1
|
Javed K, Bilal M, Abbas N, Mahmood S, Fazal T, Iqbal S, Alotaibi KM. Enhanced Photocatalytic Degradation of Bisphenol A by a Novel MOF/CuFe 2O 4 Composite in Wastewater Treatment. Microsc Res Tech 2025; 88:1727-1738. [PMID: 39895001 DOI: 10.1002/jemt.24813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
The synergistic effects of a CuFe₂O₄ and cobalt/nickel metal organic framework (Co/Ni-MOF) based composite (MOF/CuFe₂O₄) were explored for photodegradation of Bisphenol A (BPA), various MOF/CuFe₂O₄ composites were synthesized via a hydrothermal method, By adjusting CuFe₂O₄ to Co/Ni-MOF mass ratios of 2:1, 1:1, and 1:2 and were denoted as MOF/CuFe₂O₄ (2:1), MOF/CuFe₂O₄ (1:1), and MOF/CuFe₂O₄ (1:2), respectively. The composite MOF/CuFe₂O₄ (1:1) with a band gap energy (Eg) of 2.28 eV exhibited excellent photocatalytic activity achieving 98% degradation of a 10 ppm BPA solution under visible light (50 W) irradiation within 75 min, at pH 3, 25°C. This process achieved a quantum yield (QY) of 9.10 × 10-6 molecules photon-1 and a space-time yield (SY) of 9.10 × 10-7, highlighting the composite's efficiency and potential for practical applications. Visible-light absorption efficiency improved as photon energy increased (25 to 50 W) and facilitated the generation of˙ O 2 - radicals. Kinetic studies indicated a first-order reaction rate (R 2 = 0.964) for BPA photodegradation by MOF/CuFe₂O₄ (1:1) composite. Additionally, the MOF/CuFe₂O₄ composite demonstrated superior antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under light compared with dark environment. Remarkably, the composite maintained its photocatalytic efficiency over at least six cycles. The results of the current study highlight the effectiveness and reusability of the MOF/CuFe₂O₄ (1:1) composite as a nanomaterial for the photodegradation of BPA and its potential applications in water treatment.
Collapse
Affiliation(s)
- Khalid Javed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Naseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, Kuwait
| | - Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Hui ZX, Li H, Chen ZW, Wen Z, Wang GY, Singh CV, Yang CC, Jiang Q. The Interfacial Ni/Fe─O─Y Bonds Contribute to High-Efficiency Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407860. [PMID: 39479738 DOI: 10.1002/smll.202407860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Developing economical and efficient electrocatalysts is critical for hydrogen energy industrialization through water electrolysis. Herein, a novel dual-site synergistic NiFe/Y2O3 hybrid with abundant interfacial Ni/Fe─O─Y bonds is designed by density functional theory (DFT) simulations. In situ Raman spectra combined with DFT calculations reveal that the interfacial Ni/Fe─O─Y units greatly promote H2O dissociation and optimize the adsorption of both H* and oxygen species, achieving excellent activity and durability for hydrogen evolution reaction. As expected, NiFe/Y2O3 exhibits a low overpotential of 27 mV at 10 mA cm-2 and robust stability of over 200 h at 1000 mA cm-2, and also outstanding water splitting performance with a low cell voltage of 1.64 V at 100 mA cm-2, showing significant potential for real-world applications.
