1
|
Yatung S, Trivedi AK. Time- and season-dependent changes in the steroidogenic markers in female tree sparrow (Passer montanus). Photochem Photobiol Sci 2025; 24:607-628. [PMID: 40220241 DOI: 10.1007/s43630-025-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Seasonal breeders display elevated sex steroid hormone production during reproductive seasons, resulting in significant physiological and structural alterations. One such seasonal breeder adapted to the changing environment is a Tree sparrow (Passer montanus). The study aims to investigate 24-h rhythmicity and annual variations in the expression of steroidogenic gene markers of adult female tree sparrows. Two experiments were conducted; in experiment one, birds (n = 5 birds/time points) were sampled at six time points, i.e., ZT1, ZT5, ZT9, ZT13, ZT17, and ZT21 (ZT = Zeitgeber time, ZT0 = sunrise time) during the reproductive stage; subsequently, hypothalamus and ovary were harvested for gene expression analysis. In experiment two, birds (n = 5/month) were sampled at mid-day every month for a year. Feather molt, follicular diameter, body mass, and bill coloration were recorded. The hypothalamus and ovary were harvested for gene expression studies. Blood plasma cholesterol and progesterone were also measured. The study indicates a larger follicular size during May and June. Whereas, maximum molt was observed during the post-reproductive phase. Cholesterol levels were highest prior breeding phase and higher progesterone levels paralleled larger follicular size. While higher levels of GnIh (gonadotropin-inhibitory hormone) and Dio3 (type 3 deiodinase) were observed during the non-breeding phase, elevated expression of Tshβ (thyroid stimulating hormone subunit beta), Dio2 (type 2 deiodinase), and GnRh (gonadotropin-releasing hormone) was noted during the reproductive period. The study also reveals 24-h rhythmicity in selected steroidogenic markers (StAR, Nr4a1, Er, Scp2, Cyp17a1, Foxl2, Cyp11a1, Hsd11b2, Cyp11b, Cyp19a1, and Vdac1) and seasonal variations directly influence steroidogenesis, which connects with the annual reproductive cycle.
Collapse
Affiliation(s)
- Subu Yatung
- Department of Zoology, Mizoram University (Central), Tanhril, Aizawl, 796004, India
| | - Amit Kumar Trivedi
- Department of Zoology, Mizoram University (Central), Tanhril, Aizawl, 796004, India.
| |
Collapse
|
2
|
Kataki B, Dixit AS. Seasonal regulation of Tsh-β, Dio2, Dio3, and GnRH-I mRNA expressions in Eurasian tree sparrow (Passer montanus) under natural conditions. J Neuroendocrinol 2025:e70023. [PMID: 40108871 DOI: 10.1111/jne.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Seasonal transitions in avian reproductive cycles are governed by neuroendocrine adaptability. The molecular mechanisms behind seasonal regulation are still not fully understood in many species and remain an important area of ongoing research. Despite recognizing the importance of regulatory genes, gaps persist in comprehending the exact molecular processes that control the transitions between different reproductive phases. We investigated the expression patterns of Tsh-β (Thyroid-stimulating hormone subunit beta), Dio2 (Iodothyronine deiodinase 2), Dio3 (Iodothyronine deiodinase 3), and GnRH-I (Gonadotropin-releasing hormone I) mRNAs in regulating reproduction in both sexes of the Eurasian tree sparrow (Passer montanus). Adult tree sparrows (n = 4 for each sex) were procured from the wild, and mRNA expression of Tsh-β, Dio2, Dio3, and GnRH-I, along with gonadal size and body weight, was examined on a monthly basis for 1 year. Results revealed distinct annual cycles of Tsh-β, Dio2, Dio3, and GnRH-I mRNA expression and gonadal size in both sexes. Significantly higher expressions of Tsh-β, Dio2, and GnRH-I mRNA were observed during the breeding phase (April-May), while Dio3 expression was reported higher during the non-breeding phase. The synchronization in the pattern of increase in the Tsh-β, Dio2, and GnRH-I during the breeding phase is associated with gonadal growth, suggesting their potential involvement in regulating seasonal reproduction in tree sparrows. Thus, the control of the reproductive cycle in tree sparrows involves the actions of Tsh-β and Dio2/Dio3 leading to the activation and deactivation of GnRH-I via the HPG (hypothalamic-pituitary-gonadal) axis.
Collapse
Affiliation(s)
- Bidisha Kataki
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Anand S Dixit
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
3
|
Lalrinawma TSK, Sangma JT, Renthlei Z, Trivedi AK. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 2024; 51:278. [PMID: 38319482 DOI: 10.1007/s11033-024-09224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.
