1
|
Inci HS. Chromium (VI) accumulation in different plant organs of Lacy Phacelia (Phacelia tanacetifolia Benth.): Implications for phytoremediation. BMC PLANT BIOLOGY 2025; 25:414. [PMID: 40175928 PMCID: PMC11963611 DOI: 10.1186/s12870-025-06471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Lacy Phacelia (Phacelia tanacetifolia Benth.) is a very beneficial nectar source for honeybees, contributing to their foraging activities and honey production. Chromium (Cr) is a toxic metal that may be taken up by plants through roots and accumulates in different organs. The accumulation of Cr in nectars can affect nectar production and subsequently bee health. This study investigated whether Lacy Phacelia accumulates Cr in different plant organs. A pot experiment was conducted under controlled conditions with five different Cr concentrations (0, 5, 10, 20 and 40 mg kg- 1). The plants were grown for 110 days, and Cr, manganese (Mn) and iron (Fe) contents accumulated in different plant organs (root, leaf, stem, flower and stamen) were examined. Similalry, the impact of different Cr concentrations on plant height, stem diameter, and dry weights of root, stem, leaf, and flower was also recorded. The highest and lowest Cr(VI) accumulation was recorded in roots and flowers respectively. The mean Cr concentration in different organs was, i.e., root (7.13 mg kg- 1) > leaf (3.25 mg kg- 1) > stem (2.53 mg kg- 1) > flower (1.62 mg kg- 1) = stamen (1.54 mg kg- 1). Translocation factor was < 1 in all Cr concentrations, indicating that it is not a suitable candidate for phytoremediaiton. The Mn concentration in different organs generally increased with increasing Cr concentrations, while Fe concentration, plant height, and dry weights of root, stem, and flower decreased. Lacy Phacelia should not be grown on Cr-contaminated soils for agricultural purposes or phytoremediation. The accumulation of Cr in the stamens may possibily contaminate bee products obtained through the bees collecting nectar from Lacy Phacelia grown on Cr-contaminated soils. The transfer of Cr from Lacy Phacelia plants grown on Cr-contaminated soils to honeybee and honey products should be investigated in future studies to safeguard honeybee health.
Collapse
Affiliation(s)
- Hava Seyma Inci
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, University of Bingol, Bingol, Türkiye.
| |
Collapse
|
2
|
Jobby R, Sarkar M, Bose R, Srivastava S, Suprasanna P. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123991. [PMID: 38631449 DOI: 10.1016/j.envpol.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.
Collapse
Affiliation(s)
- Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Mrittika Sarkar
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Roshnee Bose
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi-221005, India
| | - Penna Suprasanna
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre for Nuclear Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India.
| |
Collapse
|
3
|
Navarro M, Urrejola F, Espinoza M, Silva S, González S, Utreras D, Fernandez K, Bravo J. Biological activity of the essential oil of Drimys winteri. Front Chem 2024; 12:1321300. [PMID: 38666047 PMCID: PMC11043559 DOI: 10.3389/fchem.2024.1321300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
In the Chilean indigenous culture, the tree Drimys winteri (Winteraceae) Canelo is of great importance and is considered the sacred Mapuche tree. It has antibacterial and disinfectant properties and is used in the treatment of various diseases, such as fevers, ulcers, cancers, and respiratory tract problems. The essential oil obtained from D. winteri, DW_EO, is bioactive, possesses insecticidal and repellent properties against pests, and shows activity toward plant growth regulators. It also has a phytotoxic effect against the growth and germination of weeds. The essential oil obtained from the leaves and bark of Drimys winteri has demonstrated antifungal, immunomodulatory, anti-inflammatory, and anticancer properties in in vitro and in vivo studies. It also possesses antioxidant activity and antibacterial effects. The essential oil contains monoterpenes such as zafrol, pinenes, and linalool, among others, that contribute to its bioactivity. The DW_EO and bioactive compounds have great potential in various applications in medicine, industrial food, sanitizer, and other areas.