Collapse
Affiliation(s)
- Zhen Xin Hui
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hui Li
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhi Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Guo Yong Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
3
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
4
|
Siddique AB, Shaheen MA, Abbas A, Zaman Y, Bratty MA, Najmi A, Hanbashi A, Mustaqeem M, Alhazmi HA, Rehman ZU, Zoghebi K, Amin HM. Thermodynamic and kinetic insights into azo dyes photocatalytic degradation on biogenically synthesized ZnO nanoparticles and their antibacterial potential. Heliyon 2024; 10:e40679. [PMID: 39717568 PMCID: PMC11665338 DOI: 10.1016/j.heliyon.2024.e40679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs. These biogenic ZnO NPs were characterized by UV-Vis and Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM) coupled with energy-dispersive X-ray (EDX), dynamic light scattering (DLS) and Zeta potential (ZP) analysis. The characteristic bandgap energy (3.02 eV), crystallite size (18.6 nm), particle size (84 nm), hydrodynamic diameter (101 nm) and ZP (-31.5 mV) all indicated the successful synthesis of the stabilized NPs, which have an absorption edge at 373 nm. Based on the responsive energy band gap to visible light, these NPs demonstrated promising photocatalytic activity for the degradation of toxic dyes with efficiencies of 82.2 and 87.5 % for of methylene blue (MB) and methyl orange (MO), respectively, in only 2 h of sunlight exposure. To evaluate the reaction kinetics and thermodynamic parameters including the activation energy and rate constant, the degradation process was conducted at various temperatures. The effect of temperature showed the highest rate constant values of 0.022 and 0.025 min-1 at 90 °C, and activation energies of 4.1 and 3.8 kJ mol-1 for MO and MB, respectively. A possible degradation mechanism was proposed based on results of the radical scavenging experiments. The photocatalyst showed recyclability for five consecutive cycles with a simple regeneration. CMFE@ZnO NPs have also exhibited great antibacterial potential by inhibiting the growth of Gram-positive (S. aureus (13 mm) and B. subtilis (14 mm)) and Gram-negative (E. coli (17 mm) and P. multosida (15 mm)) bacterial strains. As a result, these CMFE@NPs may have great commercial importance in reducing the concentration of azo dyes and drug-resistant bacteria in textile and pharmaceutical industry effluents.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad A. Shaheen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
- Department of Chemistry, Superior University, Sargodha Campus, Sargodha, 40100, Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
- Department of Chemistry, Government Ambala Muslim College, Sargodha, 40100, Pakistan
| | - Yasir Zaman
- Department of Physics, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mohammed A. Bratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
| | - Ali Hanbashi
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
| | - Muhammad Mustaqeem
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
- Health Research Center, Jazan University, Jazan, 82912, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
- Health Research Center, Jazan University, Jazan, 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 82912, Saudi Arabia
| | - Hatem M.A. Amin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
5
|
Das S, Paramanik S, Nair RG, Chowdhury A. Rational Design of Mesoporous ZnFe 2O 4@g-C 3N 4 Heterojunctions for Environmental Remediation and Hydrogen Evolution. Chemistry 2024; 30:e202402512. [PMID: 39146044 DOI: 10.1002/chem.202402512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Mesoporous catalysts with a high specific surface area, accessible pore structures, and appropriate band edges are desirable for optimal charge transfer across the interfaces, suppress electron-hole recombination, and promote redox reactions at the active sites. The present study demonstrates the rational design of mesoporous ZnFe2O4@g-C3N4 magnetic nanocomposites (MNCs) with different pore sizes and pore volumes following a combination of facile thermal itching and thermal impregnation methods. The MNCs preserve the structural, morphological, and physical attributes of their counterparts while ensuring their effectiveness and superior catalytic capabilities. The morphological analysis confirms the successful grafting and confinement of ZnFe2O4 nanoparticles with the polymeric g-C3N4 nanosheets to form heterojunctions with numerous interfaces. The MNCs possess uniformly distributed small mesopores (pore size <4 nm), ample active sites, and a high specific surface area of 62.50 m2/g. The mesoporous ZnFe2O4@g-C3N4 notably improve hydrogen evolution rate and methylene blue dye degradation. The optimal loading weight of ZnFe2O4 is 20 %, in which the MNCs display the highest hydrogen evolution rate of 1752 μmol g-1 h-1 and photo-Fenton dye degradation rate constants of 0.147 min-1, upon solar-light illumination. Furthermore, the photocatalysts demonstrate recyclability over five consecutive cycles, confirming their stability, while easy separation using a simple magnet underscores practical utility.
