1
|
Ahamad MI, Rehman A, Mehmood MS, Mahmood S, Zafar Z, Lu H, Feng W, Lu S. Spatial distribution, ecological and human health risks of potentially toxic elements (PTEs) in river Ravi, Pakistan: A comprehensive study. ENVIRONMENTAL RESEARCH 2024; 263:120205. [PMID: 39442657 DOI: 10.1016/j.envres.2024.120205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/21/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Significant quantities of potentially toxic elements have been and are still being discharged into Pakistan's rivers through natural sources and anthropogenic activities. The present study provides a comprehensive study of potentially toxic element contamination in the water and sediment of the Ravi River, Pakistan. The research aims to examine the extent of pollution, its ecological risks, and the potential human health impacts through detailed geospatial analysis and statistical correlation. Water and sediment representative samples were taken and analyzed for potentially toxic elements, including Cobalt (Co), Cadmium (Cd), Zinc (Zn), Nickel (Ni), Arsenic (As), Chromium (Cr), Lead (Pb), Copper (Cu), and Manganese (Mn). Various pollution indices, such as the "Geo-accumulation Index (Igeo), Modified degree of Contamination (mCd), Nemerow comprehensive pollution index (Pt), Contamination factor (CF), Enrichment factor (EF), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI)," were calculated to determine the contamination levels and ecological risks. The results indicated significant spatial variability in metal concentrations, with higher levels observed in industrial and urban areas (near Lahore). Cd and As were identified as the most critical pollutants, exhibiting high Igeo, CF, EF, and PERI values. The PLI revealed that several regions along the river are heavily polluted. Pt shows high comprehensive pollution near Lahore and moderate to high pollution in surrounding areas. According to mCd, most of the study area, especially sampling points near Lahore, ranges between 8 and 16, indicating a high degree of pollution. The Human Health Risk (HHR) assessment, considering ingestion, inhalation, and dermal contact pathways, highlighted that children are particularly vulnerable, showing higher Hazard Quotient (HQ) and Hazard Index (HI) values for several metals. Correlation analysis revealed significant relationships between certain metals, suggesting common sources of contamination, likely from industrial discharges and urban runoff. The comprehensive mapping and statistical analysis underscore the urgent need for implementing effective pollution control measures to mitigate the risks posed by potentially toxic element contamination in the Ravi River. This study provides critical insights for policymakers and environmental managers to prioritize areas for remediation and to develop strategies to protect both ecological and human health in the region.
Collapse
Affiliation(s)
- Muhammad Irfan Ahamad
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
| | - Adnanul Rehman
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
| | - Muhammad Sajid Mehmood
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China.
| | - Shakeel Mahmood
- Department of Geography, Government College University, Lahore, 54000, Pakistan.
| | - Zeeshan Zafar
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, 450046, China; Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou, 450001, China; Xinyang Academy of Ecological Research, Xinyang, 464000, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China.
| | - Wanfu Feng
- The Forest Science Research Institute of Xinyang, Henan, Xinyang, 464031, China; Henan Jigongshan Forest Ecosystem National Observation and Research Station, Henan, Xinyang, 464031, China.
| | - Siqi Lu
- Department of Geography, Sustainability, Community and Urban Studies, University of Connecticut, Storrs, CT, 06269-4148, USA.
