received the above-mentioned drugs for 21 days. Results showed that 5-FU significantly elevated creatine kinase, lactate dehydrogenase, serum cholesterol and triglyceride, and upregulated troponin and renin mRNA expression. Additionally, cardiac oxidant/antioxidant imbalance was evident in elevated oxidants (malondialdehyde and nitric oxide) and depleted antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). 5-FU also downregulated the gene expression of nuclear factor erythroid 2-related factor 2. Furthermore, 5-FU significantly increased cardiac pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and upregulated gene expression of nuclear factor kappa-B. 5-FU significantly enhanced cardiac apoptosis through upregulating caspase-3 expression and downregulating B-cell lymphoma 2. Immunohistochemical and histopathological examinations verified the above-mentioned findings. However, all these changes were significantly ameliorated in Qu pre-administered rats. Conclusively, Qu counteracted 5-FU-mediated cardiotoxicity through potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Arwa A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El Arish, Egypt
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, PO Box 40047, Jeddah, 21499, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| |
Collapse
|
13
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
14
|
Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022; 13:859723. [PMID: 35370668 PMCID: PMC8964350 DOI: 10.3389/fphar.2022.859723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of muscle atrophy. The aim of this study was to explore the effects and mechanisms of paeoniflorin on CKD skeletal muscle atrophy. We demonstrated that paeoniflorin significantly improved renal function, calcium/phosphorus disorders, nutrition index and skeletal muscle atrophy in the 5/6 nephrectomized model rats. Paeoniflorin ameliorated the expression of proteins associated with muscle atrophy and muscle differentiation, including muscle atrophy F-box (MAFbx/atrogin-1), muscle RING finger 1 (MuRF1), MyoD and myogenin (MyoG). In addition, paeoniflorin modulated redox homeostasis by increasing antioxidant activity and suppressing excessive accumulation of reactive oxygen species (ROS). Paeoniflorin alleviated mitochondrial dysfunction by increasing the activities of electron transport chain complexes and mitochondrial membrane potential. Furthermore, paeoniflorin also regulates mitochondrial dynamics. Importantly, paeoniflorin upregulated the expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and phosphorylation of AMP-activated protein kinase (AMPK). Similar results were observed in C2C12 myoblasts treated with TNF-α and paeoniflorin. Notably, these beneficial effects of paeoniflorin on muscle atrophy were abolished by inhibiting AMPK and SIRT1 and knocking down PGC-1α. Taken together, this study showed for the first time that paeoniflorin has great therapeutic potential for CKD skeletal muscle atrophy through AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qiang Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lingyu Liu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
15
|
Naomi R, Yazid MD, Bahari H, Keong YY, Rajandram R, Embong H, Teoh SH, Halim S, Othman F. Bisphenol A (BPA) Leading to Obesity and Cardiovascular Complications: A Compilation of Current In Vivo Study. Int J Mol Sci 2022; 23:2969. [PMID: 35328389 PMCID: PMC8949383 DOI: 10.3390/ijms23062969] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
BPA is one of the most common endocrine disruptors that is widely being manufactured daily nationwide. Although scientific evidence supports claims of negative effects of BPA on humans, there is also evidence suggesting that a low level of BPA is safe. However, numerous in vivo trials contraindicate with this claim and there is a high possibility of BPA exposure could lead to obesity. It has been speculated that this does not stop with the exposed subjects only, but may also cause transgenerational effects. Direct disruption of endocrine regulation, neuroimmune and signaling pathways, as well as gut microbiata, has been identified to be interrupted by BPA exposure, leading to overweight or obesity. In these instances, cardiovascular complications are one of the primary notable clinical signs. In regard to this claim, this review paper discusses the role of BPA on obesity in the perspective of endocrine disruptions and possible cardiovascular complications that may arise due to BPA. Thus, the aim of this review is to outline the changes in gut microbiota and neuroimmune or signaling mechanisms involved in obesity in relation to BPA. To identify potentially relevant articles, a depth search was done on the databases Nature, PubMed, Wiley Online Library, and Medline & Ovid from the past 5 years. According to Boolean operator guideline, selected keywords such as (1) BPA OR environmental chemical AND fat OR LDL OR obese AND transgenerational effects or phenocopy (2) Endocrine disruptors OR chemical AND lipodystrophy AND phenocopy (3) Lipid profile OR weight changes AND cardiovascular effect (4) BPA AND neuroimmune OR gene signaling, were used as search terms. Upon screening, 11 articles were finalized to be further reviewed and data extraction tables containing information on (1) the type of animal model (2) duration and dosage of BPA exposure (3) changes in the lipid profile or weight (4) genes, signaling mechanism, or any neuroimmune signal involved, and (5) transgenerational effects were created. In toto, the study indicates there are high chances of BPA exposure affecting lipid profile and gene associated with lipolysis, leading to obesity. Therefore, this scoping review recapitulates the possible effects of BPA that may lead to obesity with the evidence of current in vivo trials. The biomarkers, safety concerns, recommended dosage, and the impact of COVID-19 on BPA are also briefly described.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yong Yoke Keong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Shariff Halim
- Neuroscience Research Group, International Medical School, Management & Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Malaysia
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
16
|
Comment on Kobroob et al. Effectiveness of N-Acetylcysteine in the Treatment of Renal Deterioration Caused by Long-Term Exposure to Bisphenol A. Biomolecules 2021, 11, 655. Biomolecules 2021; 11:biom11060888. [PMID: 34203790 PMCID: PMC8232762 DOI: 10.3390/biom11060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
|
17
|
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL pro and PL pro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021; 891:173759. [PMID: 33249077 PMCID: PMC7691142 DOI: 10.1016/j.ejphar.2020.173759] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The novel coronavirus outbreak (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents the actual greatest global public health crisis. The lack of efficacious drugs and vaccines against this viral infection created a challenge for scientific researchers in order to find effective solutions. One of the promising therapeutic approaches is the search for bioactive molecules with few side effects that display antiviral properties in natural sources like medicinal plants and vegetables. Several computational and experimental studies indicated that flavonoids especially flavonols and their derivatives constitute effective viral enzyme inhibitors and possess interesting antiviral activities. In this context, the present study reviews the efficacy of many dietary flavonols as potential antiviral drugs targeting the SARS-CoV-2 enzymes and proteins including Chymotrypsin-Like Protease (3CLpro), Papain Like protease (PLpro), Spike protein (S protein) and RNA-dependent RNA polymerase (RdRp), and also their ability to interact with the angiotensin-converting enzyme II (ACE2) receptor. The relationship between flavonol structures and their SARS-CoV-2 antiviral effects were discussed. On the other hand, the immunomodulatory, the anti-inflammatory and the antiviral effects of secondary metabolites from this class of flavonoids were reported. Also, their bioavailability limitations and toxicity were predicted.
