1
|
Salehi F, Kavoosi G, Jacobs PJ, Bennett NC, Ahmadian S, Bastani B, Gholami M. The road to a long lifespan in the Persian squirrel, a natural model for extended longevity: resisting free radical stress and healthy phospholipids. GeroScience 2025:10.1007/s11357-025-01668-9. [PMID: 40304955 DOI: 10.1007/s11357-025-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Longevity is influenced by various factors, including fatty acid composition and free radical stress, which relate to the membrane pacemaker and rate of living hypotheses. While these aspects are well-documented in some long-lived species, they remain largely unexplored in tree squirrels. This study aimed to compare oxidative stress, antioxidant activity, nitrosative stress, and lipid composition between the long-lived Persian squirrel (Sciurus anomalus) and the short-lived Wistar rat across age cohorts (younger and older). Tissue homogenates from skin, liver, skeletal muscle, spleen, lung, and kidney were analysed for lipid composition (monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), arachidonic to linoleic acid ratio, peroxidation index, and unsaturation index. Oxidative, nitrosative, and antioxidant markers were assessed, including NADPH oxidase, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase (GST), nitric oxide synthase, superoxide, hydrogen peroxide, nitric oxide, malondialdehyde, 4-hydroxynonenal, and total antioxidant capacity (TAC). Squirrels demonstrated higher GST activity, lower free radical stress, lower PUFA, and higher MUFA compared to rats. Antioxidant activities, except for TAC were negatively correlated with longevity. Older squirrels exhibited similar oxidative, nitrosative, and antioxidant profiles to younger squirrels, whereas younger rats displayed highly susceptible fatty acids, similar to older rats. The Persian squirrel's longevity appears closely linked to fatty acid composition and free radical resistance, likely due to increased GST activity. We propose GST's multifunctional role in reducing inflammation, enhancing immune response, providing disease resistance, and antioxidant activity contributes significantly to the longevity of the Persian squirrel.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | | | - Paul J Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| | - Babak Bastani
- Bureau of Wildlife Management and Conservation, Deputy of Natural Environment and Biodiversity, Department of Environment, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yamada K, Ito M, Nunomura H, Nishigori T, Furuta A, Yoshida M, Yamaki A, Nakamura T, Iwase A, Shima T, Nakashima A. Rubicon, a Key Molecule for Oxidative Stress-Mediated DNA Damage, in Ovarian Granulosa Cells. Antioxidants (Basel) 2025; 14:470. [PMID: 40298803 PMCID: PMC12024310 DOI: 10.3390/antiox14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Aging drives excessive ovarian oxidative stress (OS), impairing fertility and affecting granulosa cells (GCs), which are involved in folliculogenesis. This study aims to clarify the relationship between OS and autophagy in GCs and to identify compounds that enhance OS resistance. We identified Rubicon, an autophagy suppressor, as a key mediator of DNA damage in GCs under OS. Hydrogen peroxide (H2O2) compromised cell viability via DNA damage in the human GC cell line, HGrC1, without affecting autophagic activity. However, autophagy activation increased OS resistance in HGrC1 cells, and vice versa. Among clinically safe materials, trehalose, a disaccharide, protected cells as an autophagy activator against H2O2-induced cytotoxicity. Trehalose significantly increased autophagic activity, accompanied by reduced Rubicon expression, compared to other carbohydrates. It also reduced the expression of DNA damage-responsive proteins and the production of reactive oxygen species. Rubicon knockdown mitigated OS-induced DNA damage, while Rubicon overexpression enhanced DNA damage and decreased HGrC1 cell viability. Trehalose enhanced OS resistance by activating autophagy and suppressing Rubicon in a bidirectional manner. As Rubicon expression increases in aged human ovaries, trehalose may improve ovarian function in patients with infertility and other OS-related diseases.
Collapse
Affiliation(s)
- Kiyotaka Yamada
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Masami Ito
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Haruka Nunomura
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Takashi Nishigori
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Mihoko Yoshida
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Akemi Yamaki
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-Ward, Nagoya 466-8550, Japan;
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (K.Y.); (M.I.); (H.N.); (T.N.); (A.F.); (M.Y.); (A.Y.); (T.S.)
| |
Collapse
|
3
|
Kervella M, Bertile F, Bouillaud F, Criscuolo F. The cell origin of reactive oxygen species and its implication for evolutionary trade-offs. Open Biol 2025; 15:240312. [PMID: 40237040 PMCID: PMC12001088 DOI: 10.1098/rsob.240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 02/09/2025] [Indexed: 04/17/2025] Open
Abstract
The allocation of resources in animals is shaped by adaptive trade-offs aimed at maximizing fitness. At the heart of these trade-offs, lies metabolism and the conversion of food resources into energy, a process mostly occurring in mitochondria. Yet, the conversion of nutrients to utilizable energy molecules (adenosine triphosphate) inevitably leads to the by-production of reactive oxygen species (ROS) that may cause damage to important biomolecules such as proteins or lipids. The 'ROS theory of ageing' has thus proposed that the relationship between lifespan and metabolic rate may be mediated by ROS production. However, the relationship is not as straightforward as it may seem: not only are mitochondrial ROS crucial for various cellular functions, but mitochondria are also actually equipped with antioxidant systems, and many extra-mitochondrial sources also produce ROS. In this review, we discuss how viewing the mitochondrion as a regulator of cellular oxidative homeostasis, not merely a ROS producer, may provide new insights into the role of oxidative stress in the reproduction-survival trade-off. We suggest several avenues to test how mitochondrial oxidative buffering capacity might complement current bioenergetic and evolutionary studies.
