1
|
Huang Z, Liu G, Weber R, Falandysz J, Liang Y, Wang P, Yang L, Zheng M. Long term substantial impacts of historic Chlor-Alkali production as a newly recognized source of polyhalogenated carbazoles in aquatic environments. J Environ Sci (China) 2025; 153:191-201. [PMID: 39855791 DOI: 10.1016/j.jes.2024.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 01/27/2025]
Abstract
Bottom sediments of the North American Great Lakes are characterized by a high loading (over 3,000 tonnes) of polyhalogenated carbazoles (PHCZs). The origin of this environmental contaminant loading is unclear. Here, we first examined PHCZs levels and profiles in sediment, lotus, and fish from the Ya-Er Lake (China) that has been under the influence of an obsolete chlor-alkali facility for forty years and discovered substantial PHCZs contamination. Among the PHCZs determined, 3,6-dichlorocarbazole (36-CCZ) and 3-chlorocarbazole (3-CCZ) were the most frequently detected. Sediments from backfilled land exhibited Σ11PHCZs at median concentration of 973 ng/g (dry weight), suggesting the chlor-alkali industry as an important source. Even after 20 years of dredging treatment, the concentration of Σ11PHCZs in the sediment of the oxidation ponds (median = 41.1 ng/g) remained substantially higher than in other areas globally. Furthermore, the concentration of Σ11PHCZs was found to be higher in surface sediments (median) at 66.7 ng/g if compared to middle (14.1 ng/g) and lower layers (18.2 ng/g), indicating the potential availability of PHCZs from surface sediments to aquatic plants and animals. Notably, this study detected PHCZs in both fish (26.3 ng/g lipid weight) and lotus (14.5 ng/g dry weight), with significant enrichment of 3-monobromocarbazole (3-BCZ) observed in both lotus root systems (bio-soil accumulation factor, BSAFroot = 5.04) and fish muscle (BSAFfish = 3.04).
Collapse
Affiliation(s)
- Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststr. 23, 73527 Schwäbisch Gmünd, Germany
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Yong Liang
- Jianghan University, Hubei 430056, China
| | - Pu Wang
- Jianghan University, Hubei 430056, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ma G, Shi M, Li Y, Wang S, Zeng X, Jia Y. Diverse adaptation strategies of generalists and specialists to metal and salinity stress in the coastal sediments. ENVIRONMENTAL RESEARCH 2025; 271:121073. [PMID: 39923819 DOI: 10.1016/j.envres.2025.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Understanding the distinct roles and responses of bacterial community to environmental stressors is crucial for effective ecosystem management and conservation. Despite this, there is limited research on how environmental gradients specifically impact generalist and specialist subcommunities. This study investigates these subcommunities in the sediments of Jinzhou Bay, highlighting their distinct responses to environmental gradients. Generalists thrive in disturbed environments due to their broad ecological tolerances, while specialists show higher diversity in the stable, less contaminated upstream areas. At the genus level, Porphyrobacter and Subgroup_23 were identified as the dominant taxa of generalists, while Woeseia and Lutibacter were the dominant species of specialists. Physicochemical parameters, especially metals and salinity, significantly influence subcommunity composition. Generalists are adaptable to a wider range of factors, whereas specialists are affected by specific parameters, reflecting their narrower niches. The generalists exhibit a greater abundance of salinity tolerance genes compared to the specialists; however, this trend does not extend to metal resistance genes. Keystone taxa, primarily specialists, play crucial roles in maintaining community stability. Our results underscore the importance of considering both generalists and specialists in ecological assessments, offering insights for the management and conservation of bacterial microbial diversity in coastal ecosystems.
Collapse
Affiliation(s)
- Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mingyi Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
3
|
Huang Z, Wang C, Liu G, Yang L, Luo X, Liang Y, Wang P, Zheng M. Unintentionally-produced persistent organic pollutants in the aquatic environment contaminated from historical chlor-alkali production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124882. [PMID: 39241952 DOI: 10.1016/j.envpol.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Historical chlor-alkali production has led to substantial concentrations of persistent organic pollutant residues in the environment. This study systematically investigated the distribution of polycyclic aromatic hydrocarbons (PAHs), chlorinated/brominated-PAHs (Cl/Br-PAHs), polychlorinated naphthalenes (PCNs), and hexachlorobutadiene (HCBD) in sediment, lotus (Nelumbo nucifera), and fish samples from Ya-Er Lake, which is a site in China with historical chlor-alkali contamination. The average concentrations [(4.97-1.47) × 103 ng/g dry weight (dw)] of these pollutants in backfill sediments, which were dredged from the lake after chlor-alkali production stopped, were 2.68-70.87 times those in fresh lake sediments (0.622-218 ng/g dw) and reported concentrations in other areas. Correlation analyses indicated that Cl-PAHs, Br-PAHs, and PCNs likely originated from halogenation of parent PAHs in the study area, and the chlorination ratios were larger than those of bromination. The Cl(1/2/3)-PAHs/PAHs and Br(1)-PAHs/PAHs ratios were higher than those for PAHs with more halogen atoms. This contamination extended into the biota, with notable pollutant burdens found in lotus (Nelumbo nucifera, 0.305-77.3 ng/g dw) and even higher concentrations in fish (2.20-345 ng/g lipid weight). Estimated biological soil accumulation factors revealed significant enrichment in lotus organs (mean: 7.19) and fish muscle (mean: 10.65), especially the latter, which highlighted bioaccumulation and potential food chain transfer risks. The estimated daily intakes of PAHs, Cl/Br-PAHs, and HCBD through fish consumption currently pose negligible risks, while dietary intake of PCNs may present health concerns. Continuous monitoring and impact assessments are crucial for developing appropriate risk management strategies to safeguard public health.