Collapse
Affiliation(s)
- Suma Das
- Solar Energy Materials Research and Testing Laboratory (SMaRT Lab), Department of Physics, National Institute of Technology Silchar, Assam, 788010, India
| | - Swapnamoy Paramanik
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Ranjith G Nair
- Solar Energy Materials Research and Testing Laboratory (SMaRT Lab), Department of Physics, National Institute of Technology Silchar, Assam, 788010, India
| | - Avijit Chowdhury
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
6
|
Li Y, Qu C, Ye Q, Meng F, Yang D, Wang L. Enhanced tetracycline degradation by novel Mn-FeOOH/CNNS photocatalysts in a visible-light-driven photocatalysis coupled peroxydisulfate system. ENVIRONMENTAL RESEARCH 2024; 257:119293. [PMID: 38838749 DOI: 10.1016/j.envres.2024.119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, photocatalysis combined peroxydisulfate activation under visible light (PC-PDS/Vis) was developed as a promising technology for removing antibiotics in water. Herein, Mn doped FeOOH (Mn-FeOOH) nanoclusters were grown in-situ on the surface of graphitic carbon nitride nanosheets (CNNS) using a wet chemical method, which served as a visible-light-driven photocatalyst for peroxydisulfate (PDS) activation. Photovoltaic property characterizations revealed that Mn-FeOOH/CNNS owned superior light capture ability and carrier separation efficiency. According to DFT calculations, the synergistic effect between Mn and Fe species was proved to enhance the adsorption and activation of PDS. 99.7% of tetracycline (TC) was rapidly removed in 50 min in the PC-PDS/Vis system. In addition, Mn-FeOOH/CNNS exhibited high recycling stability with low iron leaching, attributed to the interaction between Mn-FeOOH clusters and carbon species. Quenching experiments and electron spin resonance (ESR) tests unveiled that •O2- played a significant role in TC removal, while •OH and SO4•- acted as additional roles contributing to the overall process. These findings given a new strategy for antibiotics degradation by photocatalysis, offering deeper insights for the advancement of sustainable and cutting-edge wastewater treatment technologies.
Collapse
Affiliation(s)
- Yongqi Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chao Qu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fanwei Meng
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Decai Yang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lanyang Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Xia Z, Wang L, Tan W, Yuan L, He X, Wang J, Chen L, Zeng S, Lu S, Jiao Z. Visible-Light Photocatalytic Degradation Efficiency of Tetracycline and Rhodamine B Using a Double Z-Scheme Heterojunction Catalyst of UiO-66-NH 2/BiOCl/Bi 2S 3. Inorg Chem 2024; 63:14578-14590. [PMID: 39028930 DOI: 10.1021/acs.inorgchem.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
BiOCl is a promising photocatalyst, but due to its weak visible light absorption capacity and low photogenerated electron-hole pair separation rate, its practical application is limited to a certain extent. In this study, a novel double Z-scheme heterojunction UiO-66-NH2/BiOCl/Bi2S3 catalyst was constructed to broaden the visible light response range and promote high photogenerated hole-electron separation of BiOCl. Its photocatalytic performance is evaluated by dissociating tetracycline (TC) and rhodamine B (RhB) in visible light. The optimal proportion of UiO-66-NH2/BiOCl/Bi2S3 hybrids exhibits the best degradation efficiency of visible light illumination (∼93% in 120 min for TC and ∼98% in 60 min for RhB). The synergistic effect of a large visible light response range and the Z-scheme charge transfer mechanism ensure the excellent visible photocatalytic activity of UiO-66-NH2/BiOCl/Bi2S3. It is proven that h+ and •O2- are the main active substances in the photocatalysis process by active substance capture experiments and electron spin resonance tests. The intermediates and degradation processes are analyzed by high-performance liquid chromatography-mass spectrometry. This study proves that the new UiO-66-NH2/BiOCl/Bi2S3 photocatalyst has great application potential in the field of water pollution degradation and will provide a new idea for the optimization of BiOCl.
Collapse
Affiliation(s)
- Zijie Xia
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenqi Tan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Linying Yuan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Xinhua He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Juan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shigang Lu
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, P. R. China
| |
Collapse
|
8
|
He X, Guo X, Xia Z, Wang L, Jiao Z. Unlocking enhanced photocatalytic power: Donor-acceptor synergy in non-metallic g-C 3N 4 hollow nanospheres. CHEMOSPHERE 2024; 361:142522. [PMID: 38838869 DOI: 10.1016/j.chemosphere.2024.142522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Selecting safe, non-toxic, and non-metallic semiconductor materials that facilitate the degradation of pollutants in water stands out as an optimal approach to combat environmental pollution. Herein, graphitic carbon nitride (g-C3N4)-based hollow nanospheres nonmetallic photocatalyst modified with covalent organic framework materials named TpMA, based on 1, 3, 5-trimethylchloroglucuronide (Tp) and melamine (MA), was successfully synthesized (abbreviated as CNTP). The ordered electron donor-acceptor structure inherent in TpMA contributed to enhancing the transport efficiency of photogenerated carriers in CNTP. The CNTP photocatalysts exhibited excellent performance in degrading rhodamine B and tetracycline in visible light, with optimal degradation rates reached more than 90% in 60 and 80 min, respectively, which were 5.3 and 3.0 times higher than those of pure CNNS. The increased photocatalytic efficiency observed in CNTP composites could be traced back to the covalently connection between the two molecules, forming a π-conjugated system that facilitated the separative efficiency of photogenerated electron-hole pairs and intensified the utilization of visible light. This study provided a new means to design and fabricate highly efficient and environmentally friendly non-metallic photocatalytic materials.
