1
|
Siddiqui M, Alam MS, Ali M. Exploring the Potential of PEG-Based Deep Eutectic Solvents as a Sustainable Alternative for Extraction of Biological Macromolecules Bovine Serum Hemoglobin. ACS OMEGA 2025; 10:6839-6856. [PMID: 40028093 PMCID: PMC11866021 DOI: 10.1021/acsomega.4c09125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
In recent years, deep eutectic solvents (DESs) have garnered significant attention as promising green alternatives to conventional organic solvents for a wide range of applications. In this study, four novel polyethylene glycol (PEG)-based DESs were prepared and evaluated for their physicochemical properties, including density, dynamic viscosity, and kinematic viscosity. Fourier transform infrared spectroscopy (FT-IR) and NMR analyses revealed substantial intermolecular interactions between the hydrogen bond donor and hydrogen bond acceptor components, confirming the formation of stable DES systems. The application of the prepared DESs was tested in biological separation, specifically for the selective extraction of bovine serum hemoglobin (BHb). This study demonstrates the efficacy of PEG-based DESs in selectively extracting BHb. Among the DESs studied, DES-4 (PEG-600) achieved the highest extraction efficiency of 88%, while maintaining protein stability. Spectroscopic techniques, including UV-visible, fluorescence, dynamic light scattering, circular dichroism, and FT-IR, were employed to investigate the extraction mechanism, conformational changes in protein structure, and DES-protein interactions. These methods provided insights into the structural stability and functionality of BHb during the extraction process. The physicochemical characterizations confirmed the unique properties of PEG-based DESs, making them viable candidates for sustainable protein extraction. Their compatibility, excellent extraction efficiency, and short separation times underscore their potential as environmentally friendly and long-lasting substitutes for conventional separation techniques. This study highlights the advancement of DESs in green chemistry and biotechnological applications, offering an efficient and sustainable platform for protein extraction while maintaining structural integrity.
Collapse
Affiliation(s)
- Masooma Siddiqui
- Department
of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Md Sayem Alam
- Council
of Scientific and Industrial Research (CSIR)–Central Leather
Research Institute (CLRI), Polymer Science & Technology, Adyar, Chennai 600 020, India
| | - Maroof Ali
- Department
of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
2
|
Zoratti M, Mercadal PA, Alvarez Igarzabal CI, Picchio ML, González A. Development of active films with thymol-based hydrophobic eutectic solvents. Int J Biol Macromol 2024; 283:137970. [PMID: 39581392 DOI: 10.1016/j.ijbiomac.2024.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Thymol, known for its antimicrobial properties, was combined with acetic acid, betaine, and caprylic acid to form hydrophobic natural eutectic solvents (NAES), whose influence on the properties of bovine gelatin films was investigated. Films showed enhanced mechanical performance and a clear plasticizing effect provided by the natural eutectic solvents. At 300 wt% concentration, tensile strength and elongation at break reached 871 ± 78 kPa and 141 ± 10 % for acetic acid, 391 ± 41 kPa and 159 ± 10 % for betaine, and 1209 ± 52 kPa and 198 ± 15 % for caprylic acid. Water vapor permeability and total soluble matter were reduced, and swelling decreased to ~250 %, ~150 %, and ~ 200 % for films with 300 wt% of acetic acid, betaine, and caprylic acid, respectively. Pure thymol exhibited significant volatility, with 17.10 ± 1.50 % weight loss over one week, while the NADES demonstrated dramatically reduced losses (up to 1.15 ± 0.04 %). The films displayed exceptional antibacterial activity, achieving inhibition diameters of 34 mm against Gram-positive and Gram-negative bacteria, and films with caprylic or acetic NAES achieved undetectable CFU levels for major pathogens on chicken breast. These results highlight the antimicrobial potency and enhanced stability of NAES-based gelatin films for active packaging applications.
