1
|
Rex M C, Poddar B, Mandal S, Das S, Mukherjee A. Interactive toxicity effects of metronidazole, diclofenac, ibuprofen, and differently functionalized nanoplastics on marine algae Chlorella sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:901-916. [PMID: 39918265 DOI: 10.1039/d4em00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pharmaceutical products (PPs) and nanoplastics (NPs) are prominent emerging contaminants that pose serious threats to marine ecosystems. The present study aimed to investigate both pristine and combined toxicity of PPs (metronidazole, diclofenac, and ibuprofen) and polystyrene nanoplastics (PSNPs) with amine (NH2-PSNPs) and carboxyl (COOH-PSNPs) surface functionalization on marine microalgae Chlorella variabilis. Toxicity assessment included the evaluation of growth inhibition, total reactive oxygen species production, malondialdehyde content, antioxidant activity, and photosynthetic activity. Furthermore, changes in the surface functional groups of the algae after exposure to contaminants were examined. The correlation among the toxicity endpoints was assessed using Pearson correlation and cluster heatmap analysis. Zeta potential analysis and hydrodynamic size measurements revealed that the PSNPs became unstable in the presence of PPs. This instability facilitated the aggregation and rapid settlement of PSNPs, consequently impeding their direct interaction with algal cells. Growth inhibition results indicated that Chlorella variabilis exhibited minimal growth inhibition when exposed to pristine PPs (1 mg L-1), whereas PSNPs (1 mg L-1) caused substantial growth inhibition. Notably, the combined toxicity of PSNPs and PPs was lower compared to pristine PSNPs. The independent action model revealed that the combination of PPs and PSNPs showed an antagonistic mode of interaction. The potential reasons for the decreased toxicity observed in the mixture of PSNPs and PPs compared to pristine PSNPs can be attributed to diminished oxidative stress and enhanced photosynthetic activity. These findings provide valuable insights into the role of PPs in modulating the toxicity of PSNPs towards microalgae.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Bikram Poddar
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Sanmitra Mandal
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Soupam Das
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
2
|
Zhao DS, Farooq MA, Li M, Chen YT, Xu JM, Liu XL, Zhang A, Yan X, Zou HX, Pang Q. Acute toxicity of salicylic acid and its derivatives on the diatom Phaeodactylum tricornutum: Physico-Biochemical and transcriptomic insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107116. [PMID: 39383783 DOI: 10.1016/j.aquatox.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Salicylate pollutants (SAs) poses a serious threat to marine ecosystems as emerging contaminants. However, the toxic effects of SAs on marine phytoplankton, as well as the potential mechanisms and their ecological risks linked with them, are remain largely unknown. In this study, we aimed to evaluate the toxic effects of salicylic acid (SA) and its 5-substituted derivatives (5-sSA) on the marine diatom Phaeodactylum tricornutum, as well as the potential molecular mechanism involved in the toxicity. Physiological assays conducted on P. tricornutum revealed significant changes in photosynthetic pigments, chlorophyll fluorescence parameters, and antioxidant enzyme activities. The results showed that exposure of P. tricornutum to SAs caused a significant decline in chlorophyll contents and damage to the photosystem II (PSII) core resulting in the decline of photosynthesis. Although the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, oxidative damage occurred. Transcriptome analysis showed that a large number of differentially expresses genes (DEGs) were significantly enriched in metabolic pathways such as porphyrin metabolism, terpenoid backbone biosynthesis, and carbon fixation in photosynthetic organisms after SA and 5-BrSA treatments. In addition, key genes in transcriptomic metabolic pathways were further analyzed and validated using weighted correlation network analysis (WGCNA) and real-time fluorescence quantitative PCR (qPCR). Considering the above results, SAs mainly inhibit the processes of photosynthesis by repressing the expression of genes involved in secondary metabolite synthesis and photosynthetic carbon sequestration pathways, thus exerting toxic effects on algal cells. The results of the study will provide key data for understanding the ecological risk and toxicity mechanisms of SA pollutants.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Min Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yu-Ting Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jia-Min Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Li Liu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Chen G, Rosolina S, Padilla-Crespo E, He G, Chen Q, Arosemena A, Rosado-Maldonado BE, Swift CM, Coelho PB, Whelton AJ, Taggart D, Löffler FE. Natural Attenuation Potential of Vinyl Chloride and Butyl Acrylate Released in the East Palestine, Ohio Train Derailment Accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17743-17755. [PMID: 39344962 DOI: 10.1021/acs.est.4c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The East Palestine, Ohio train derailment released toxic vinyl chloride (VC) and butyl acrylate (BA), which entered the watershed. Streambed sediment, surface water, and private well water samples were collected 128 and 276 days postaccident to assess the natural attenuation potential of VC and BA by quantifying biodegradation biomarker genes and conducting microcosm treatability studies. qPCR detected the aerobic VC degradation biomarkers etnC in ∼40% and etnE in ∼27% of sediments collected in both sampling campaigns in abundances reaching 105 gene copies g-1. The 16S rRNA genes of organohalide-respiring Dehalococcoides and Dehalogenimonas were, respectively, detected in 50 and 64% of sediment samples collected 128 days postaccident and in 63 and 88% of sediment samples collected 276 days postaccident, in abundances reaching 107 cells g-1. Elevated detection frequencies of VC degradation biomarker genes were measured immediately downstream of the accident site (i.e., Sulphur Run). Aerobic VC degradation occurred in all sediment microcosms and coincided with increases of etnC/etnE genes and Mycobacterium, a genus comprising aerobic VC degraders. The conversion of VC to ethene and an increased abundance of VC reductive dechlorination biomarker genes were observed in microcosms established with sediments collected from Sulphur Run. All anoxic microcosms rapidly degraded BA to innocuous products with intermediate formation of n-butanol and acrylate. The results indicate that microbiomes in the East Palestine watershed have natural attenuation capacity for VC and BA. Recommendations are made to improve first-response actions in future contaminant release accidents of this magnitude.