Collapse
Affiliation(s)
- Chaima Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria.
| | - Soumia Mouffouk
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| | - Sara Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Leila Hambaba
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Hamada Haba
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
18
|
Alvarez-Arellano L, Salazar-García M, Corona JC. Neuroprotective Effects of Quercetin in Pediatric Neurological Diseases. Molecules 2020; 25:E5597. [PMID: 33260783 PMCID: PMC7731313 DOI: 10.3390/molecules25235597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is a crucial event underlying several pediatric neurological diseases, such as the central nervous system (CNS) tumors, autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Neuroprotective therapy with natural compounds used as antioxidants has the potential to delay, ameliorate or prevent several pediatric neurological diseases. The present review provides an overview of the most recent research outcomes following quercetin treatment for CNS tumors, ASD and ADHD as well as describes the potential in vitro and in vivo ameliorative effect on oxidative stress of bioactive natural compounds, which seems like a promising future therapy for these diseases. The neuroprotective effects of quercetin against oxidative stress can also be applied in the management of several neurodegenerative disorders with effects such as anti-cancer, anti-inflammatory, anti-viral, anti-obesity and anti-microbial. Therefore, quercetin appears to be a suitable adjuvant for therapy against pediatric neurological diseases.
Collapse
Affiliation(s)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Mohsenzadeh MS, Razavi BM, Imenshahidi M, Mohajeri SA, Rameshrad M, Hosseinzadeh H. Evaluation of green tea extract and epigallocatechin gallate effects on bisphenol A-induced vascular toxicity in isolated rat aorta and cytotoxicity in human umbilical vein endothelial cells. Phytother Res 2020; 35:996-1009. [PMID: 32893422 DOI: 10.1002/ptr.6861] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to assess bisphenol A (BPA)-induced vascular toxicity, the effectiveness of green tea extract and epigallocatechin gallate (EGCG) against BPA toxicity, and possible underlying mechanisms. In isolated rat aorta, contractile and relaxant responses as well as malondialdehyde levels were evaluated. Cell viability and effects on the protein levels of apoptotic (bax, bcl2, and caspase-3), autophagic (LC3), and cell adhesion molecules were calculated using the MTT method and western blotting in human umbilical vein endothelial cells (HUVECs). BPA increased aorta MDA levels (p < .0001) and decreased vascular responses to KCl [20 and 40 mM (p < .0001), 80 mM (p < .001)], phenylephrine [10-8 , 10-6 , and 10-5 M (p < .001), 10-7 and 10-4 M (p < .0001)], and acetylcholine [10-6 M (p < .01), 10-5 and 10-4 M (p < .0001)]. In HUVECs, BPA enhanced the levels of LC3A/B, bax/bcl2 ratio, cleaved caspase-3, and vascular cell adhesion molecule-1. Green tea extract, EGCG, and vitamin E co-treatment with BPA diminished the toxic effects of BPA. These findings provide evidence that green tea extract and EGCG possess beneficial effects in preventing BPA-induced vascular toxicity through increasing the antioxidant activities and the regulation of signaling pathways.
Collapse
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Gu J, Wang H, Zhou L, Fan D, Shi L, Ji G, Gu A. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139190. [PMID: 32408210 DOI: 10.1016/j.scitotenv.2020.139190] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Research has shown that there is a relationship between bisphenol A (BPA) exposure and the incidence of cardiovascular diseases. However, the effect of bisphenol AF (BPAF), a main substitute for BPA, on heart development remains unclear. In this study, the cardiotoxicity of BPAF was evaluated in zebrafish in vivo and in human cardiac myocytes (HCMs) in vitro. Our results showed that BPAF at a concentration of 200 μg/L results in cardiotoxicity, including a reduced number of cardiomyocytes and endocardial cells in the heart, and reduced heart size in two transgenic zebrafish models (myl7:: dsred2-nuc and fli1a::nGFP). An increase in apoptosis was observed along with antioxidant enzyme inhibition and lipid peroxidation. In addition, the mRNA expression levels of several key genes involved in cardiac development were suppressed by BPAF treatment. In the HCM cell model, BPAF at 2 mg/L induced reactive oxygen species generation, antioxidant enzyme inhibition, mitochondrial dysfunction and oxidative DNA damage. These adverse outcomes can be attenuated by the antioxidant N-acetyl-L-cysteine (NAC), suggesting that oxidative stress is involved in BPAF-induced cardiotoxicity. These data indicated that BPAF exposure increased oxidative stress and apoptosis and that it suppressed the expression of genes involved in cardiac development, which may play crucial roles in the mechanisms of BPAF-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Hongye Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Aihua Gu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
21
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|