Collapse
Affiliation(s)
- Marianela Zoratti
- Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, Bahía Blanca (8000), Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba (5000), Argentina
| | - Pablo A Mercadal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba (5000), Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Córdoba (5000), Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Departamento de Recursos Naturales, Córdoba (5000), Argentina.
| | - Cecilia I Alvarez Igarzabal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba (5000), Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Córdoba (5000), Argentina
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain; Facultad Regional Villa María (Universidad Tecnológica Nacional), Av. Universidad 450, Villa María, 5900 Córdoba, Argentina
| | - Agustín González
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba (5000), Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Córdoba (5000), Argentina.
| |
Collapse
|
3
|
Atashnezhad A, Scott J, Al Dushaishi MF. Environmental Implications of Ionic Liquid and Deep Eutectic Solvent in Geothermal Application: Comparing Traditional and New Approach Methods. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:14684-14693. [PMID: 39391093 PMCID: PMC11462603 DOI: 10.1021/acssuschemeng.4c04606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
The significant surge of ionic liquids (ILs) research over the past decade has led to the formation of various novel ionic liquid compounds and their diverse applications. Enhanced geothermal systems (EGS) for geothermal power generation are an emerging IL application as a heat extraction fluid. The once widely held belief in the environmentally friendly characteristics of ionic liquids, mainly due to their insignificant vapor pressure, is now being scrutinized. It has become apparent that while ILs do not readily evaporate into the atmosphere, they are not guaranteed to remain entirely isolated from the environment. Recent attention has been directed toward toxicological studies, including ecotoxicity impacts, with the long-accepted assumption of ILs having low toxicity being invalid. This paper aims to shed light on the toxicity of hexylepyradinium bromide (HPyBr) IL and a deep eutectic solvent (DES) comprising choline chloride with magnesium chloride hexahydrate (ChCl:MgCl2·6H2O) to five test species, an algal species (Raphidocelis subcapitata), the water flea (Ceriodaphnia dubia and Daphina magna), the fathead minnow (Pimephales promelas), and the earthworm (Eisenia fetida), to measure acute and chronic toxicity. Additionally, new approach methods (NAMs) are presented using the fathead minnow embryo and the rainbow trout (Oncorhynchus mykiss) gill cell line and the RTgill-W1 assay to compare sensitivity across species. Overall, ChCl:MgCl2·6H2O displayed lower toxicity, while HPyBr demonstrated higher toxicity, highlighting the need for caution in handling it to prevent harm to aquatic ecosystems. Comparative analysis underscored the potential threat of ChCl:MgCl2·6H2O to aquatic life, highlighting the cumulative effects of the environmental components.
Collapse
Affiliation(s)
- Amin Atashnezhad
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Justin Scott
- Cove
Environmental LLC, Stillwater, Oklahoma 74075, United States
- School
of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Mohammed F. Al Dushaishi
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
4
|
Campodónico PR, Alarcón-Espósito J, Alcázar JJ, Olivares B, Suárez-Rozas C. Analysis of the Behavior of Deep Eutectic Solvents upon Addition of Water: Its Effects over a Catalytic Reaction. Molecules 2024; 29:3296. [PMID: 39064875 PMCID: PMC11279026 DOI: 10.3390/molecules29143296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents.
Collapse
Affiliation(s)
- Paola R. Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Jazmín Alarcón-Espósito
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jackson J. Alcázar
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Belén Olivares
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| | - Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 10021, Chile; (J.J.A.); (B.O.); (C.S.-R.)
| |
Collapse
|
5
|
Wysocki M, Stachowiak W, Smolibowski M, Olejniczak A, Niemczak M, Shamshina JL. Rethinking the Esterquats: Synthesis, Stability, Ecotoxicity and Applications of Esterquats Incorporating Analogs of Betaine or Choline as the Cation in Their Structure. Int J Mol Sci 2024; 25:5761. [PMID: 38891947 PMCID: PMC11171562 DOI: 10.3390/ijms25115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.