Collapse
Affiliation(s)
- Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sam Rosolina
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Elizabeth Padilla-Crespo
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Guang He
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Qiao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Ana Arosemena
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Bryan E Rosado-Maldonado
- Science and Technology Department, Inter American University of Puerto Rico-Metropolitan Campus, San Juan 00926, Puerto Rico
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Paula Belmont Coelho
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew J Whelton
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dora Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Baruah P, Srivastava A, Mishra Y, Chaurasia N. Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104376. [PMID: 38278501 DOI: 10.1016/j.etap.2024.104376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Considering the frequent detection of pesticides in the aquatic environment, the ecotoxicological effects of Chlorpyrifos (CHP), an organophosphate, and alpha-cypermethrin (ACM), a pyrethroid, on freshwater microalgae were compared for the first time in this study. High concentrations of both CHP and ACM significantly suppressed the growth of test microalga Graesiella emersonii (p < 0.05). The 96-h EC50 of CHP and ACM were 54.42 mg L-1 and 29.40 mg L-1, respectively. Sub-inhibitory doses of both pesticides increased ROS formation in a concentration-dependent manner, which was accompanied by changes in antioxidant enzymes activities, lipid peroxidation, and variations in photosynthetic pigment concentration. Furthermore, both pesticides influenced photosystem II performance, oxygen-evolving complex efficiency and, intracellular ATP levels. Scanning electron microscopy analysis revealed that high concentrations of both CHP and ACM caused considerable morphological changes in the microalga. In comparison, CHP was more toxic than ACM at low concentrations, whereas ACM was more toxic at high concentrations.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
5
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Quan L, Chen K, Chen T, Li H, Li W, Cheng T, Xia F, Lou Z, Geng T, Sun D, Jiang W. Monitoring weed mechanical and chemical damage stress based on chlorophyll fluorescence imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1188981. [PMID: 37255557 PMCID: PMC10225704 DOI: 10.3389/fpls.2023.1188981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Currently, mechanical and chemical damage is the main way to carry out weed control. The use of chlorophyll fluorescence (CF) technology to nondestructively monitor the stress physiological state of weeds is significant to reveal the damage mechanism of mechanical and chemical stresses as well as complex stresses. Under simulated real field environmental conditions, different species and leaf age weeds (Digitaria sanguinalis 2-5 leaf age, and Erigeron canadensis 5-10 leaf age) were subjected to experimental treatments for 1-7 days, and fluorescence parameters were measured every 24 h using a chlorophyll fluorometer. The aim of this study was to investigate the changes in CF parameters of different species of weeds (Digitaria sanguinalis, Erigeron canadensis) at their different stress sites under chemical, mechanical and their combined stresses. The results showed that when weeds (Digitaria sanguinalis and Erigeron canadensis) were chemically stressed in different parts, their leaf back parts were the most severely stressed after 7 days, with photosynthetic inhibition reaching R=75%. In contrast, mechanical stress differs from its changes, and after a period of its stress, each parameter recovers somewhat after 1 to 2 days of stress, with heavy mechanical stress R=11%. Complex stress had the most significant effect on CF parameters, mainly in the timing and efficiency of changes in Fv/Fm, Fq'/Fm', ETR, Rfd, NPQ and Y(NO), with R reaching 71%-73% after only 3-4 days of complex stress, and its changes in complex stress were basically consistent with the pattern of changes in its chemical stress. The results of the study will help to understand the effects of mechanical and chemical stresses and combined stresses on CF parameters of weeds and serve as a guide for efficient weed control operations and conducting weed control in the future.
