1
|
Zeb M, Khan K, Younas M, Farooqi A, Cao X, Kavil YN, Alelyani SS, Alkasbi MM, Al-Sehemi AG. A review of heavy metals pollution in riverine sediment from various Asian and European countries: Distribution, sources, and environmental risk. MARINE POLLUTION BULLETIN 2024; 206:116775. [PMID: 39121593 DOI: 10.1016/j.marpolbul.2024.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Riverine sediments are important reservoirs of heavy metals, representing both historical and contemporary anthropogenic activity within the watershed. This review has been conducted to examine the distribution of heavy metals in the surface sediment of 52 riverine systems from various Asian and European countries, as well as to determine their sources and environmental risks. The results revealed significant variability in heavy metal contamination in the world's riverine systems, with certain hotspots exhibiting concentrations that exceeded the permissible limits set by environmental quality standards. Among the studied countries, India has the highest levels of chromium (Cr), cobalt (Co), manganese (Mn), nickel (Ni), zinc (Zn), cadmium (Cd), copper (Cu), and lead (Pb) contamination in its riverine systems, followed by Iran > Turkey > Spain > Vietnam > Pakistan > Malaysia > Taiwan > China > Nigeria > Bangladesh > Japan. Heavy metal pollution in the world's riverine systems was quantified using pollution evaluation indices. The Contamination Factor (CF) revealed moderate contamination (1 ≤ CF < 3) throughout the geological units, with the exception of Pb, Cd, and Cu. The Contamination Degree (CD) classifies the contamination level into different categories: Low degree of contamination (CD < 6), moderate degree of contamination (6 ≤ CD < 12), considerable degree of contamination (12 ≤ CD < 24), and a very high degree of contamination (CD ≥ 24), while the Pollution Load Index (PLI) estimate the total amount of heavy metal pollution in riverine sediments, with Turkey having the highest PLI value of 6.512, followed by Spain, Vietnam, Taiwan, Pakistan, Bangladesh, China, India, Japan, Malaysia, Iran, and Nigeria. In applied multivariate statistics, correlation analysis determined the fate and distribution of heavy metals in riverine systems, while Principal Component Analysis (PCA) elucidated the potential sources, including industrial, agrochemical, mining, and domestic wastewater discharges, lubricant leakages, multiple geogenic inputs, erosion of mafic and ultramafic rocks, and minimal atmospheric deposition. As per Potential Ecological Risk Index (PERI) perspectives, Vietnam, Spain, and Turkey have the highest ecological risk, followed by Nigeria > Pakistan > Bangladesh > China > Taiwan > Japan and Iron, while the potential risks of ∑non-carcinogenic Pb, Cr, Ni, Cu, Cd, Co, Zn, and Mn for exposed human children and adults through ingestion and dermal contact were significantly influenced between acceptable to high risk, necessitating special attention from pollution control agencies.
Collapse
Affiliation(s)
- Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Abida Farooqi
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing, 100081, China
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Renewable Environment Company for Environmental Consulting (REC), Jeddah, 21589, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Renewable Environment Company for Environmental Consulting (REC), Jeddah, 21589, Saudi Arabia
| | - Mohammed M Alkasbi
- Department of Chemical and Waste Management, Environment Authority, P.O. Box 323, Muscat, P.C.:100, Sultanate of Oman
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
2
|
Okoro HK, Orosun MM, Anuoluwa OF, Ogunkunle CO, Iwuozor KO, Emenike EC. Seasonal variation and human health risk assessment of potentially toxic elements in pharmaceutical effluents around Ilorin metropolis, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:774. [PMID: 39090377 DOI: 10.1007/s10661-024-12887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Potentially toxic elements (PTEs) are widely released into the environment as a result of increased urban and industrial development in recent years. The bulk of PTEs are cancer-causing and harm human health by producing free radicals. As a result, it is crucial to monitor, evaluate, and limit the effects of the elements on human health. In this study, levels of PTEs (As, Cr, Cd, Ni, Co, and Pb) in pharmaceutical effluents discharged along the Asa River around the Ilorin metropolis and their seasonal variations were evaluated. Water samples were collected from eight different locations over a two-season period along the river and analyzed for PTEs using atomic absorption spectrophotometry and an inductively coupled plasma optical emission spectrometer. As, Cd, Pb, Cr, Ni, and Co had mean PTE values in the effluents (both seasons) of 0.0258, 0.0233, 0.00193, 0.0176, and 0.0164 mg/L, respectively, with As and Pb surpassing the WHO standard. Maximum temperature and pH were measured for the physicochemical parameters in the wet season, whereas electrical conductivity and total dissolved solids were seen in the dry season. The average values of the metals in the human risk assessment for carcinogenicity were As > Cd > Pb > Cr > Ni > Co, with As above the recommended threshold in several locations. However, all of the metal hazard indices were < 1, indicating that the waters were suitable for domestic purposes. Nonetheless, the relevant authorities should mandate that pharmaceutical effluents be treated before being released into bodies of water.