Collapse
Affiliation(s)
- Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Mikołaj Smolibowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Lu Y, Tang H, Chen F, Tang W, Dessie W, Liao Y, Qin Z. Extraction and Biological Activity of Lignanoids from Magnolia officinalis Rehder & E.H.Wilson Residual Waste Biomass Using Deep Eutectic Solvents. Molecules 2024; 29:2352. [PMID: 38792212 PMCID: PMC11124428 DOI: 10.3390/molecules29102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lignanoids are an active ingredient exerting powerful antioxidant and anti-inflammatory effects in the treatment of many diseases. In order to improve the efficiency of the resource utilization of traditional Chinese medicine waste, Magnolia officinalis Rehder & E.H.Wilson residue (MOR) waste biomass was used as raw material in this study, and a series of deep eutectic solvents (ChUre, ChAce, ChPro, ChCit, ChOxa, ChMal, ChLac, ChLev, ChGly and ChEG) were selected to evaluate the extraction efficiency of lignanoids from MORs. The results showed that the best conditions for lignanoid extraction were a liquid-solid ratio of 40.50 mL/g, an HBD-HBA ratio of 2.06, a water percentage of 29.3%, an extract temperature of 337.65 K, and a time of 107 min. Under these conditions, the maximum lignanoid amount was 39.18 mg/g. In addition, the kinetics of the extraction process were investigated by mathematic modeling. In our antioxidant activity study, high antioxidant activity of the lignanoid extract was shown in scavenging four different types of free radicals (DPPH, ·OH, ABTS, and superoxide anions). At a concentration of 3 mg/mL, the total antioxidant capacity of the lignanoid extract was 1.795 U/mL, which was equal to 0.12 mg/mL of Vc solution. Furthermore, the antibacterial activity study found that the lignanoid extract exhibited good antibacterial effects against six tested pathogens. Among them, Staphylococcus aureus exerted the strongest antibacterial activity. Eventually, the correlation of the lignanoid extract with the biological activity and physicochemical properties of DESs is described using a heatmap, along with the evaluation of the in vitro hypoglycemic, in vitro hypolipidemic, immunomodulatory, and anti-inflammatory activity of the lignanoid extract. These findings can provide a theoretical foundation for the extraction of high-value components from waste biomass by deep eutectic solvents, as well as highlighting its specific significance in natural product development and utilization.
Collapse
Affiliation(s)
- Ying Lu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Haishan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
- Hunan Provincial Key Laboratory for Comprehensive Utilization of Dominant Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Feng Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wufei Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Wubliker Dessie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Yunhui Liao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Zuodong Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| |
Collapse
|
7
|
Suljkanović M, Suljagić J, Bjelić E, Prkić A, Bošković P. Chemical Characterization of Terpene-Based Hydrophobic Eutectic Solvents and Their Application for Pb(II) Complexation during Solvent Extraction Procedure. Molecules 2024; 29:2122. [PMID: 38731611 PMCID: PMC11085413 DOI: 10.3390/molecules29092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Solvents prepared from natural terpenes (menthol and thymol), as H-bond acceptors, and a series of organic acids (chain lengths of 8, 10, and 14 C atoms), as H-bond donors, were characterized and tested as reaction media for liquid-liquid extraction purposes. Due to their high hydrophobicity, they seem to be promising alternatives to conventional (nonpolar and toxic) solvents, since they possess relatively less toxic, less volatile, and consequently, more environmentally friendly characteristics. Assuming that the equilibrium is established between solvent and analyte during a ligandless procedure, it can be concluded that those nonpolar solvents can efficiently extract nonpolar analytes from the aqueous environment. Previous investigations showed a wide range of applications, including their use as solvents in extractions of metal cations, small molecules, and bioactive compounds for food and pharmaceutical applications. In this work, hydrophobic solvents based on natural terpenes, which showed chemical stability and desirable physicochemical and thermal properties, were chosen as potential reaction media in the liquid-liquid extraction (LLE) procedure for Pb(II) removal from aqueous solutions. Low viscosities and high hydrophobicities of prepared solvents were confirmed as desirable properties for their application. Extraction parameters were optimized, and chosen solvents were applied. The results showed satisfactory extraction efficiencies in simple and fast procedures, followed by low solvent consumption. The best results (98%) were obtained by the thymol-based solvent, thymol-decanoic acid (Thy-DecA) 1:1, followed by L-menthol-based solvents: menthol-octanoic acid (Men-OctA) 1:1 with 97% and menthol-decanoic acid (Men-DecA) 1:1 with 94.3% efficiency.