Collapse
Affiliation(s)
- Longzhe Quan
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Keyong Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianbao Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Hailong Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenchang Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyu Cheng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Fulin Xia
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhaoxia Lou
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Tianyu Geng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Deng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Wei Jiang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Cheng J, Zhang K, Li J, Hou Y. Using δF IP as a potential biomarker for risk assessment of environmental pollutants in aquatic ecosystem: A case study of marine cyanobacterium Synechococcus sp. PCC7002. CHEMOSPHERE 2023; 313:137621. [PMID: 36566796 DOI: 10.1016/j.chemosphere.2022.137621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Increased hazardous substances application causes more environmental pollution and risks for human health. Microalgae are the important biological groups in marine ecosystem, and considered to be sensitive to environmental pollutants. Therefore, toxicity test on marine microalgae could provide the most efficient method for aquatic toxicity assessment, and could also be used as the early warning signals in aquatic ecosystem. In view of this, our study aimed at investigating the toxicity potential of two typical organic compounds, and screening out novel photosynthetic indicators for the risk assessment of environmental pollutants. In this study, benzyl alcohol and 2-phenylethanol were chosen as the target organic compounds, and preliminary toxicity mechanism of these organic compounds on marine cyanobacterium Synechococcus sp. PCC7002 was investigated with chlorophyll fluorescence technology. Results showed that PCC7002 could be affected by benzyl alcohol or 2-phenylethanol stress, and the toxicity effect was concentration-dependent. And external benzyl alcohol and 2-phenylethanol stress damaged the oxygen evolving complex, and suppressed electron transport at the donor and receptor sides of photosystem II (PSII), influencing the absorption, transfer, and application of light energy. Furthermore, potential biomarkers were screened by half maximal inhibitory concentration (IC50) on the basis of pearson correlation coefficient analysis, and fluorescence intensity difference between the I-step and P-step of OJIP curve (δFIP) seems to be the most sensitive indicator for external stress. This study would be of significant interest to the biomarker community, and pave the way for the practical resource for marine pollution monitoring and assessment.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570100, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
8
|
Wang Q, Hu J, Hu H, Li Y, Xiang M, Wang D. Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. PLANTA 2022; 256:114. [PMID: 36370252 DOI: 10.1007/s00425-022-04027-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis. Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Huafeng Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Hennan, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China.
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China.
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Meiling Xiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Dezhen Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| |
Collapse
|
9
|
Du S, Meng F, Duan W, Liu Q, Li H, Peng X. Oxidative stress responses in two marine diatoms during acute n-butyl acrylate exposure and the toxicological evaluation with the IBR v2 index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113686. [PMID: 35636239 DOI: 10.1016/j.ecoenv.2022.113686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
n-Butyl acrylate (nBA), a typical hazardous and noxious substance (HNS), is the largest-volume acrylate ester used to produce various types of polymers. With the increasing volume of nBA subject to maritime transportation, its accidental leakage poses a great risk to the marine organisms. Therefore, it is necessary to evaluate the ecological risk of nBA in marine environments. In this study, two species of marine microalgae, Skeletonema costatum and Phaeodactylum tricornutum, were used to explore the toxic effects of nBA based on their growth, pigment content, and oxidative stress. The growth of each species was significantly inhibited by nBA, showing a 96 h-EC50 value of 2.23 mg/L for P. tricornutum and 8.19 mg/L for S. costatum, respectively. Although chlorophylls a and c exerted a hormesis effect in P. tricornutum, contents of pigments generally decreased at high concentrations. In P. tricornutum, all detected antioxidants (reduced glutathione, GSH; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) were stimulated at concentrations ranging from 1.50 to 3.82 mg/L. However, these elevations were not enough to reduce the oxidative damage caused by nBA, because the content of malondialdehyde (MDA) increased continuously during 96-h exposure. For S. costatum, the activities of only two antioxidants (GSH and CAT) were enhanced, which is enough to prevent the MDA content from rising, even at higher concentrations of nBA (5-10 mg/L). The Integrated Biomarker Response Version 2 (IBRv2) index that combines responses of the above five oxidative stress biomarkers, was not only correlated positively with nBA concentration but could also indicate the occurrence of oxidative stress caused by acute concentration of nBA. These findings showed that P. tricornutum was sensitive to nBA compared to S. costatum, and the IBRv2 index was an effective tool for evaluating ecotoxicological effects on marine microalgae due to nBA spills.
Collapse
Affiliation(s)
- Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China.
| | - Weiyan Duan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Qunqun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Hao Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Xiaoling Peng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| |
Collapse
|