1
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
2
|
Huidobro-López B, Martínez-Hernández V, Barbero L, Meffe R, Nozal L, de Bustamante I. Evaluation of contaminants of emerging concern attenuation through a vegetation filter managed using different operating conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132217. [PMID: 37544173 DOI: 10.1016/j.jhazmat.2023.132217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
In wastewater treatment using Vegetation Filters (VFs), natural processes reduce contaminants present in water although some of them can reach the environment. In this study, 39 contaminants of emerging concern (CECs) are evaluated in a pilot VF under different operating conditions during almost four years. The use of woodchip amendments and the change from surface irrigation through furrows to drip irrigation (and from weekly to daily water application) provide CEC concentration reductions in the water infiltrating through the vadose zone. Biodegradation is the main process taking place and has been favoured mainly by woodchip soil amendments and the increased residence. Median attenuation percentages of the CECs most frequently detected with highest concentrations in applied wastewater vary between 52% and 100% at the end of the study (at 45 cm depth). Among targeted CECs, caffeine, and its transformation product paraxanthine are the most attenuated. Flecainide and venlafaxine show a persistent behaviour. However, their leaching concentrations are very low (< 31 ng/L). Concerning the underlying aquifer, the groundwater quality in terms of CEC concentrations is conditioned by the surrounding area rather than the operation of the VF. Levels in groundwater are always below those in wastewater and infiltrating water.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | | | - Lucía Barbero
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain
| | - Raffaella Meffe
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain
| | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Irene de Bustamante
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, A-II km 33,0, 28805 Madrid, Spain
| |
Collapse
|
3
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
4
|
Devault DA, Massat F, Lambourdière J, Maridakis C, Dupuy L, Péné-Annette A, Dolique F. Micropollutant content of Sargassum drifted ashore: arsenic and chlordecone threat assessment and management recommendations for the Caribbean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66315-66334. [PMID: 35501441 DOI: 10.1007/s11356-022-20300-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Massive Sargassum beachings occurred since 2011 on Caribbean shores. Sargassum inundation events currently involve two species, namely S. fluitans and S. natans circulating and blooming along the North Atlantic subtropical gyre and in the entire Caribbean region up to the Gulf of Mexico. Like other brown seaweeds, Sargassum have been shown to bioaccumulate a large number of heavy metals, alongside with some organic compounds including the contamination by historical chlordecone pollution in French West Indies (FWI), an insecticide used against the banana's weevil Cosmopolites sordidus. The present study reports, during two successive years, the concentration levels of heavy metals including arsenic in Martinique and Guadeloupe (FWI). We found that Sargassum can also accumulate a high concentration of chlordecone. Sargassum contamination by chlordecone is observed in areas close to contaminated river mouth but can be partly due to chlordecone desorption when secondary drifted on chlordecone-free shore. Our results further demonstrate that algae bleaching raises a number of questions about inorganic and organic pollutant (i) bioaccumulation, at sea for arsenic and close to river plumes for chlordecone, (ii) transport, and (iii) dissemination, depending the shoreline and the speciation for arsenic and/or metabolization for both.
Collapse
Affiliation(s)
- Damien A Devault
- Département des Sciences et Technologies, Centre Universitaire de Formation et de Recherche de Mayotte, RN3, BP53, 97660, Mayotte, Dembeni, France.
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France.
| | - Félix Massat
- La Drôme Laboratoire, 37 avenue de Lautagne, 118, Valence, BP, France
| | - Josie Lambourdière
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| | - Clio Maridakis
- ADEME, Zone de Manhity Four à chaux Sud Immeuble Exodom LE, 97232, Le Lamentin, Martinique, France
| | - Laëtitia Dupuy
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| | - Anne Péné-Annette
- EA 929 AIHP-Geode Campus Universitaire de Schœlcher, 97275, Schœlcher, Martinique, France
| | - Franck Dolique
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
5
|
Ambriz-Mexicano I, González-Juárez S, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, Juárez-Ramírez C, Galar-Martínez M. Integrated adsorption and biological removal of the emerging contaminants ibuprofen, naproxen, atrazine, diazinon, and carbaryl in a horizontal tubular bioreactor. Bioprocess Biosyst Eng 2022; 45:1547-1557. [PMID: 35953615 DOI: 10.1007/s00449-022-02764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Groundwater and surface water bodies may have contaminants from urban, industrial, or agricultural wastewater, including emerging contaminants (ECs) or micropollutants (MPs). Frequently, they are not efficiently removed by microbial action due to their minimal concentration in water and the low microbiota affinity for complex compounds. This work developed a process allowing the adsorption of contaminants and their simultaneous biodegradation using horizontal tubular fixed-bed biofilm reactors (HTR). Each HTR has two zones: an equalizer-aerator of the incoming liquid flow and a fixed bed zone. This zone was packed with a mixed support material consisting of granular bio-activated carbon (Bio-GAC) and porous material that increases the bed permeability, thus decreasing the pressure drop. Five microbial communities were acclimated and immobilized in granular activated carbon (GAC) to obtain different specialized Bio-GAC particles able to remove the micropollutants ibuprofen, naproxen, atrazine, carbaryl, and diazinon. The Bio-GAC particles were transferred to HTRs continuously run in microaerophilia at several MPs loading rates. Under these conditions, the removal efficiencies of MPs, except atrazine and carbaryl, were around 100.