Collapse
Affiliation(s)
- Xinhua He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai, 200444, PR China
| | - Xiandi Guo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zijie Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai, 200444, PR China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai, 200444, PR China.
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, PR China.
| |
Collapse
|
9
|
Ding Y, Yang G, Zheng S, Gao X, Xiang Z, Gao M, Wang C, Liu M, Zhong J. Advanced photocatalytic disinfection mechanisms and their challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121875. [PMID: 39018863 DOI: 10.1016/j.jenvman.2024.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.
Collapse
Affiliation(s)
- Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Sirui Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xing Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhuomin Xiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mengyang Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunhua Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 99077, China
| | - Meijiao Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|
10
|
Herzog AE, Michael TJ, Dunkelberger AD, Johannes MD, Rolison DR, DeSario PA, Novak TG. Nanostructured CeO 2 photocatalysts: optimizing surface chemistry, morphology, and visible-light absorption. NANOSCALE 2024; 16:9659-9679. [PMID: 38683667 DOI: 10.1039/d4nr00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Emerging photocatalytic applications of cerium dioxide (CeO2) include green hydrogen production, CO2 conversion to fuels, and environmental remediation of various toxic molecules. These applications leverage the oxygen storage capacity and tunable surface chemistry of CeO2 to photocatalyze the chosen reaction, but many open questions remain regarding the fundamental physics of photocatalysis over CeO2. The commonly ascribed 'bandgap' of CeO2 (∼3.1 eV) differs fundamentally from other photocatalytic oxides such as TiO2; UV light excites an electron from the CeO2 valence band into a 4f state, generating a polaron as the lattice distorts around the localized charge. Researchers often disregard the distinction between the 4f state and a traditional, delocalized conduction band, resulting in ambiguity regarding mechanisms of charge transfer and visible-light absorption. This review summarizes modern literature regarding CeO2 photocatalysis and discusses commonly reported photocatalytic reactions and visible light-sensitization strategies. We detail the often misunderstood fundamental physics of CeO2 photocatalysis and supplement previous work with original computational insights. The exceptional progress and remaining challenges of CeO2-based photocatalysts are highlighted, along with suggestions for further research directions based on the observed gaps in current understanding.
Collapse
Affiliation(s)
- Austin E Herzog
- NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Tara J Michael
- NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Adam D Dunkelberger
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| | - Michelle D Johannes
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Debra R Rolison
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| | - Paul A DeSario
- Former NRL Staff Scientist in Code 6100, Advanced Naval Platforms Division, Office of Naval Research, Arlington, VA, 22203, USA
| | - Travis G Novak
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| |
Collapse
|
11
|
Keshu, Rani M, Shanker U. Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane. Int J Biol Macromol 2024; 268:131535. [PMID: 38631586 DOI: 10.1016/j.ijbiomac.2024.131535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Herein, efficient degradation of hexabromocyclododecane (HBCD) and Lindane, a persistent organic pollutant using guar gum based calcium oxide doped silicon dioxide (GG-CaO@SiO2) has been reported. The nanocomposite was prepared by waste egg shell (CaO) and rice husk (SiO2) was well characterized. The maximum degradation of HBCD and Lindane were observed at 8 mg catalyst loading, neutral pH, and 2 mg L-1 of pollutant amount. The photocatalytic performance of GG-CaO@SiO2 for HBCD and Lindane photodegradation was evaluated, and it was found that the rate constant increased in the order of GG-CaO@SiO2 > CaO@SiO2 > GG. The polymeric GG-CaO@SiO2 nanocomposite showed maximum removal of both pollutants due to higher surface area (70 m2 g-1) and synergistic interactions among GG moieties. It achieved HBCD and Lindane elimination rates of 94 % and 90 % by photo-adsorptive degradation within 150 min. Meanwhile, the leaching of HBCD from expanded polystyrene (EPS) materials (0.14 ± 0.05 ppm) underwater with different time intervals and degradation of leachate HBCD were also assessed. The eradication of the pollutant manifested first-order kinetics, with the Langmuir adsorption. LC-MS analysis confirmed that GG-CaO@SiO2 effectively breaks down complex structure toxic pollutants into safer metabolites under natural sunlight exposure. The polymeric GG-CaO@SiO2 nanocomposite showed notable reusability up to ten cycle promotes sustainability.