| |
Collapse
|
2
|
Banaee M, Zeidi A, Mikušková N, Faggio C. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res 2024; 202:5743-5761. [PMID: 38472509 DOI: 10.1007/s12011-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Nikola Mikušková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d'Alcontres 31, 98166, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Sadiq M, Eqani SAMAS, Podgorski J, Ilyas S, Abbas SS, Shafqat MN, Nawaz I, Berg M. Geochemical insights of arsenic mobilization into the aquifers of Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173452. [PMID: 38782276 DOI: 10.1016/j.scitotenv.2024.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
It is well known that groundwater arsenic (As) contamination affects million(s) of people throughout the Indus flood plain, Pakistan. In this study, groundwater (n = 96) and drilled borehole samples (n = 87 sediments of 12 boreholes) were collected to investigate geochemical proxy-indicators for As release into groundwater across floodplains of the Indus Basin. The mean dissolved (μg/L) and sedimentary As concentrations (mg/kg) showed significant association in all studied areas viz.; lower reaches of Indus flood plain area (71 and 12.7), upper flood plain areas (33.7 and 7.2), and Thal desert areas (5.3 and 4.7) and are indicative of Basin-scale geogenic As contamination. As contamination in aquifer sediments is dependent on various geochemical factors including particle size (3-4-fold higher As levels in fine clay particles than in fine-coarse sand), sediment types (3-fold higher As in Holocene sediments of floodplain areas vs Pleistocene/Quaternary sediments in the Thal desert) with varying proportion of Al-Fe-Mn oxides/hydroxides. The total organic carbon (TOC) of cored aquifer sediments yielded low TOC content (mean = 0.13 %), which indicates that organic carbon is not a major driver (with a few exceptions) of As mobilization in the Indus Basin. Alkaline pH, high dissolved sulfate and other water quality parameters indicate pH-induced As leaching and the dominance of oxidizing conditions in the aquifers of upper flood plain areas of Punjab, Pakistan while at the lower reaches of the Indus flood plain and alluvial pockets along the rivers with elevated flood-driven dissolved organic carbon (exhibiting high dissolved Mn and Fe and a wide range of redox conditions). Furthermore, we also identified that paired dissolved AsMn values (instead of AsFe) may serve as a geochemical marker of a range of redox conditions throughout Indus flood plains.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Shazia Ilyas
- Department of Environmental Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| | - Syed Sayyam Abbas
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | | | - Ismat Nawaz
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
4
|
Naseem S, Tabinda AB, Baqar M, Khan MA, Zia-Ur-Rehman M. Occurrence, spatial distribution and ecological risk assessment of Organophosphate Esters in surface water and sediments from the Ravi River and its tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174828. [PMID: 39025139 DOI: 10.1016/j.scitotenv.2024.174828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used as substitutes for brominated flame retardants and characterized as emerging contaminants. Due to their toxicity and persistent nature, OPEs are becoming a matter of greater concern worldwide. However, information about the pollution profile of OPEs and associated ecological risks is still scarce in environmental matrices of the South Asian region, particularly Pakistan. Hence, the current study was conducted to investigate the occurrence, spatial distribution patterns, ecological risks and riverine flux of 10 organophosphate esters in surface water and sediments of Ravi River and its four tributaries. The concentrations of ∑10OPEs were in the range of 19.2 - 105 ng/L, with the dominance of chlorinated-OPEs (51 %) in surface water, whereas in case of sediments, the ∑10OPEs concentrations ranged from 20.7 to 149 ng/g dw, with high abundance of non - chlorinated alkyl-OPEs, which contributed about 56 % to total OPE concentration. The correlation analysis signified a strong positive relation of OPEs with TOC (p < 0.05, R = 0.76) in sediments; and in addition to this, field-based LogKoc values were estimated to be higher than predicted LogKoc. Moreover, a significantly positive correlation (p < 0.05, R = 0.88) was observed between LogKoc and LogKow, implying that hydrophobicity plays a significant role in OPE distribution in different environmental matrices. The global comparison revealed that contamination status of OPEs in the present study was comparatively lower than other regional findings, furthermore, principal component analysis suggested vehicular emissions, industrial discharges, household supplies and atmospheric deposition as main sources of OPEs occurrence in current study region. Furthermore, the riverine flux of ∑10OPEs was estimated to be 0.68 tons/yr and the ecological risk assessment indicated that all OPEs, except EHDPP and TCrP, showed negligible or insignificant ecological risks for aquatic organisms.
