1
|
Wang Y, Sun H, Ji Y, Feng Y, Chen S, Ding S, Ma Y, Wang B, Feng Y, Xie H, Xue L. Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123946. [PMID: 39754797 DOI: 10.1016/j.jenvman.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Application of biogas slurry (BS) can promote ammonia (NH3) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass. However, the large amount of hydrothermal carbonization aqueous products (HAP) contains harmful substances that require effective management. The combined application of HAP and BS can mitigate NH3 emissions and facilitate resource recovery, presenting an eco-friendly approach to both nutrient recycling and pollution mitigation. This study explored the joint application of HAP and BS in paddy to decrease NH3 volatilization and the factors influencing NH3 volatilization. In this study, the HAP prepared from algae sludge and Quercus acutissima leaves at 180 °C and 220 °C was mixed with BS at a 1:1 total nitrogen content ratio, and the mixture was used instead of 25% or 50% urea. The experimental results indicated that the rice yield with the application of HAP and BS was equivalent to the control treatment only with urea (CK). Compared to the CK, HAP and BS treatments reduced soil NH3 volatilization by 6.9%-55.5% and increased soil dissolved organic matter (DOM) by 2.7%-59.4%. The treatments using algae sludge and Quercus acutissima leaves prepared at 220 °C as substitutes for 50% of urea reduced NH3 volatilization by 43.9% and 55.5%, respectively. Ammonium nitrogen, pH, total organic carbon, urease, and DOM were important factors influencing NH3 volatilization. This study showed that substituting part of urea with HAP and BS for field application reduced NH3 volatilization and increased soil organic matter content.
Collapse
Affiliation(s)
- Yimeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yahui Ji
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Sen Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yaxin Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| |
Collapse
|
2
|
Wei C, Su F, Yue H, Song F, Li H. Spatial distribution characteristics of denitrification functional genes and the environmental drivers in Liaohe estuary wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1064-1078. [PMID: 38030842 DOI: 10.1007/s11356-023-30938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Genes nirS, nirK, and nosZ are specific for the denitrification process, which is associated with greenhouse gas N2O emission. The abundances and diversities of community containing these three genes are usually used as a common index to reflect the denitrification process, and they would be affected by differences in environmental factors caused by changes from warm to cold conditions. The quantification of denitrification in natural wetlands is complex, and straightforward identification of spatial distribution and drivers affecting the process is still developing. In this study, the bacterial communities, gene diversities, and relative abundances involved in denitrification were investigated in Liaohe Estuary Wetland. We analyzed the relative abundances, diversities, and communities of bacteria containing the three genes at warm and cold conditions using Illumina MiSeq sequencing and detected the potential environmental factors influencing their distribution by using a random forest algorithm. There are great differences in the community composition of the bacteria containing genes nirS, nirK, and nosZ. All the abundant taxa of nirS and nirK communities belonged to phylum Proteobacteria. Compared with the community composition of bacteria containing nirS and nirK, the community of bacteria containing nosZ is more diverse, and the subdivision taxa of phylum Euryarchaeota was also abundant in the community containing nosZ. The distribution characteristics of the relative abundance of nirS and nirK showed obvious differences both at warm and cold climate conditions. The oxidation-reduction potential, nitrite nitrogen, and salinity were detected as potential variables that might explain the diversity of nirS. The total nitrogen and nitrite nitrogen were the important variables for predicting the relative abundance of nirS at warm climate condition, while oxidation-reduction potential and pH contributed to the diversity of nirS at cold condition. The bulk density of sediment was detected as a potential variable affecting the relative abundance of nirK at warm and cold conditions, and diversity of nirK at warm condition, while nitrite nitrogen was detected as an important environmental factor for predicting the diversity of nirK at cold condition. Overall, our results show that the key environmental factors, which affect the relative abundance, diversity, and community of bacteria containing the functional denitrification genes, are not exactly the same, and the diversities of nirS, nirK, and nosZ have a higher environmental sensitivity than their relative abundances.
Collapse
Affiliation(s)
- Chao Wei
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China.
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China.
