1
|
da Silva EM, de Araújo SC, Veras STS, Pinheiro AAD, Motteran F, Kato MT, Florencio L, Leite WRM. Anaerobic co-digestion of microalgal biomass, sugarcane vinasse, and residual glycerol from biodiesel using simplex-centroid mixture design: methane potential, synergic effect, and microbial diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33193-1. [PMID: 38605273 DOI: 10.1007/s11356-024-33193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Microalgal biomass (MB) is a promising feedstock for bioenergy production. Nonetheless, the cell recalcitrance and the low C/N ratio limit the methane yield during anaerobic digestion. As an alternative to overcome these challenges, MB co-digestion with different feedstocks has been proposed. Thus, this study evaluated the anaerobic co-digestion (AcoD) of MB cultivated in wastewater with sugarcane vinasse (VIN) and residual glycerol from biodiesel production (GLY). Batch tests were conducted using augmented simplex-centroid mixture design to investigate the impact of AcoD on methane production (SMP), synergistic effects, and the influence on microbial community. When compared to MB digestion, 150 NmL CH4.g-1VS, binary and ternary AcoD achieved SMP increases from 120 to 337%. The combination of 16.7:16.7:66.7 (MB:VIN:GLY) showed the highest SMP for a ternary mixture (631 NmL CH4.g-1VS). Optimal synergies ranged from 1.3 to 1.4 and were primarily found for the MB:GLY AcoD. Acetoclastic Methanosaeta genus was predominant, regardless the combination between substrates. Despite the largest SMP obtained from the MB:GLY AcoD, other ternary mixtures were also highly synergetic and therefore had strong potential as a strategic renewable energy source.
Collapse
Affiliation(s)
- Edilberto Mariano da Silva
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Sayonara Costa de Araújo
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Shyrlane Torres Soares Veras
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Agnes Adam Duarte Pinheiro
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Fabrício Motteran
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Mario Takayuki Kato
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Lourdinha Florencio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil
| | - Wanderli Rogério Moreira Leite
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Recife, PE, 50740-530, Brazil.
| |
Collapse
|
2
|
Ćwiertniewicz-Wojciechowska M, Cema G, Ziembińska-Buczyńska A. Sewage sludge pretreatment: current status and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88313-88330. [PMID: 37453013 PMCID: PMC10412499 DOI: 10.1007/s11356-023-28613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Sewage sludge is regarded by wastewater treatment plants as problematic, from a financial and managerial point of view. Thus, a variety of disposal routes are used, but the most popular is methane fermentation. The proportion of macromolecular compounds in sewage sludges varies, and substrates treated in methane fermentation provide different amounts of biogas with various quality and quantity. Depending on the equipment and financial capabilities for methane fermentation, different methods of sewage sludge pretreatment are available. This review presents the challenges associated with the recalcitrant structure of sewage sludge and the presence of process inhibitors. We also examined the diverse methods of sewage sludge pretreatment that increase methane yield. Moreover, in the field of biological sewage sludge treatment, three future study propositions are proposed: improved pretreatment of sewage sludge using biological methods, assess the changes in microbial consortia caused with pretreatment methods, and verification of microbial impact on biomass degradation.
Collapse
Affiliation(s)
| | - Grzegorz Cema
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | | |
Collapse
|
3
|
Wang J, Zhao N, Zhang X, Jiang L, Kang YR, Chu YX, He R. Additional ratios of hydrolysates from lignocellulosic digestate at different hydrothermal temperatures influencing anaerobic digestion performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32866-32881. [PMID: 36472738 DOI: 10.1007/s11356-022-24519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrothermal treatment (HT) is envisaged as a promising technology to treat the lignocellulosic biomass. HT temperature is an important parameter influencing the hydrolysate compositions such as organic compounds and potential inhibitors, and therefore affect the subsequential anaerobic digestion (AD) process. Herein, HT-AD was employed to treat the wheat straw-derived digestate. The HT temperature of 190 °C was proved to be the best performance with a higehst reducing sugar yield (45.05 mg g-1) in the hydrolysate and a highest methane yield (120.8 mL gTS-1) from the AD of the hydrolysate, which was 42.5% higher than the methane yield in the control without the hydrolysate addition (84.8 mL gTS-1). 3-Furaldehyde was the dominant organic in the hydrolysates. The HT temperature of 210 °C led to the presence of AD inhibitory moieties (e.g., phenols and furans) in the hydrolysate, resulting in a low methane yield. Although the treatments with the addition of 100% hydrolysate outperformed those of 50% hydrolysate in the methane yields in the late stage, the latter had higher methane yields in the first stage, suggesting that the additional ratios of hydrolysates should be carefully considered in AD, especially the detrimental effects of inhibitors and adaptability issues of AD consortia. The MiSeq sequencing showed that the hydrolysis/acidogenesis was dominant in the first stage, while methanogenesis became dominant in the late stage with the acetoclastic/hydrogenotrophic methanogens (Methanosarcina and Methanobacterium) enriched in the hydrolysate-feeding reactors. These findings demonstrated that a integration of HT-AD was a promising approach for the digestate valorization and to reduce the potential carbon emission from waste treatments.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuan Zhang
- Eco-Environmental Science and Research Institute of Zhejiang Province, Hangzhou, 310061, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ya-Ru Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Li P, Wang Q, He X, Yu R, He C, Shen D, Jiao Y. Investigation on the effect of different additives on anaerobic co-digestion of corn straw and sewage sludge: Comparison of biochar, Fe 3O 4, and magnetic biochar. BIORESOURCE TECHNOLOGY 2022; 345:126532. [PMID: 34896538 DOI: 10.1016/j.biortech.2021.126532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The co-digestion of corn straw and sewage sludge with different additives (biochar, magnetic biochar, Fe3O4) were investigated. The highest cumulative methane yield of 245.15 mL/g VSadded was obtained with the Fe3O4 addition ratio of 5 g/kg, which was 60.47% higher than that of the control run (without additives). The lag phase time was shortened from 5.46 to 3.82 days with a biochar dosage of 5 g/kg. The performance of Fe3O4 on methane production from the co-digestion process was better than that of the biochar and magnetic biochar. The direct interspecies electron transfer (DIET) was enhanced with regard to the increased concentration of acetic acid and decreased concentration of propionic acid. Microbial community analysis showed that the Geobacter and Methanosarcina were selectively enriched on the surface of Fe3O4, promoting the DIET and acetoclastic methanogenesis pathway. The cost-benefit analysis proved that the strategy of recycling Fe3O4 additive has the best economic benefit.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qi Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310087, Zhejiang, PR China
| | - Xiaoman He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ran Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chao He
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Nongye Road 63, Zhengzhou, Henan 450002, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Youzhou Jiao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Nongye Road 63, Zhengzhou, Henan 450002, PR China
| |
Collapse
|
5
|
Liu Y, Tang Y, Gao H, Zhang W, Jiang Y, Xin F, Jiang M. Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery. Molecules 2021; 26:5411. [PMID: 34500844 PMCID: PMC8433869 DOI: 10.3390/molecules26175411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.
Collapse
Affiliation(s)
- Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Yunhan Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|