Collapse
Affiliation(s)
- Samra Naseem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mehroze Ahmad Khan
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Applied Chemistry Research Centre, Pakistan Council of Scientific & Industrial Research Laboratories, Lahore 54600, Pakistan
| |
Collapse
|
5
|
Faybishenko B, Bakhtavar E, Hewage K, Sadiq R. Chemical composition of arsenic-based acid mine drainage in the downstream of a gold mine: Fuzzy regression and clustering analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133250. [PMID: 38157814 DOI: 10.1016/j.jhazmat.2023.133250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
This study employs fuzzy regression and fuzzy multivariate clustering techniques to analyze arsenic-polluted water samples originating from acid rock drainage in waste rock dumps. The research focuses on understanding the complex relationships between variables associated with arsenic contamination, such as water arsenic concentration, pH levels, and soil characteristics. To this end, fuzzy regression models were developed to estimate the relationships between water arsenic concentration and independent variables, thus, incorporating the inherent uncertainties into the analysis. Furthermore, multivariate fuzzy k-means clustering analysis facilitated the identification of fuzzy-based clusters within the dataset, providing insights into spatial patterns and potential sources of arsenic pollution. The pairwise comparisons indicated the strongest correlation of 0.62 between soil total arsenic and pH, while the weakest correlation of 0.13 was observed between soil-soluble arsenic and soil iron, providing valuable insights into their relationships and impact on water arsenic levels. The associated uncertainties in the relationships among the variables were determined based on the degree of belongingness of each data point to various fuzzy sets. Three distinct clusters emerged from the analysis: Cluster 1 comprised Points 5, 6, and 7; Cluster 2 included Points 1, 2, 3, 4, 8, and 9; and Cluster 3 consisted of Points 10, 11, 12, and 13. The findings enhance our understanding of the factors influencing arsenic contamination to provide an effective mitigation strategy in acid rock drainage scenarios. This research also demonstrates the applicability and effectiveness of fuzzy regression and fuzzy multivariate clustering in the analysis of arsenic-polluted water samples.
Collapse
Affiliation(s)
- Boris Faybishenko
- Energy Geosciences Division, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, University of California, Berkeley, USA
| | - Ezzeddin Bakhtavar
- Faculty of Environment, Urmia University of Technology, Urmia 5716617165, Iran; School of Engineering, University of British Columbia, Okanagan, Kelowna V1V 1V7, BC, Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan, Kelowna V1V 1V7, BC, Canada
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
6
|
Shahid SU, Iqbal J, Abbasi NA, Tahir A. GIS based hotspot analysis and health risk assessment of groundwater arsenic from an unconfined deep aquifer of Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6053-6068. [PMID: 37233862 DOI: 10.1007/s10653-023-01612-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Use of groundwater for drinking purpose poses serious hazards of arsenic contamination particularly in plains of western Himalayan region. Therefore, current study was designed to investigate the level of Arsenic (As) in the water obtained from tubewells in a metropolitan city of Lahore, Pakistan and assess the human health risk. So, a total of 73 tubewells were sampled randomly in the manner that the whole study region was covered without any clustering. The water samples were analyzed for As using atomic absorption spectrophotometer. These samples were also tested for total dissolved solids, chlorides, pH, alkalinity, turbidity, hardness and calcium. GIS based hotspots analysis technique was used to investigate the spatial distribution patterns. Our results revealed that only one sample out of total 73 had arsenic level below the WHO guideline of 10 μg/L. The spatial distribution map of arsenic revealed that the higher concentrations of arsenic are present in the north-western region of Lahore. The cluster and outlier analysis map using Anselin Local Moran's I statistic indicated the presence of an arsenic cluster in the west of River Ravi. Furthermore, the optimized hotspot analysis based on Getis-Ord Gi* statistics confirmed the statistical significance (P < 0.05) and (P < 0.01) of these samples from the vicinity of River Ravi. Regression analysis showed that variables such as turbidity, alkalinity, hardness, chlorides, calcium and total dissolved solids were significantly (all P < 0.05) associated with level of Arsenic in tubewells. Whereas, PH and electrical conductivity and other variables like town, year of installation, depth and diameter of the wells were not significantly associated with Arsenic concentrations in tubewells. Principal component analysis (PCA) exhibited that the random distribution of tubewell samples showed no distinct clustering with towns studied. Health risk assessment based on hazard and Cancer risk index revealed serious risk of developing carcinogenic and non-carcinogenic diseases particularly in children. The health risk due to prevalence of high As concentration in tubewells' water need to be mitigated immediately to avoid worst consequences in future.
Collapse
Affiliation(s)
- Syed Umair Shahid
- Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore, Pakistan.
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Javed Iqbal
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|