Collapse
Affiliation(s)
| | - James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
4
|
Sewall KB, Beck ML, Lane SJ, Davies S. Urban and rural male song sparrows (Melospiza melodia) differ in territorial aggression and activation of vasotocin neurons in response to song challenge. Horm Behav 2023; 156:105438. [PMID: 37801916 DOI: 10.1016/j.yhbeh.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
When living in urban habitats, 'urban adapter' species often show greater aggression toward conspecifics, yet we do not understand the mechanisms underlying this behavioral shift. The neuroendocrine system regulates socio-sexual behaviors including aggression and thus could mediate behavioral responses to urbanization. Indeed, urban male song sparrows (Melospiza melodia), which are more territorially aggressive, also have greater abundance of the neuropeptide arginine vasotocin (AVT) in nodes of the brain social behavior network. Higher abundance of AVT could reflect long-term synthesis that underlies baseline territoriality or short-term changes that regulate aggression in response to social challenge. To begin to resolve the timeframe over which the AVT system contributes to habitat differences in aggression we used immediate early gene co-expression as a measure of the activation of AVT neurons. We compared Fos induction in AVT-immunoreactive neurons of the bed nucleus of the stria terminalis (BSTm) and paraventricular nucleus of the hypothalamus (PVN) between urban and rural male song sparrows in response to a short (< 5 min.) or long (> 30 min.) song playback to simulate territorial intrusion by another male. We found that urban males had a higher proportion of Fos-positive AVT neurons in both brain regions compared to rural males, regardless of the duration of song playback. Our results suggest that AVT neurons remain activated in urban males, independently of the duration of social challenge. These findings that Fos induction in AVT neurons differs between rural and urban male song sparrows further implicate this system in regulating behavioral responses to urbanization.
Collapse
Affiliation(s)
- Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Michelle L Beck
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Industrial Economics Incorporated, Cambridge, MA, USA
| | - Samuel J Lane
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Scott Davies
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Quinnipiac University, Department of Biological Sciences, 275 Mt Carmel Ave, Hamden, CT 06518, USA
| |
Collapse
|
5
|
Kumar A, Prabhat A, Kumar V, Bhardwaj SK. Artificial night illumination disrupts sleep, and attenuates mood and learning in diurnal animals: evidence from behavior and gene expression studies in zebra finches. Photochem Photobiol Sci 2023; 22:2247-2257. [PMID: 37329435 DOI: 10.1007/s43630-023-00447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of an illuminated night on sleep, mood, and cognitive performance in non-seasonal diurnal zebra finches that were exposed for 6 weeks to an ecologically relevant dimly lit night (12L:12dLAN; 150 lx: 5 lx) with controls on the dark night (12L:12D; 150 lx: < 0.01 lx). Food and water were provided ad libitum. Under dLAN (dim light at night), birds showed disrupted nocturnal (frequent awakenings) and overall decreased sleep duration. They also exhibited a compromised novel object exploration, a marker of the bird's mood state, and committed more errors, took significantly longer duration to learn with low retrieval performance of the learned task when tested for a color-discrimination (learning) task under the dLAN. Further, compared to controls, there was reduced mRNA expression level of genes involved in the neurogenesis, neural plasticity (bdnf, dcx and egr1) and motivation (th, drd2, taar1 and htr2c; dopamine synthesis and signaling genes) in the brain (hippocampus (HP), nidopallium caudolaterale (NCL), and midbrain) of birds under dLAN. These results show concurrent negative behavioral and molecular neural effects of the dimly illuminated nights, and provide insights into the possible impact on sleep and mental health in diurnal species inhabiting an increasingly urbanized ecosystem.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Abhilash Prabhat
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sanjay Kumar Bhardwaj
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
6
|
Sangma JT, Trivedi AK. Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochem Photobiol Sci 2023; 22:2297-2314. [PMID: 37337065 DOI: 10.1007/s43630-023-00451-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The rapid increase in urbanization is altering the natural composition of the day-night light ratio. The light/dark cycle regulates animal learning, memory, and mood swings. A study was conducted to examine the effect of different quantity and quality of light at night on the daily clock, learning, memory, cognition, and expression of transcripts in key learning centers. Treatment was similar for experiments one to three. Rats were exposed for 30 days to 12 h light and 12 h dark with a night light of 2 lx (dLAN group), 250 lx (LL), or without night light (LD). In experiment one, after 28 days, blood samples were collected and 2 days later, animals were exposed to constant darkness. In experiment two, after 30 days of treatment, animals were subjected to various tests involving learning, memory, and cognition. In experiment three, after 30 days of treatment, animals were