Collapse
Affiliation(s)
| | | | - Nora Ruiz-Ordaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico, México.
| | | | | | | | | |
Collapse
|
6
|
Galinaro CA, Spadoto M, de Aquino FWB, de Souza Pelinson N, Vieira EM. Environmental risk assessment of parabens in surface water from a Brazilian river: the case of Mogi Guaçu Basin, São Paulo State, under precipitation anomalies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8816-8830. [PMID: 34491494 DOI: 10.1007/s11356-021-16315-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Parabens are preservatives widely used by industry since these compounds have antifungal properties, relative low cost, and stability over a wide pH range. This study aims to quantify and assess the environmental risks of methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) in surface water from a Brazilian River, Mogi Guaçu. The State of São Paulo, including the Mogi Guaçu River region, suffered from a period of intense drought and high temperatures, which caused anomalies in river flows and water supply problems. The water samples were collected from 14 locations, along 300 km of river extension, at four different seasons. Samples were previously extracted and pre-concentrated by dispersive liquid-liquid microextraction (DLLME) and later analyzed by ultra-performance liquid chromatography coupled with electrospray ionization in tandem with mass spectrometry (UPLC-ESI-MS/MS) detector. During the sampling period, PP was detected in 89.3% of the water samples, MP in 87.5%, EP in 73.2%, and BP in 48.2%. The sum of parabens' average levels was 42.2 μg L-1 in Winter, 41.5 μg L-1 in Summer, 36.6 μg L-1 in Autumn, and 31.5 μg L-1 in Spring. These levels can be attributed to the smaller dilution effect caused by the drought period. Also, ecological risk assessment indicated that parabens could take a low, medium, and high risk for target organisms in the measured aquatic environments, especially considering Pimephales promelas where 15% of the samples do not present potential risk, 84% of samples can present medium risk and only 1% have low risk. Besides, the risks for BP are also considerably higher, when almost 40% presents for high risks and 60% for medium risks. The present study indicates worrisome threats to the water source and to allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect.
Collapse
Affiliation(s)
- Carlos Alexandre Galinaro
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil.
| | - Mariangela Spadoto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, Avenida do Trabalhador São Carlense, 400, 13.560-970, São Carlos, São Paulo, Brazil
| | - Francisco Wendel Batista de Aquino
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luís s/n km 235, P.O. Box 676, São Paulo, São Carlos, 13565-905, Brazil
| | - Natália de Souza Pelinson
- São Carlos School of Engineering (EESC), University of São Paulo (USP), 400 Trabalhador São Carlense Avenue, São Carlos, SP, 13566-590, Brazil
| | - Eny Maria Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Sochacki A, Kowalska K, Felis E, Bajkacz S, Kalka J, Brzeszkiewicz A, Vaňková Z, Jakóbik-Kolon A. Removal and transformation of sulfamethoxazole in acclimated biofilters with various operation modes - Implications for full-scale application. CHEMOSPHERE 2021; 280:130638. [PMID: 33932905 DOI: 10.1016/j.chemosphere.2021.130638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The knowledge gaps regarding the degradation of sulfamethoxazole (SMX) in biofilters include the effect of aeration, constant feeding with readily biodegradable organic carbon and the presence of reactive media such as manganese oxides (MnOx). Thus, the goal of this study was to assess the removal of SMX in lab-scale biofilters with various operation variables: aeration, presence of MnOx as an amendment of filtering medium and the presence of readily biodegradable organic carbon (acetate). The sand used in the experiment as a filtering medium was previously exposed to the presence of SMX and acetate, which provided acclimation of the biomass. The removal of SMX was complete (>99%) with the exception of the unaerated columns fed with the influent containing acetate, due to apparent slower rate of SMX degradation. The obtained results suggest that bacteria were able to degrade SMX as a primary substrate and the degradation of this compound was subsequent to the depletion of acetate. The LC-MS/MS analysis of the effluents indicated several biotransformation reactions for SMX: (di)hydroxylation, acetylation, nitrosation, deamonification, S-N bond cleavage and isoxazole-ring cleavage. The relative abundance of transformation products was decreased in the presence of MnOx or acetate. Based on the Microtox assay, only the effluents from the unaerated columns filled with MnOx were classified as non-toxic. The results offer important implications for the design of biofilters for the elimination of SMX, namely that biofilters offer the greatest performance when fed with secondary wastewater and operated as non-aerated systems with a filtering medium containing MnOx.
Collapse
Affiliation(s)
- Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Katarzyna Kowalska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland; Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland
| | - Arletta Brzeszkiewicz
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Zuzana Vaňková
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic
| | - Agata Jakóbik-Kolon
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| |
Collapse
|
8
|
De Vargas JPR, Bastos MC, Al Badany M, Gonzalez R, Wolff D, Santos DRD, Labanowski J. Pharmaceutical compound removal efficiency by a small constructed wetland located in south Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30955-30974. [PMID: 33594565 DOI: 10.1007/s11356-021-12845-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.
Collapse
Affiliation(s)
- Jocelina Paranhos Rosa De Vargas
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Marília Camotti Bastos
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Maha Al Badany
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Rolando Gonzalez
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Delmira Wolff
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Danilo Rheinheimer Dos Santos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|