1
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
2
|
Wang J, Xie Y, Wu T, Chen Y, Jiang M, Li X, Ye Y, Zhou E, Yang Z. Phytic acid alleviates ochratoxin A-induced renal damage in chicks by modulating ferroptosis and the structure of the intestinal microbiota. Poult Sci 2024; 103:104027. [PMID: 39024690 PMCID: PMC11519695 DOI: 10.1016/j.psj.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Phytic acid (PA) is a natural antioxidant with various biological activities, providing protective effects in multiple animals. Ochratoxin A (OTA) is a mold toxin commonly found in feed, which induces multi-organ damage, with kidney being the target organ of its toxicity. This study investigates the protective effects of PA on OTA-induced renal damage and its potential mechanisms in chicks. The results demonstrates that PA treatment restores OTA-induced renal pathological injuries, reverses the diminished activities of antioxidant enzymes, reduces the accumulation of malondialdehyde, and normalizes the expression of pro-inflammatory cytokines, which confirms that PA can alleviate OTA-induced renal damage. Further investigations reveal that OTA-induced renal injury accompanied by an increase in tissue iron content and the transcription levels of ferroptosis-related genes (TFR, ACSL4, and HO-1), and a decrease in the levels of SLC7A11 and GPX4. PA treatment reverses all these effects, indicating that PA mitigates OTA-induced renal ferroptosis. Moreover, PA supplementation improves intestinal morphology and mucosal function, corrects OTA-induced changes in the intestinal microbiota. Besides, PA microbiota transplantation alleviates renal inflammation and oxidative stress caused by OTA. In conclusion, PA plays a protective role against renal damage through the regulation of ferroptosis and the intestinal microbiota, possibly providing novel insights into the control and prevention of OTA-related nephrotoxicity.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yueqing Xie
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ting Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xuhai Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
3
|
Abd-Ellatieff HA, Georg K, Abourawash ARA, Ghazy EW, Samak DH, Goda WM. Aspergillus awamori: potential antioxidant, anti-inflammatory, and anti-apoptotic activities in acetic acid-induced ulcerative colitis in rats. Inflammopharmacology 2024; 32:2541-2553. [PMID: 38763983 PMCID: PMC11300502 DOI: 10.1007/s10787-024-01489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic colonic inflammation with a significant health hazard. Aspergillus awamori (A. awamori) is a microorganism with various bioactive compounds with natural antioxidant and anti-inflammatory properties. The present work aimed to elucidate the protective and therapeutic effects of varying concentrations of A. awamori against acetic acid (AA)-induced ulcerative colitis (UC) in rats. Nine groups of albino male rats were established: a control negative group (G1), a control positive group (G2,AA), and preventive protocol groups (including G3A, G4A, and G5A) that received 100 mg, 50 mg, and 25 mg/kg b.w, respectively, of A. awamori orally and daily from the 1st day of the experiment and for 7 consecutive days. Then, they were subjected to one dose of AA intrarectally on day 8th. G3B, G4B, and G5B were termed as curative protocol groups that received one dose of AA on day 8th and then administered 100 mg, 50 mg, and 25 mg/kg b.w. of A. awamori, respectively, on day 9th and continued receiving these doses daily until day 16th. Rats in the AA group exhibited marked histopathological alterations of the distal colon, with an exaggeration of the DAI. In addition, a remarkable increase in oxidative stress was represented by the elevation of MDA and NO levels with a decline in SOD and GPx activities. In addition, upregulation of TNF-α, IL-6, and IL-1β mRNA expressions and downregulation of Muc2 and Nrf2 levels were detected. Unambiguously, a remarkable anti-inflammatory effect was noticed either in A. awamori prevented or treated groups expounded by reducing and regulating TNF-α, IL-6, and IL-1β with improved pathological lesion scoring. The Muc2, Nrf2, and bcl-2 gene levels were upregulated and restored also. In summary, the findings in this work reveal that A. awamori supplementation successfully alleviated the UC induced by AA, which had a better effect when administered before colitis induction.
Collapse
Affiliation(s)
- Hoda A Abd-Ellatieff
- Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Kristen Georg
- Cure Lab Clinical Pathology, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Emad W Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Dalia H Samak
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Wael M Goda
- Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- Clinical Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour-El-Beheira, Egypt
| |
Collapse
|
4
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
5
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
6
|
Abass SA, Elgazar AA, El-kholy SS, El-Refaiy AI, Nawaya RA, Bhat MA, Farrag FA, Hamdi A, Balaha M, El-Magd MA. Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations. Molecules 2024; 29:1927. [PMID: 38731418 PMCID: PMC11085772 DOI: 10.3390/molecules29091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.
Collapse
Affiliation(s)
- Shimaa A. Abass
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Sanad S. El-kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Amal I. El-Refaiy
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture (Girls), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem A. Nawaya
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Foad A. Farrag
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Marwa Balaha
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei vestini, 31-66100 Chieti, Italy;
| | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
7
|
Zhang Z, Wang J, Wang J, Xie H, Zhang Z, Shi L, Zhu X, Lv Q, Chen X, Liu Y. Selenomethionine attenuates ochratoxin A-induced small intestinal injury in rabbits by activating the Nrf2 pathway and inhibiting NF-κB activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114837. [PMID: 37001190 DOI: 10.1016/j.ecoenv.2023.114837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The aim of this study was to investigate whether selenomethionine (SeMet) could attenuate intestinal injury in rabbits induced by ochratoxin A (OTA). Sixty 35-day-old IRA rabbits with similar weights were randomly assigned to the control group, OTA group (0.2 mg OTA/kg b.w), OTA+ 0.2 mg/kg Se (0.2 mg OTA/kg b.w + 0.2 mg SeMet/kg feed), OTA+ 0.4 mg/kg Se (0.2 mg OTA/kg b.w + 0.4 mg SeMet/kg feed) and OTA+ 0.6 mg/kg Se (0.2 mg OTA/kg b.w + 0.6 mg SeMet/kg feed). The rabbits were examined after oral administration of different doses of SeMet for 21 days and were intragastrically administered OTA for 7 consecutive days. The results showed that pretreatment with different doses of SeMet protected against the changes in serum biochemical indicators and the decline in production performance caused by OTA exposure. In addition, the activities of SOD, GSH-PX and T-AOC were significantly increased, and the levels of MDA and ROS were decreased after SeMet pretreatment; thus, oxidative damage in rabbit jejunum tissue due to OTA exposure was inhibited. SeMet stimulates Nrf2 and inhibits the NF-κB signalling pathway; the anti-inflammatory response and antioxidative stress in rabbits were improved, and the intestinal barrier damage caused by OTA exposure was improved. In summary, SeMet alleviates OTA-induced intestinal toxicity in rabbits by activating the Nrf2 pathway and inhibiting NF-κB activation. Moreover, 0.4 mg/kg SeMet induced the most significant improvement.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Hui Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhikai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
8
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|