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China.
| | - Hangyu Yue
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Fei Song
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Haifu Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| |
Collapse
|
3
|
Han H, Chen T, Liu C, Zhang F, Sun Y, Bai Y, Meng J, Chi D, Chen W. Effects of acid modified biochar on potassium uptake, leaching and balance in an alternate wetting and drying paddy ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166344. [PMID: 37597543 DOI: 10.1016/j.scitotenv.2023.166344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Straw biochar amended soils reduce fertilizer losses and alleviate soil K-exhaustion, while decrease grain yield due to its high pH. H2SO4-modified biochar has been studied as a means to enhance the advantages of biochar and address yield decrease. However, little information is available on its effects on aboveground K uptake, soil K fixation, K leaching, and utilization in paddy rice systems, especially under water stress. A 3-year field experiment was conducted with two irrigation regimes (continuously flooded irrigation, ICF and alternate wetting and drying irrigation, IAWD) as main plots and 0 (control), 20 t ha-1 biochar (B20), and 20 t ha-1 acid-modified biochar (B20A-M) as subplots. The results showed that IAWD significantly decreased water percolation by 9.26 %-14.74 % but increased K leaching by 10.84 %-15.66 %. Compared to B0, B20 and B20A-M significantly increased K leaching by 32.40 % and 30.42 % in 2019, while decreased it by 11.60 %-14.01 % in 2020 and 2021. Both B20 and B20A-M significantly improved aboveground K uptake by 3.45 %-6.71 % throughout the three years. B20 reduced grain yield in 2019 and increased it in 2020 and 2021, while B20A-M increased grain yield throughout the three years. Apparent K balance (AKB) from pre-transplanting to post-harvest over the three years suggested that IAWD significantly increased the risk of soil K depletion but B20 and B20A-M significantly increased AKB, thereby addressing the depletion of it. IAWDB20A-M have a comparable AKB with ICFB20A-M, but had up to 18.3 % and 21.61 % higher AKB than IAWDB20 and ICFB20. Therefore, the use of H2SO4 modified biochar could produce higher grain yield with lower K leaching for addition in IAWD paddy systems, which is beneficial to mitigate soil K depletion and ensure a sustainable agricultural production.
Collapse
Affiliation(s)
- Hongwei Han
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| | - Chang Liu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Zhang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yikui Bai
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenfu Chen
- National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| |
Collapse
|
4
|
Wu S, Zhang Z, Sun H, Hu H. Responses of Rice Yield, N Uptake, NH 3 and N 2O Losses from Reclaimed Saline Soils to Varied N Inputs. PLANTS (BASEL, SWITZERLAND) 2023; 12:2446. [PMID: 37447008 PMCID: PMC10347052 DOI: 10.3390/plants12132446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
It is of agronomic importance to apply nitrogen (N), but it has high environmental risks in reclaimed saline soils. Therefore, we should apply N fertilizer at an appropriate rate to increase crop yield but decrease N losses. In this soil column experiment, rice yield, N uptake, and ammonia (NH3) and nitrous oxide (N2O) losses were measured in four treatments with no N application (control) and with N applications of 160, 200, and 240 kg/ha (N160, N200, and N240, respectively). The results show that grain yield, spike number, and thousand-kernel weight increased with increases in N application rate, but there was no significant difference in grain yield between N200 and N240. However, the kernels per spike increased first and then decreased with the increase in N application, of which N200 was recorded to have the highest kernels per spike value, which was 16.8 and 9.8% higher than those of N160 and N240, respectively. Total NH3 volatilization of the rice season increased with increasing N input, especially during the first and second supplementary fertilization stages. The NH4+-N concentration of overlying water was relatively lower under the N200 treatment in these two stages, and the yield-scaled NH3 volatilization and the emission factor were the lowest in N200, which were 26.2-27.8% and 4.0-21.0% lower than those of N160 and N240, respectively. Among the three N-applied treatments, N2O losses and the emission factor as well as the yield-scaled N2O emissions were the lowest under the N200 treatment, which had 34.7% and 78.9% lower N2O emissions and 57.8% and 83.5% lower emission factors than those of the N160 and N240 treatments, respectively. Moreover, the gene copies of AOA and AOB amoA, nirS, and nirK in cultivated layer soils all reached the minimum under the N200 treatment. According to the comprehensive effects of N fertilizer on rice grain yield and NH3 and N2O losses, we recommend applying 200 kg/ha to reclaimed saline soil to ensure crop yield and reduce N losses.