sampled, and transcript levels of brain-derived neurotrophic factor, tyrosine kinase, Growth-Associated Protein 43, Neurogranin, microRNA-132, cAMP Response Element-Binding Protein, Glycogen synthase kinase-3β, and Tumor necrosis factor α were measured in hippocampus, thalamus, and cortex tissues. In experiment four, animals were exposed to night light of 0.019 W/m2 but of either red (640 nm), green (540 nm), or blue (450 nm) wavelength for 30 days, and similar tests were performed as mentioned in experiment 2. While in experiment five, after 30 days of respective wavelength treatments, all animals were sampled for gene expression studies. Our results show that exposure to dLAN and LL affects the daily clock as reflected by altered melatonin secretion and locomotor activity, compromises the learning, memory, and cognitive ability, and alterations in the expression levels of transcripts in the hypothalamus, cortex, and thalamus. The effect is night light intensity dependent. Further, blue light at night has less drastic effects than green and red light. These results could be of the potential use of framing the policies for the use of light at night.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
7
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
8
|
Renthlei Z, Yatung S, Lalpekhlui R, Trivedi AK. Seasonality in tropical birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:952-966. [PMID: 35982509 DOI: 10.1002/jez.2649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The survival of offspring depends on environmental conditions. Many organisms have evolved with seasonality, characterized as initiation-termination-reinitiation of several physiological processes (i.e., body fattening, molt, plumage coloration, reproduction, etc). It is an adaptation for the survival of many species. Predominantly seasonal breeders use photoperiod as the most reliable environmental cue to adapt to seasonal changes but supplementary factors like temperature and food are synergistically involved in seasonal processes. Studies from diverse vertebrate systems have contributed to understanding the mechanism involved in seasonal reproduction at the molecular and endocrine levels. Long-day induced thyrotropin (thyroid-stimulating hormone) released from the pars tuberalis of the pituitary gland triggers local thyroid hormone activation within the mediobasal hypothalamus. This locally produced thyroid hormone, T3, regulates seasonal gonadotropin-releasing hormone secretion. Most of the bird species studied are seasonal in reproduction and linked behavior and, therefore, need to adjust reproductive decisions to environmental fluctuations. Reproductive strategies of the temperate zone breeders are well-documented, but less is known about tropical birds' reproduction and factors stimulating the annual breeding strategies. Here, we address seasonality in tropical birds with reference to seasonal reproduction and the various environmental factors influencing seasonal breeding.
Collapse
Affiliation(s)
| | - Subu Yatung
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Ruth Lalpekhlui
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
9
|
Pérez JH. Revisiting TSHβ's Role in Avian Seasonal Reproduction, Insights and Challenges from Mammalian Models. Integr Comp Biol 2022; 62:1022-1030. [PMID: 35640909 DOI: 10.1093/icb/icac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
The core neuroendocrine pathways regulating seasonal reproduction in vertebrates were characterized over a decade ago. This has led to the development of a "consensus" model of seasonal reproduction that appears to be largely conserved across mammals, birds, amphibians, reptile and fish. This model centers around the photoinduced increase in TSHβ expression in the pars tuberalis (PT) of the anterior pituitary gland as the key transducer of photic information from sensory cells to the critical switch in hypothalamic deiodinase enzyme expression that drives changes in localized thyroid hormone signaling. These changes in localized thyroid hormone signaling in the medial basal hypothalamus ultimately activate the reproductive axis. This model has in turn been consistently supported by studies in a variety of taxa. As such it has become the definitional standard against which subsequent work is compared, particularly in the non-mammalian literature. However, as new studies move away from the handful of canonical model systems and begin to explore the effects of naturalistic rather than artificial photoperiod manipulations a more nuanced picture has begun to emerge. Yet, progress in elucidating the detailed events of reproductive photostimulation has been uneven across the research community. In this perspective I draw on emerging data from studies in free living animals that challenges some of the established assumptions of the avian consensus model of reproduction. Specifically, the role of TSHβ and its dissociation from deiodinase signaling. I then discuss how these apparently surprising findings can be contextualized within the context of the mammalian seasonal literature. In turn this ability to contextualize from the mammalian literature highlights the breadth of the current gap I our understanding of the molecular neuroendocrine mechanisms of seasonality in mammals versus birds and other non-mammalian seasonal breeders.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Biology Department, The University of South Alabama, Mobile Alabama, 36688, USA
| |
Collapse
|