Collapse
Affiliation(s)
- Keshu
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar 144008, Punjab, India; Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Manviri Rani
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar 144008, Punjab, India.
| | - Uma Shanker
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
12
|
Kataria N, Garg VK, Kumar P, Han C, Anastopoulos I, Kumar S. Carbon-based nanomaterials: systematic enumeration and proficient template for detection and remediation of hazardous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124829-124831. [PMID: 38012487 DOI: 10.1007/s11356-023-30989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Affiliation(s)
- Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India.
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
| | - Changseok Han
- Department of Environmental Engineering, College of Engineering, INHA University, Incheon, South Korea
| | | | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
| |
Collapse
|
13
|
Quang HHP, Dinh DA, Dutta V, Chauhan A, Lahiri SK, Gopalakrishnan C, Radhakrishnan A, Batoo KM, Thi LAP. Current approaches, and challenges on identification, remediation and potential risks of emerging plastic contaminants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104193. [PMID: 37348772 DOI: 10.1016/j.etap.2023.104193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system. Geographical distribution, migration patterns, etymologies of formation, and ecological ramifications of absorption are just a few topics covered in the scientific literature on environmental issues. Degradable solutions from material science and chemistry are needed to address the micro/nanoplastics problem, primarily to reduce the production of these pollutants and their potential effects. Removing micro/nanoplastics from their discharge points has been a central and effective way to mitigate the adverse pollution effects. In this review, we begin by discussing the hazardous effect on living beings and the identification-characterization of micro/nanoplastics. Then, we provide a summary of the existing degradation strategies, which include bio-degradation and advanced oxidation processes (AOPs), and a detailed discussion of their degradation mechanisms is also represented. Finally, a persuasive summary of the evaluated work and projections for the future of this topic is provided.
Collapse
Affiliation(s)
- Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Duc Anh Dinh
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab.
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, 5 King's College Road, University of Toronto, Canada
| | - C Gopalakrishnan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Tamil Nadu, 603203, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam; Center for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam.
| |
Collapse
|
14
|
Ücker CL, Almeida SR, Maron GK, Carreno NLV, Morisso FDP, da Silva Cava S, Raubach CW. Using rice husk ash as a SiO 2 source in the preparation of SiO 2/Nb 2O 5 and SiO 2/ZnS heterostructures for photocatalytic application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68477-68488. [PMID: 37126169 DOI: 10.1007/s11356-023-27240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
This work presents the synthesis of SiO2/Nb2O5 and SiO2/ZnS heterostructures using the microwave-assisted hydrothermal (MAH) method, which is fast and has low temperature. The silica used in the synthesis was obtained by burning the rice husk without any pre- or post-treatments. The obtained samples were characterized using various techniques such as X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and UV-visible. The obtained silica was found to be amorphous, and the materials used for modification showed characteristic of the type of synthesis used. SEM images showed that Nb2O5 and ZnS interacted with the SiO2 surface, filling the voids. In the photocatalytic process, the heterostructures showed enhanced decolorization efficiency for dyes such as rhodamine B (RhB) and methylene blue (MB) compared to SiO2. For RhB, the silica decolorized approximately 24%, and for MB, it discolored approximately 27%; SiO2/Nb2O5 showed 91.24% decolorization efficiency for RhB and 72.77% MB, while SiO2/ZnS showed approximately 96% for RhB and 100% for MB. All samples were tested under the same conditions. This demonstrates that the use of rice husk residue not only improves the photocatalytic activity of heterostructures but also promotes the utilization of improperly discarded residues.
Collapse
Affiliation(s)
- Cátia Liane Ücker
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil.
| | - Suelen Rodrigues Almeida
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Guilherme Kurz Maron
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Fernando Dal Pont Morisso
- Postgraduate in Materials Technology and Industrial Processes, Universidade Feevale, Novo Hamburgo, RS, 93525-075, Brazil
| | - Sergio da Silva Cava
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Cristiane Wienke Raubach
- Graduate Program in Science and Materials Engineering, Technological Development Center, Federal University of Pelotas, Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| |
Collapse
|