Collapse
Affiliation(s)
- Myriam Navarro
- Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Felipe Urrejola
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Misael Espinoza
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Simón Silva
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Sebastián González
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Diego Utreras
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Katia Fernandez
- Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| | - Jessica Bravo
- Facultad de Medicina, Centro de Investigación Biomédica, Laboratorio de Productos Naturales Bioactivos, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
4
|
Naqqash T, Aziz A, Gohar M, Khan J, Ali S, Radicetti E, Babar M, Siddiqui MH, Haider G. Heavy metal-resistant rhizobacteria fosters to alleviate the cadmium toxicity in Arabidopsis by upregulating the plant physiological responses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:557-568. [PMID: 37705142 DOI: 10.1080/15226514.2023.2253923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
This study was designed to investigate the role of Morganella morganii strains in alleviating Cd stress in Arabidopsis seedlings under controlled conditions. Both M. morganii strains ABT3 (ON316873) and ABT9 (ON316874) strains isolated from salt-affected areas showed higher resistance against Cd and possess plant growth-promoting traits such as nitrogen fixation, indole-acetic acid production, ammonia production, phosphate solubilization, and, catalase, gelatinase and protease enzyme production. Plant inoculation assay showed that varying concentration of Cd (1.5 mM and 2.5 mM) significantly reduced Arabidopsis growth, quantum yield (56.70%-66.49%), and chlorophyll content (31.90%-42.70%). Cd toxicity also triggered different associations between lipid peroxidation (43.61%-69.77%) and enzymatic antioxidant mechanisms. However, when both strains were applied to the Arabidopsis seedlings, the shoot and root length and fresh and dry weights were improved in the control and Cd-stressed plants. Moreover, both strains enhanced the resistance against Cd stress by increasing antioxidant enzyme activities [catalase (19.47%-27.39%) and peroxidase (37.50%-48.07%)]that ultimately cause a substantial reduction in lipid peroxidation (27.71%-41.90%). Both strains particularly ABT3 also showed positive results in improving quantum yield (73.84%-98.64%) and chlorophyll content (41.13%-48.63%), thus increasing the growth of Arabidopsis seedlings. The study suggests that PGPR can protect plants from Cd toxicity, and Cd-tolerant rhizobacterial strains can remediate heavy metal polluted sites and improve plant growth.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Madiha Gohar
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Jallat Khan
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Shahbaz Ali
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Muhammad Babar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107872. [PMID: 37478726 DOI: 10.1016/j.plaphy.2023.107872] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Chromium (Cr) is considered one of the most hazardous metal contaminant reducing crop production and putting human health at risk. Phytohormones are known to regulate chromium stress, however, the function of melatonin and strigolactones in Chromium stress tolerance in tomato is rarely investigated. Here we investigated the potential role of melatonin (ML) and strigolactone (SL) on mitigating Chromium toxicity in tomato. With exposure to 300 μM Cr stress a remarkable decline in growth (63.01%), biomass yield (50.25)%, Pigment content (24.32%), photosynthesis, gas exchange and Physico-biochemical attributes of tomato was observed. Cr treatment also resulted in oxidative stress closely associated with higher H2O2 generation (215.66%), Lipid peroxidation (50.29%), electrolyte leakage (440.01%) and accumulation of osmolytes like proline and glycine betine. Moreover, Cr toxicity up-regulated the transcriptional expression profiles of antioxidant, stress related and metal transporter genes and down-regulated the genes related to photosynthesis. The application of ML and SL alleviated the Cr induced phytotoxic effects on photosynthetic pigments, gas exchange parameters and restored growth of tomato plants. ML and SL supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool and transcriptional regulation of several genes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative stress. Hence, ML and SL application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in tomato plants grown in contaminated soils. The study may also provide new insights into the role of transcriptional regulation in the protection against heavy metal toxicity.
Collapse
Affiliation(s)
- Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences Govt. Degree College for Women, Udhampur, 182101, India
| | - Naveen Kumar
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
6
|
Zhu Y, Zhu J, Wang B, Xiao M, Li L. Pollution characteristics and probabilistic health risk of potentially hazardous elements in soils near a typical coal mine in Panzhihua City, Southwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:230. [PMID: 36571700 DOI: 10.1007/s10661-022-10852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
This study first assessed the pollution characteristics and probabilistic health risks of potentially hazardous elements (PHEs) in soils from the Dabaoding coal mining area in southwest China using Monte Carlo simulation. Experimental results showed that Cd was moderately enriched in soils, while Ni, Cr, and V were slightly enriched. However, the geoaccumulation index (Igeo) illustrated that the coal mining area had a low level of Cd pollution. PHEs produced a very high ecological risk to soils in the coal mining area, whereas Cd showed the highest contribution (82.56%). The mean hazard index of all soil PHEs was 7.45E - 02 and 4.18E - 01 for local adults and children, respectively, all of which were obviously lower than the maximum acceptable level of 1.0. However, Monte Carlo simulation analysis indicated that 1.08% of noncarcinogenic risk values for local children still exceeded the maximum acceptable level. Additionally, 10.84% and 18.40% of the total carcinogenic risk values for local adults and children, respectively, exceeded the threshold of 1E - 04. Indeed, Cr and Ni had the highest contributions to noncarcinogenic and carcinogenic risks, respectively. These findings suggest that Cd, Cr, and Ni should be identified as priority pollutants in coal mining areas. This study also provides valuable implications for policy-makers and environmental engineers, proposing efficient policies for better soil pollution control and remediation strategies in coal mining areas.