Collapse
Affiliation(s)
- Hussein K Okoro
- Environmental-Analytical Research Group, Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Muyiwa M Orosun
- Department of Physics, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Oriade F Anuoluwa
- Environmental-Analytical Research Group, Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Clement O Ogunkunle
- Environmental Biology Unit, Department of Plant Biology, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Kingsley O Iwuozor
- Environmental-Analytical Research Group, Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Ebuka Chizitere Emenike
- Environmental-Analytical Research Group, Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| |
Collapse
|
3
|
Gul N, Khan B, Khan AHA, Nawaz T, Wahid F, Toloza CAT, Alzahrani E, Hauser-Davis RA, Khan S. A novel assessment of potentially toxic elements (PTEs) in water and sediment samples from the Indus River, Pakistan: An ecological risk assessment approach. MARINE POLLUTION BULLETIN 2024; 205:116657. [PMID: 38950514 DOI: 10.1016/j.marpolbul.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Pakistan, a country with limited water resources and highly vulnerable to the adverse effects of climate change, faces numerous challenges in managing its water supply. In this sense, this study assessed potentially toxic elements (PTEs) in the surface water and sediments of Pakistan's Indus River and its tributaries. Key water quality parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were determined, with respective average values of 7.1, 40 μS/cm, and 208 mg L-1. The concentrations of Cd, Cr, Cu, Ni, and Zn in surface water samples averaged 26 μg L-1, 0.9 μg L-1, 1.4 μg L-1, 22 μg L-1, and 2.1 μg L-1, respectively. The general sediment PTE profile was Ni > Cd > Zn > Cu > Cr. Certain PTE levels exceeded recommended thresholds, indicating the establishment of environmental pollution. Calculated geo-accumulation index values suggested moderate to heavy pollution levels in sediment, with PERI (404) values reinforcing the ecological risk posed by elevated PTE concentrations. Furthermore, significant correlations were observed between specific PTE pairs in both water and sediment samples. This study contributes with novel insights into the distribution and ecological implications of PTE contamination in the Indus River and its tributaries, paving the way for ecological risk management efforts.
Collapse
Affiliation(s)
- Nida Gul
- Department of Environmental Sciences, University of Swabi, 23430 Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Bushra Khan
- Department of Environmental Sciences, University of Peshawar, 25000 Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, 09001 Burgos, Spain
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, 57007, SD, USA
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, 23430 Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Carlos A T Toloza
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, Colombia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Sarzamin Khan
- Department of Environmental Sciences, University of Swabi, 23430 Anbar, Khyber Pakhtunkhwa, Pakistan; Department of Chemistry, University of Swabi, 23430 Anbar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Ullah I, Adnan M, Nawab J, Khan S. Ethnobotanical, ecological and health risk assessment of some selected wild medicinal plants collected along mafic and Ultra Mafic rocks of Northwest Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:278. [PMID: 38367088 DOI: 10.1007/s10661-024-12403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The current study investigated wild plant resources and health risk assessment along with northern Pakistan's mafic and ultramafic regions. Ethnobotanical data was collected through field visits and semi-structured questionnaire surveys conducted from local inhabitants and healers. Six potentially toxic elements (PTEs) such as lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), manganese (Mn), and zinc (Zn) were extracted with acids and analyzed using atomic absorption spectrophotometer (AAS, Perkin Elmer-7000) in nine selected wild medicinal plants. Contamination factor (CF), pollution load index (PLI), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were used to determine the health risk assessment of the studied medicinal plants. The results showed that the selected medicinal plants were used for the treatments of cough, joint swelling, cardiovascular disorders, toothaches, diabetes, and skin pimples by the local inhabitants due to their low-cost and easy accessibility. The concentrations of Pb (3.4-53 mg kg-1), Cd (0.03-0.39 mg kg-1), Ni (17.5-82 mg kg-1), Cr (29-315 mg kg-1), Mn (20-142 mg kg-1), and Zn (7.4-64 mg kg-1) in the studied medicinal plants were found above the safe limits (except Zn) set by WHO/FAO/USEPA (1984/2010). The Pb contamination factor was significantly (p < 0.05) higher in A. modesta (7.84) and D. viscosa (6.81), and Cd contamination factor was significantly higher in C. officinalis (26.67), followed by A. modesta (8.0) mg kg-1. Based on PTE concentrations, the studied plants are considered not suitable for human consumption purposes. Pollution load index values for A. modesta, A. barbadensis, A. caudatus, A. indica, C. procera (2.93), D. viscosa (2.79), and C. officinalis (2.83), R. hastatus (3.12), and Z. armatum were observed as 1.00, 2.80, 2.29, 2.29, 2.93, 2.79, 2.83, 3.12 and 2.19, respectively. Hazard index values were in order of R. hastatus (1.32 × 10-1) ˃ C. procera (1.21 × 10-1) ˃ D. viscosa (1.10 × 10-1) ˃ A. caudatus (9.11 × 10-2) ˃ A. barbadensis (8.66 × 10-2) ˃ Z. armatum (7.99 × 10-2) ˃ A. indica (6.87 × 10-2) ˃ A. modesta (5.6 × 10-2) ˃ C. officinalis (5.42 × 10-2). The health risk index values suggested that consumption of these plants individually or in combination would cause severe health problems in the consumers. Pearson's correlation results showed a significant correlation (p ≤ 0.001) between Zn and Mn in the studied medicinal plants. The current study suggests that wild medicinal plants should be adequately addressed for PTEs and other carcinogenic pollutants before their uses in the study area. Open dumping of mining waste should be banned and eco-friendly technology like organic amendments application should be used to mitigate PTEs in the study area.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Botany, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Adnan