Collapse
Affiliation(s)
- Mersiha Suljkanović
- Faculty of Natural Sciences and Mathematics, University of Tuzla, Urfeta Vejzagića 4, 75000 Tuzla, Bosnia and Herzegovina
| | - Jasmin Suljagić
- Faculty of Technology, University of Tuzla, Urfeta Vejzagića 8, 75000 Tuzla, Bosnia and Herzegovina; (J.S.); (E.B.)
| | - Edita Bjelić
- Faculty of Technology, University of Tuzla, Urfeta Vejzagića 8, 75000 Tuzla, Bosnia and Herzegovina; (J.S.); (E.B.)
| | - Ante Prkić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Perica Bošković
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| |
Collapse
|
8
|
Menegatti T, Kopač T, Žnidaršič-Plazl P. Tuning Mechanical Characteristics and Permeability of Alginate Hydrogel by Polyvinyl Alcohol and Deep Eutectic Solvent Addition. Bioengineering (Basel) 2024; 11:371. [PMID: 38671792 PMCID: PMC11048402 DOI: 10.3390/bioengineering11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alginate-based hydrogels are widely utilized for various applications, including enzyme immobilization and the development of drug delivery systems, owing to their advantageous characteristics, such as low toxicity, high availability and cost-effectiveness. However, the broad applicability of alginate hydrogels is hindered by their limited mechanical and chemical stability, as well as their poor permeability to hydrophobic molecules. In this study, we addressed the mechanical properties and chemical resistance of alginate hydrogels in a high-pKa environment by the copolymerization of alginate with polyvinyl alcohol (PVA). The addition of PVA resulted in a threefold improvement in the shear modulus of the copolymeric hydrogel, as well as enhanced chemical resistance to (S)-α-methylbenzylamine, a model molecule with a high pKa value. Furthermore, we addressed the permeability challenge by introducing a betaine-propylene glycol deep eutectic solvent (DES) into the PVA-alginate copolymer. This led to an increased permeability for ethyl 3-oxobutanoate, a model molecule used for bioreduction to chiral alcohols. Moreover, the addition of the DES resulted in a notable improvement of the shear modulus of the resulting hydrogel. This dual effect highlights the role of the DES in achieving the desired improvement of the hydrogel as an immobilization carrier.
Collapse
Affiliation(s)
- Tadej Menegatti
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
| | - Tilen Kopač
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (T.M.); (T.K.)
- Chair of Micro Process Engineering and Technology—COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Demmelmayer P, Ćosić M, Kienberger M. Mineral Acid Co-Extraction in Reactive Extraction of Lactic Acid Using a Thymol-Menthol Deep Eutectic Solvent as a Green Modifier. Molecules 2024; 29:1722. [PMID: 38675542 PMCID: PMC11052331 DOI: 10.3390/molecules29081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Carboxylic acids can be isolated from fermentation broths using reactive liquid-liquid extraction, offering an alternative to the environmentally harmful state-of-the-art process of precipitating calcium lactate. To enhance the sustainability of liquid-liquid extraction processes, greener solvents, such as natural deep eutectic solvents, are investigated. However, fermentation broths often exhibit pH values unsuitable for carboxylic acid extraction, which can be adjusted using mineral acids, though mineral acids may be co-extracted. In this study, we systematically examine the co-extraction of hydrochloric, nitric, sulfuric, and phosphoric acid during extraction and back-extraction of lactic acid. The solvent phase consisted of tri-n-octylamine, trioctylphosphine oxide, or tributyl phosphate diluted in a thymol-menthol deep eutectic solvent. The back-extraction was conducted using a diluent swing with p-cymene as the antisolvent and water as the receiving phase. Tri-n-octylamine showed the highest efficiency for lactic acid (up to 29.8%) but also the highest co-extraction of mineral acids (up to 50.9%). In contrast, trioctylphosphine oxide exhibited a lower but more selective lactic acid extraction (5.94%) with low mineral acids co-extraction (0.135%). Overall, the highest co-extraction was observed for phosphoric acid and the lowest for nitric acid. In conclusion, the selected solvent phase composition and mineral acid influence the co-extraction and, thus, final product purity. The successful application of the natural deep eutectic solvent as the modifier enhances the sustainability of liquid-liquid extraction processes.