Collapse
Affiliation(s)
- Yanyuan Zhu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Sichuan Metallurgical Geological Survey and Ecological Environment Engineering Co., LTD, Chengdu, 610065, China
| | - Jingyi Zhu
- College of Food Science, Southwest University, Chongqing, 400000, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Min Xiao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Li Li
- Sichuan Metallurgical Geological Survey and Ecological Environment Engineering Co., LTD, Chengdu, 610065, China
| |
Collapse
|
7
|
Sun H, Wang L, Liu Y, Cheng Z, Zhao Y, Guo H, Qu G, Wang T, Yin X. Photocatalytic reduction of Cr(VI) via surface modified g-C 3N 4 by acid-base regulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116431. [PMID: 36352721 DOI: 10.1016/j.jenvman.2022.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) is a class of highly toxic heavy metals. In this study, alkali-modified g-C3N4 (cOH-CN) and acid-modified g-C3N4 (cH-CN) materials were successfully synthesized, and their photocatalytic activities for Cr(VI) reduction under visible light irradiation were tested. Owing to defect structures by cH-CN and -OH group introduction by cOH-CN, the modified materials exhibited a larger surface area, more abundant pore structures, a wider visible light absorption range, higher energy gap values, and a stronger capacity for electron-hole pair separation. As a result, satisfactory Cr(VI) reduction performance was gained by these two photocatalysts. Almost all Cr(VI) was converted to Cr(III) after 60 min of treatment in the presence of these two catalysts, while it was only 30% for the pristine g-C3N4 materials. Relatively higher dosages of cH-CN and cOH-CN and acidic conditions both improved Cr(VI) reduction in the cH-CN and cOH-CN photocatalytic systems. Cr(VI) reduction was mainly initiated by free electrons in the photocatalytic system of the modified materials. Finally, Cr(VI) in the photocatalytic system was almost completely converted to Cr(III). Furthermore, the stability and recycling of the cH-CN and cOH-CN catalysts were evaluated.
Collapse
Affiliation(s)
- Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Le Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Zhen Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yifan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
8
|
Sharma P, Rathee S, Ahmad M, Raina R, Batish DR, Singh HP. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1106-1115. [PMID: 36264021 DOI: 10.1080/15226514.2022.2133081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Riya Raina
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Sharma P, Rathee S, Ahmad M, Batish DR, Singh HP, Kohli RK. Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57102-57111. [PMID: 35344144 DOI: 10.1007/s11356-022-19622-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Toxic contaminants (metals and metal-containing compounds) are accumulating in the environment at an astonishing rate and jeopardize human health. Remarkable industrial revolution and the spectacular economic growth are the prime causes for the release of such toxic contaminants in the environment. Cadmium (Cd) is ranked the 7th most toxic compound by the Agency for Toxic Substances and Disease Registry (USA), owing to its high carcinogenicity and non-biodegradability even at miniscule concentration. The present study assessed the efficiency of four biodegradable chelants [nitrilotriacetic acid (NTA), ethylenediamine disuccinate (EDDS), ethylene glycol tetraacetic acid (EGTA), and citric acid (CA)] and their dose (5 mM and 10 mM) in enhancing metal accumulation in Solanum americanum Mill. (grown under 24 mg Cd kg-1 soil) through morpho-physiological and metal extraction parameters. Significant variations were observed for most of the studied parameters in response to chelants and their doses. However, ratio of root and shoot length, and plant height stress tolerance index differed non-significantly. The potential of chelants to enhance Cd removal efficiency was in the order - EGTA (7.44%) > EDDS (6.05%) > NTA (4.12%) > CA (2.75%). EGTA and EDDS exhibited dose-dependent behavior for Cd extraction with 10 mM dose being more efficient than 5 mM dose. Structural equation model (SEM) depicted strong positive interaction of metal extraction parameters with chelants (Z-value = 11.61, p = 0.001). This study provides insights into the importance of selecting appropriate dose of biodegradable chelants for Cd extraction, as high chelant concentration might also result in phytotoxicity. In the future, phytoextraction potential of these chelants needs to be examined through field studies under natural environmental conditions.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Ravinder K Kohli
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
10
|
Kaur S, Chowhan N, Sharma P, Rathee S, Singh HP, Batish DR. β-Pinene alleviates arsenic (As)-induced oxidative stress by modulating enzymatic antioxidant activities in roots of Oryza sativa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113080. [PMID: 34929504 DOI: 10.1016/j.ecoenv.2021.113080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of β-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 μM), β-pinene (10 μM; β-10) and As + β-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of β-10 (i.e., As + β-10 treatments) led to an increase in root and shoot length. Treatment with As + β-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + β-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that β-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of β-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.
Collapse
Affiliation(s)
- Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Nadia Chowhan
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India.
| | | |
Collapse
|