1
|
Ebbisa AF, Dechassa N, Bekeko Z, Liben F. Residual effect of vermicompost and preceding groundnut on soil fertility and associated Striga density under sorghum cropping in Eastern Ethiopia. PLoS One 2025; 20:e0318057. [PMID: 40073327 PMCID: PMC11903043 DOI: 10.1371/journal.pone.0318057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Depletion of soil organic matter was found to be the primary biophysical factor causing declining per capita food production in sub-Saharan Africa. The magnitude of this problem was exacerbated by moisture-stress and imbalanced fertilizer application that caused Striga weed infestation. To address such confounded issues, two-year field experiments were conducted to evaluate the effect of residual vermicompost and preceding groundnut on soil fertility, sorghum yield, and Striga density. The first-year treatments contained two sowing methods (single and intercropped sorghum), two seedbed types (open-furrow and tied-ridge), and four vermicompost rates (0, 1.5, 3.0, and 4.5 t/ha) combined factorially in a randomized block design. In the second-year experiment, only monocropped sorghum with seedbed types was sown exactly on the same plot as the previous year's treatment combinations without fertilizer. The results disclosed that residual vermicompost at 4.5 t/ha in intercropped sorghum/groundnut significantly reduced soil pH (0.76%), bulk density (8.61%), electrical conductivity (38.78%), and Striga density (85.71%). In contrast, compared to unamended soil, the aforementioned treatment combined with tied-ridging increased soil moisture, organic matter, and sorghum yield by 16.67, 2.34, and 58%, respectively. Moreover, this treatment combination markedly increased post-harvest soil organic carbon (7.69%), total N (0.247%), available P (38.46%), exchangeable-Fe (27%), and exchangeable-Zn (40%) in the second year over control. Treatments previously amended with 4.5 t/ha of vermicompost under the sorghum-groundnut intercrop system resulted in the highest total N (0.242%) and available P (9.822 mg/Kg). Thus, the vermicompost and groundnut successfully improve soil fertility and sorghum yield for two cropping seasons.
Collapse
Affiliation(s)
- Addisu F. Ebbisa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | | | - Zelalem Bekeko
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Feyera Liben
- Alliance of Biodiversity International and CIAT, ILRI, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Paniagua-López M, Silva-Castro GA, Romero-Freire A, Martín-Peinado FJ, Sierra-Aragón M, García-Romera I. Integrating waste valorization and symbiotic microorganisms for sustainable bioremediation of metal(loid)-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174030. [PMID: 38885698 DOI: 10.1016/j.scitotenv.2024.174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.
Collapse
Affiliation(s)
- Mario Paniagua-López
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain; Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain.
| | - Gloria Andrea Silva-Castro
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Francisco José Martín-Peinado
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Manuel Sierra-Aragón
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Inmaculada García-Romera
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| |
Collapse
|
3
|
Przemieniecki SW, Kalisz B, Katzer J, Wamelink GWW, Kosewska O, Kosewska A, Sowiński P, Mastalerz J. Effect of vermicompost on rhizobiome and the growth of wheat on Martian regolith simulant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173299. [PMID: 38761954 DOI: 10.1016/j.scitotenv.2024.173299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.
Collapse
Affiliation(s)
- Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland.
| | - Barbara Kalisz
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
| | - Jacek Katzer
- Center of Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - G W Wieger Wamelink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Olga Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
| | - Paweł Sowiński
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
| | - Jędrzej Mastalerz
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
4
|
Thamizharasan A, Aishwarya M, Mohan V, Krishnamoorthi S, Gajalakshmi S. Assessment of microbial flora and pesticidal effect of vermicast generated from Azadirachta indica (neem) for developing a biofertilizer-cum-pesticide as a single package. Microb Pathog 2024; 192:106690. [PMID: 38759935 DOI: 10.1016/j.micpath.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.
Collapse
Affiliation(s)
- A Thamizharasan
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Aishwarya
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - V Mohan
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Krishnamoorthi
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Gajalakshmi
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
5
|
Ahmed N, Zhang B, Deng L, Bozdar B, Li J, Chachar S, Chachar Z, Jahan I, Talpur A, Gishkori MS, Hayat F, Tu P. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation-a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1357153. [PMID: 38685958 PMCID: PMC11057267 DOI: 10.3389/fpls.2024.1357153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Itrat Jahan
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Afifa Talpur
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Cimen A, Baba Y, Yildirim AB, Turker AU. Do Vermicompost Applications Improve Growth Performance, Pharmaceutically Important Alkaloids, Phenolic Content, Free Radical Scavenging Potency and Defense Enzyme Activities in Summer Snowflake (Leucojum aestivum L.)? Chem Biodivers 2023; 20:e202301074. [PMID: 37779102 DOI: 10.1002/cbdv.202301074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Leucojum aestivum L. contains galanthamine and lycorine, which are two pharmaceutically valuable alkaloids. Vermicompost (VC), an organic waste product created by earthworms enhances soil quality and can improve the medicinal quality of the plant that is crucial to the pharmaceutical industry. The aim of this study was to determine the effects of four different VC concentrations (5 %, 10 %, 25 %, and 50 %) on L. aestivum growth parameters, alkaloid levels (galanthamine and lycorine), total phenol-flavonoid content, free radical scavenging potential, and defense enzyme activities (SOD and CAT) compared to control (no VC). The width, length, and fresh weight of the leaves were improved by 10 % VC treatment. The highest total phenolic content was found in the bulbs and leaves treated with 50 % VC. HPLC-DAD analysis of alkaloids showed that 10 % and 50 % VC treatments contained the most galanthamine in the bulb and leaf extracts, respectively. The application of 25 % VC was the most efficient in terms of lycorine content in both extracts. CAT activity was elevated at 10 %, 25 %, and 50 % VC. Based on the growth performance and galanthamine content of the bulbs and leaves, it can be concluded that a 10 % VC application was the most effective in the cultivation of L. aestivum.