Collapse
Affiliation(s)
- Si Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.H.)
| | - Zhenhua Zhang
- Jiangsu Key Laboratory for Bioresource of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China;
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.H.)
| | - Haibo Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.H.)
| |
Collapse
|
5
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
6
|
Pan Y, She D, Shi Z, Cao T, Xia Y, Shan J. Salinity and high pH reduce denitrification rates by inhibiting denitrifying gene abundance in a saline-alkali soil. Sci Rep 2023; 13:2155. [PMID: 36750752 PMCID: PMC9905596 DOI: 10.1038/s41598-023-29311-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Denitrification, as the main nitrogen (N) removal process in farmland drainage ditches in coastal areas, is significantly affected by saline-alkali conditions. To elucidate the effects of saline-alkali conditions on denitrification, incubation experiments with five salt and salt-alkali gradients and three nitrogen addition levels were conducted in a saline-alkali soil followed by determination of denitrification rates and the associated functional genes (i.e., nirK/nirS and nosZ Clade I) via N2/Ar technique in combination with qPCR. The results showed that denitrification rates were significantly decreased by 23.83-50.08%, 20.64-57.31% and 6.12-54.61% with salt gradient increasing from 1 to 3‰, 8‰, and 15‰ under 0.05‰, 0.10‰ and 0.15‰ urea addition conditions, respectively. Similarly, denitrification rates were significantly decreased by 44.57-63.24% with an increase of the salt-alkali gradient from 0.5 to 8‰. The abundance of nosZ decreased sharply in the saline condition, while a high salt level significantly decreased the abundance of nirK and nirS. In addition, the increase of nitrogen concentration attenuated the reduction of nirK, nirS and nosZ gene abundance. Partial least squares regression (PLSR) models demonstrated that salinity, dissolved oxygen (DO) in the overlying water, N concentration, and denitrifying gene abundance were key determinants of the denitrification rate in the saline environment, while pH was an additional determinant in the saline-alkali environment. Taken together, our results suggest that salinity and high pH levels decreased the denitrification rates by significantly inhibiting the abundance of the denitrifying genes nirK, nirS, and nosZ, whereas increasing nitrogen concentration could alleviate this effect. Our study provides helpful information on better understanding of reactive N removal and fertilizer application in the coastal areas.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China. .,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China.
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Taohong Cao
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
7
|
Pan Y, She D, Shi Z, Chen X, Xia Y. Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59974-59987. [PMID: 34151406 DOI: 10.1007/s11356-021-14886-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Salt-affected soils have poor structure and physicochemical properties, which affect soil nitrogen cycling process closely related to the environment, such as denitrification and ammonia volatilization. Biochar and polyacrylamide (PAM) have been widely used as soil amendments to improve soil physicochemical properties. However, how they affect denitrification and ammonia volatilization in saline soils is unclear. In this study, the denitrification and ammonia volatilization rates were measured in a saline soil field ameliorated with three biochar application rates (0%, 2%, and 5%, w/w) and three PAM application rates (0‰, 0.4‰, and 1‰, w/w) over 3 years. The results showed that denitrification rates decreased by 23.63-39.60% with biochar application, whereas ammonia volatilization rates increased by 9.82-25.58%. The denitrification and ammonia volatilization rates decreased by 9.87-29.08% and 11.39-19.42%, respectively, following PAM addition. However, there was no significant synergistic effect of biochar and PAM amendments on the denitrification and ammonia volatilization rates. The addition of biochar mainly reduced the denitrification rate by regulating the dissolved oxygen and electrical conductivity of overlying water and absorbing soil nitrate nitrogen. Meanwhile, biochar application increased pH and stimulated the transfer of NH4+-N from soil to overlying water, thus increasing NH3 volatilization rates. Hence, there was a tradeoff between denitrification and NH3 volatilization in the saline soils induced by biochar application. PAM reduced the denitrification rate by increasing the infiltration inorganic nitrogen and slowing the conversion of ammonium to nitrate. Moreover, PAM reduced the concentration of NH4+-N in the overlying water through absorbing soil ammonium and inhibiting urea hydrolysis, thereby decreasing NH3 volatilization rate.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Xinyi Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|