Collapse
Affiliation(s)
- Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu Wang
- Changjiang Survey, Planning, Design and Research Co., Ltd, Wuhan, 430010, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Luo
- Changjiang Survey, Planning, Design and Research Co., Ltd, Wuhan, 430010, China
| | - Yong Liang
- Jianghan University, Hubei, 430056, China
| | - Pu Wang
- Jianghan University, Hubei, 430056, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Chen L, Qian Y, Jia Q, Weng R, Zhang X, Li Y, Qiu J. A national-scale distribution of organochlorine pesticides (OCPs) in cropland soils and major types of food crops in China: Co-occurrence and associated risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160637. [PMID: 36464042 DOI: 10.1016/j.scitotenv.2022.160637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) that resist degradation in the environment. OCPs remain detectable in cropland systems in China. However, spatial distribution of OCPs across China and associated ecological and health risks, as well as the relationship between levels of OCPs in cropland soils and crops, remain to be elucidated. To fill these gaps, we conducted a national-scale characterization of 19 individual OCPs in cropland soils and food crops including cereals and legumes in China, which were on-spot sampled simultaneously. Sparse canonical correlation analysis was employed to investigate the co-occurrence of OCPs in cropland soils and corresponding food crops. The ecological soil screening levels and risk quotient method were adopted for ecological and health risk assessment, respectively. Dichlorodiphenyltrichloroethanes (DDTs) were dominant in cropland systems, with its levels ranging up to 337 and 22.8 μg/kg in cropland soils and food crops, respectively. The mean ∑OCP levels in cropland soils varied from below the limit of detection to 337 μg/kg. Peanuts were the most contaminated crop, in which endosulfans and hexachlorobenzene (HCB) were co-occurrent with those in cropland soils (correlation coefficient R = 0.999 and 0.947, respectively). Besides, lindane and β-endosulfan in rice were co-occurrent with those in cropland soils (R = 0.810 and 0.868, respectively). The componential ratio analysis indicated fresh inputs of technical DDT, lindane, chlordane, endosulfan, HCB and aldrin. Among these pesticides, ecological impacts of DDTs, lindane, aldrin and β-endosulfan could be expected. Human health risk assessment suggested that daily consumption of the OCP-contaminated food crops raises a health concern especially for male teens. It is concluded that OCPs remain present in cropland systems in China at levels that raise a concern for both environment and human health.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - YongZhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Rui Weng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinglian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yun Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
6
|
Chen L, Qian Y, Jia Q, Weng R, Zhang X, Li Y, Qiu J. A large geographic-scale characterization of organochlorine pesticides (OCPs) in surface sediments and multiple aquatic foods of inland freshwater aquaculture ponds in China: Co-occurrence, source and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119716. [PMID: 35809714 DOI: 10.1016/j.envpol.2022.119716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Inland freshwater aquaculture ponds (IFAPs) represent the key component of the global lentic freshwater environment and are increasingly important for global aquaculture production, yet the occurrence of organochlorine pesticides (OCPs) in these pond systems remains largely unknown. Here, we characterized the residual concentrations of 19 individual OCPs in sediments and in cultured fish and crustacean species (crabs, shrimp, crayfish and lobster), which were on-spot sampled from the IFAPs at a large region-scale in China. The total OCP levels in sediments varied dramatically between regions. Crabs presented the greatest OCP contamination among the studied species. Dichlorodiphenyltrichloroethanes (DDTs) was the dominating contaminant in sediments and crabs and its stable degradation products 4,4'-DDE and 4,4'-DDD were co-occurrent between these two compartments. The diagnostic ratio analysis indicated fresh inputs of DDTs, lindane and aldrin in multiple regions, which may be resulted from agricultural soil erosion, surface runoff and local anthropogenic activities. Ecological impacts of these pesticides could be expected at some sites due to their levels in sediments above the risk level. Risk assessment based on the OCP levels corrected by the cooking loss revealed that daily consumption of the IFAPs-derived aquatic foods may pose carcinogenic risks in humans.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Weng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinglian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|