Collapse
Affiliation(s)
- Ayca Cimen
- Bolu Abant Izzet Baysal University, Department of Biology, Faculty of Science and Art, 14030, Bolu, Turkiye
| | - Yavuz Baba
- Bolu Abant Izzet Baysal University, Department of Biology, Faculty of Science and Art, 14030, Bolu, Turkiye
| | - Arzu Birinci Yildirim
- Bolu Abant Izzet Baysal University, Department of Field Crops, Faculty of Agricultural and Environmental Science, 14030, Bolu, Turkiye
| | - Arzu Ucar Turker
- Bolu Abant Izzet Baysal University, Department of Biology, Faculty of Science and Art, 14030, Bolu, Turkiye
| |
Collapse
|
7
|
Nogalska A, Przemieniecki SW, Krzebietke SJ, Załuski D, Kosewska A, Skwierawska M, Sienkiewicz S. The Effect of Mealworm Frass on the Chemical and Microbiological Properties of Horticultural Peat in an Incubation Experiment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:21. [PMID: 36612343 PMCID: PMC9819234 DOI: 10.3390/ijerph20010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Insect farming is growing in popularity, and in addition to insect meal, it generates waste products such as exuviae and frass, which can be recycled in agriculture. The aim of this incubation experiment was to evaluate the effect of Tenebrio molitor L. frass on selected chemical and biological properties of deacidified peat, which is widely used in horticulture. The optimal rate of frass fertilizer in peat for growing vegetables and ornamental plants was determined, with special emphasis on mineral nitrogen levels. Peat was fertilized with five nitrogen rates, 0, 50, 100, 200, and 400 mg dm-3, and supplied with frass or urea. The study demonstrated that frass can be used as organic fertilizer. An increase in the nitrogen rate significantly increased mineral nitrogen content and electrical conductivity and decreased Ca content in peat. Both frass and urea increased the ammonification rate at the beginning of incubation and the nitrification rate from the second week of the experiment. Higher frass rates (5 and 10 g dm-3) increased the content of plant-available nutrients (nitrogen, phosphorus, magnesium, potassium, and sodium) in peat as well as the abundance of microorganisms supporting organic matter mineralization. Unlike frass, urea increased the counts of nitrogen-fixing bacteria in peat.
Collapse
Affiliation(s)
- Anna Nogalska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland
| | - Sławomir Józef Krzebietke
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland
| | - Dariusz Załuski
- Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-719 Olsztyn, Poland
| | - Agnieszka Kosewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland
| | - Małgorzata Skwierawska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland
| | - Stanisław Sienkiewicz
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Tóthné Bogdányi F, Boziné Pullai K, Doshi P, Erdős E, Gilián LD, Lajos K, Leonetti P, Nagy PI, Pantaleo V, Petrikovszki R, Sera B, Seres A, Simon B, Tóth F. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes-A Review. Microorganisms 2021; 9:2130. [PMID: 34683451 PMCID: PMC8538326 DOI: 10.3390/microorganisms9102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity. Municipal green waste (MGW) was identified and profiled. We found that compost, with or without beneficial microorganisms as biocontrol agents (BCAs) against PPNs, were shown to have mechanisms for the control of plant parasitic nematodes. Compost supports a diverse microbiome, introduces and enhances populations of antagonistic microorganisms, releases nematicidal compounds, increases the tolerance and resistance of plants, and encourages the establishment of a "soil environment" that is unsuitable for PPNs. Our compilation of recent papers reveals that while the scope of research on compost and BCAs is extensive, the role of MGW-based compost (MGWC) in the control of PPNs has been given less attention. We conclude that the most environmentally friendly and long-term, sustainable form of PPN control is to encourage and enhance the soil microbiome. MGW is a valuable resource material produced in significant amounts worldwide. More studies are suggested on the use of MGWC, because it has a considerable potential to create and maintain soil suppressivity against PPNs. To expand knowledge, future research directions shall include trials investigating MGWC, inoculated with BCAs.
Collapse
Affiliation(s)
| | - Krisztina Boziné Pullai
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
| | - Pratik Doshi
- ImMuniPot Independent Research Group, H-2100 Gödöllő, Hungary
| | - Eszter Erdős
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Lilla Diána Gilián
- Szent István Campus Dormitories, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Károly Lajos
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Paola Leonetti
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Péter István Nagy
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Vitantonio Pantaleo
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Renáta Petrikovszki
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Anikó Seres
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Barbara Simon
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Ferenc Tóth
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| |
Collapse
|