Collapse
Affiliation(s)
| | | | - Marlene Kienberger
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria; (P.D.); (M.Ć.)
| |
Collapse
|
10
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Iridoids, Chlorogenic Acid, and Flavonoids from Eucommia ulmoides Leaves. Molecules 2024; 29:737. [PMID: 38338480 PMCID: PMC10856201 DOI: 10.3390/molecules29030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.
Collapse
Affiliation(s)
- Yunhui Liao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Feng Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
| | - Haishan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Provincial Key Laboratory for Comprehensive Utilization of Dominant Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Zuodong Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
12
|
Gabriele F, Casieri C, Spreti N. Natural Deep Eutectic Solvents as Rust Removal Agents from Lithic and Cellulosic Substrates. Molecules 2024; 29:624. [PMID: 38338368 PMCID: PMC10856158 DOI: 10.3390/molecules29030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The peculiar physicochemical features of deep eutectic solvents (DESs), in particular their tunability, make them ideal media for various applications. Despite their ability to solubilize metal oxides, their use as rust removers from valuable substrates has not yet been thoroughly investigated. In this study, we chose three known DESs, consisting of choline chloride and acetic, oxalic or citric acid for evaluating their ability to remove corrosion products from a cellulose-based material as linen fabric and two different lithotypes, as travertine and granite. The artificial staining was achieved by placing a rusty iron grid on their surfaces. The DESs were applied by means of cellulose poultice on the linen fabrics, while on the rusted stone surfaces with a cotton swab. Macro- and microscopic observations, colorimetry and SEM/EDS analysis were employed to ascertain the cleaning effectiveness and the absence of side effects on the samples after treatment. Oxalic acid-based DES was capable of removing rust stains from both stone and cellulose-based samples, while choline chloride/citric acid DES was effective only on stone specimens. The results suggest a new practical application of DESs for the elimination of rust from lithic and cellulosic substrates of precious and artistic value.
Collapse
Affiliation(s)
| | | | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (F.G.); (C.C.)
| |
Collapse
|
13
|
Ferreira C, Sarraguça M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals (Basel) 2024; 17:124. [PMID: 38256957 PMCID: PMC10820243 DOI: 10.3390/ph17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The extraction of bioactive compounds of pharmaceutical interest from natural sources has been significantly explored in recent decades. However, the extraction techniques used were not very efficient in terms of time and energy consumption; additionally, the solvents used for the extraction were harmful for the environment. To improve the environmental impact of the extractions and at the same time increase the extraction yields, several new extraction techniques were developed. Among the most used ones are ultrasound-assisted extraction and microwave-assisted extraction. These extraction techniques increased the yield and selectivity of the extraction in a smaller amount of time with a decrease in energy consumption. Nevertheless, a high volume of organic solvents was still used for the extraction, causing a subsequent environmental problem. Neoteric solvents appeared as green alternatives to organic solvents. Among the neoteric solvents, deep eutectic solvents were evidenced to be one of the best alternatives to organic solvents due to their intrinsic characteristics. These solvents are considered green solvents because they are made up of natural compounds such as sugars, amino acids, and carboxylic acids having low toxicity and high degradability. In addition, they are simple to prepare, with an atomic economy of 100%, with attractive physicochemical properties. Furthermore, the huge number of compounds that can be used to synthesize these solvents make them very useful in the extraction of bioactive compounds since they can be tailored to be selective towards a specific component or class of components. The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical interest. Additionally, an overview of the more recent and sustainable extraction techniques is also given.
Collapse
Affiliation(s)
| | - Mafalda Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|