- Department of Botany, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Javed Nawab
- Department of Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Khan S, Qamar Z, Khan A, Waqas M, Nawab J, Khisroon M, Khan A. Genotoxic effects of polycyclic aromatic hydrocarbons (PAHs) present in vehicle-wash wastewater on grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121513. [PMID: 37030598 DOI: 10.1016/j.envpol.2023.121513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Vehicle-wash wastewater (VWW) contains high levels of various petrochemicals such as polycyclic aromatic hydrocarbons (PAHs), a carcinogenic category of organic substances. However, the genotoxic effects of PAHs present in VWW remain largely unknown. We explored the genotoxic effects of PAHs present in VWW on fish grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). Fish and freshwater mussels were divided into control and exposed groups, the prior groups were treated at weekly intervals with clean water, and the latter with Σ16PAHs contaminated VWW for up to four weeks. The samples of blood from fish and haemolymph from freshwater mussels were collected and analyzed using the comet assay technique. Results exhibited that in control fish and freshwater mussel groups the genotoxicity decreased with every week passing following the order of W1 > W2 > W3 > W4, ranging from 8.33 ± 3.06 to 25.3 ± 4.62 and from 46.0 ± 6.93 to 7.67 ± 3.79, respectively. The exposed fish and freshwater mussel groups indicated an increase in genotoxicity with increasing week intervals with an order of W4 > W3 > W2 > W1, ranging from 55.7 ± 11.9 to 128.3 ± 10.0 and from 112.7 ± 8.50 to 183.3 ± 10.1, respectively. The genotoxic effect of Σ16PAHs on fish was comparatively lower than on freshwater mussels. This study elucidates that VWW is highly genotoxic and should be treated before discharging into aquatic ecosystems.
Collapse
Affiliation(s)
- Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Zahir Qamar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhmmmad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
6
|
Pérez-Iglesias JM, Bach NC, Colombetti PL, Acuña P, Colman-Lerner JE, González SP, Brodeur JC, Almeida CA. Biomonitoring of Alterations in Fish That Inhabit Anthropic Aquatic Environments in a Basin from Semi-Arid Regions. TOXICS 2023; 11:73. [PMID: 36668799 PMCID: PMC9863756 DOI: 10.3390/toxics11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Industrial, agricultural, and urban areas can be sources of pollution and a cause of habitat fragmentation. The Conlara River located in the northeast of San Luis Province suffers different environmental pressures along its course from urban to agro-industrial areas. The present study aims to assess the water quality of the Conlara basin by evaluating how metals and pesticide contamination as well as physicochemical parameters relate to physiological stress in Jenynsia multidentata. Samplings were carried out in four sites characterized by a growing gradient of anthropic impact from the springs to the final sections of the river, starting with tourism passing through urban areas and ending with large agricultural areas (from S1 to S4) during both the dry and wet seasons. A total of 27 parameters were determined (11 physicochemical, 9 heavy metals, and 7 pesticides) in surface waters. Biomarkers (CAT, TBARS, ChE, and MN) showed significant physiological and cytological alterations in J. multidentata depending on the hydrology season. The combination of physicochemical parameters, metals, and pesticide levels allowed typification and differentiation of the sites. Some metal (Cr, Mn, Pb, and Zn) and pesticide (α-BHC, chlorpyrifos, permethrin and cypermethrin, and endosulfan α) levels recorded exceeded the recommended Argentinian legislation values. A principal component analysis (PCA) allowed detection of differences between both seasons and across sites. Furthermore, the differences in distances showed by PCA between the sites were due to differences in the presence of physicochemical parameters, metals, and pesticides correlated with several biomarkers' responses depending on type of environmental stressor. Water quality evaluation along the Conlara River shows deterioration and different types of environmental stressors, identifying zones, and specific sources of pollution. Furthermore, the biomarkers suggest that the native species could be sensitive to anthropogenic environmental pressures.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
- Departamento de Ciencias Ambientales y Producción, Universidad Nacional de Los Comechingones, Héroes de Malvinas S/N, Merlo, San Luis D5881, Argentina
| | - Nadia Carla Bach
- Área de Biología, Facultad de Química, Bioquímica y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Patricia Laura Colombetti
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
- Departamento de Ciencias Ambientales y Producción, Universidad Nacional de Los Comechingones, Héroes de Malvinas S/N, Merlo, San Luis D5881, Argentina
- Área de Biología, Facultad de Química, Bioquímica y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Pablo Acuña
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Jorge Esteban Colman-Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA), La Plata B1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), La Plata B1900, Argentina
| | - Silvia Patricia González
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Julie Celine Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Hurlingham B1686, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina
| | - Cesar Américo Almeida
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| |
Collapse
|