Collapse
|
4
|
Islam MT, Das SK, Nahim MAM, Karim MR, Kundu R, Khan MAR, Rahman S, Al-Gawati M, Alodhayb AN, Ahsan HM. A highly selective colorimetric sensor of mercury(ii) ions and hydrogen peroxide by biosynthesized silver nanoparticles in water and investigations of the interaction between silver and mercury. RSC Adv 2025; 15:10074-10084. [PMID: 40176822 PMCID: PMC11962719 DOI: 10.1039/d5ra01733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Silver nanoparticles (AgNPs) are promising for their exceptional properties for various applications. This study applied a facile and green method to synthesize AgNPs in an aqueous medium using Averrhoa bilimbi fruit extract as a reducing and stabilizing agent. The formation of AgNPs was confirmed by using UV-visible spectroscopy, X-ray diffraction pattern (XRD), and High-resolution transmission electron microscopy (HRTEM). The synthesized AgNPs consist of face-centered cubic crystals and exhibit homogeneous spherical morphology with an average size of 11 nm. Heavy metals like mercury contamination in water and food pose global health risks, leading to disability issues, even at trace levels. Beside, H2O2 is a reactive oxygen species. Thus, elevated H2O2 levels can harm cell membranes, proteins, and DNA in aquatic creatures, resulting in oxidative stress that may affect physiological processes. Therefore, there is an urgent need for effective monitoring and prevention. The synthesized AgNPs were utilized as a colorimetric probe for the detection of mercury (Hg2+) ions in water at room temperature and found to be highly sensitive and selective with a limit of detection (LOD) of 1.58 μM and a limit of quantification (LOQ) of 5.27 μM. Furthermore, the detection of Hg2+ was unaffected in the presence of other pertinent metal ions. The prepared AgNPs probe can also enable detection of Hg2+ with the naked eye. In addition, the AgNPs probe was investigated for detecting Hg2+ ions in real water samples, which offered satisfying recovery rates ranging from 90.60 ± 2.60 to 96.73 ± 2.83%, confirming the probe's practicability. The capping agent stabilized on the surface of AgNPs can effectively pre-concentrate Hg2+ ions through the chemical interaction between AgNPs and Hg2+ ions to form Ag-Hg amalgam. This leads to a decrease in the SPR peak from AgNPs. The interaction between Ag and Hg was investigated using synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS). In addition, the AgNPs probe effectively detected hydrogen peroxide (H2O2) in an aqueous medium with a LOD of 3.21 μM and LOQ of 10.70 μM. This study aimed to develop a rapid, easy-to-use, eco-friendly, and reliable colorimetric sensor that may quickly identify dangerous pollutants in aqueous samples.
Collapse
Affiliation(s)
| | | | | | - Md Rabiul Karim
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Rumpa Kundu
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University Sendai Japan
| | - Md Abu Rayhan Khan
- Department of Chemistry, Mississippi State University 310 President Cir Mississippi State USA
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Mahmoud Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Abdullah N Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Habib Md Ahsan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| |
Collapse
|
5
|
Beam TC, Bright M, Pearson AC, Dua I, Smith M, Dutta AK, Bhadra SC, Salman S, Strickler CN, Anderson CE, Peshkin L, Yampolsky LY. Short lifespan is one's fate, long lifespan is one's achievement: lessons from Daphnia. GeroScience 2024; 46:6361-6381. [PMID: 38900345 PMCID: PMC11493910 DOI: 10.1007/s11357-024-01244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Studies of longevity rely on baseline life expectancy of reference genotypes measured in standardized conditions. Variation among labs, protocols, and genotypes makes longevity intervention studies difficult to compare. Furthermore, extending lifespan under suboptimal conditions or that of a short-lived genotype may be of a lesser theoretical and translational value than extending the maximal possible lifespan. Daphnia is becoming a model organism of choice for longevity research complementing data obtained on traditional models. In this study, we report longevity of several genotypes of a long-lived species D. magna under a variety of protocols, aiming to document the highest lifespan, factors reducing it, and parameters that change with age and correlate with longevity. Combining longevity data from 25 experiments across two labs, we report a strong intraspecific variation, moderate effects of group size and medium composition, and strong genotype-by-environment interactions with respect to food level. Specifically, short-lived genotypes show no caloric restriction (CR) effect, while long-lived ones expand their lifespan even further under CR. We find that the CR non-responsive clones show little correlation between longevity and two measures of lipid peroxidation. In contrast, the long-lived, CR-responsive clones show a positive correlation between longevity and lipid hydroperoxide abundance, and a negative correlation with MDA concentration. This indicates differences among genotypes in age-related accumulation and detoxification of LPO products and their effects on longevity. Our observations support the hypothesis that a long lifespan can be affected by CR and levels of oxidative damage, while genetically determined short lifespan remains short regardless.
Collapse
Affiliation(s)
- Thomas C Beam
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Mchale Bright
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Amelia C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Meridith Smith
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Ashit K Dutta
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Shymal C Bhadra
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Saad Salman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Caleb N Strickler
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Cora E Anderson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA.
| |
Collapse
|
6
|
Jacobs PJ, Vos S, Bishop CE, Hart DW, Bennett NC, Waterman JM. Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction. Antioxidants (Basel) 2024; 13:1401. [PMID: 39594543 PMCID: PMC11591065 DOI: 10.3390/antiox13111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African ground squirrel species with a high reproductive skew and unique life history strategies. We measured oxidative stress as total antioxidant capacity (TAC), total oxidant status (TOS), and an oxidative stress index (OSI) in blood plasma from individuals of approximately known ages. Our results reveal a distinct pattern of decreasing oxidative stress with age, consistent across both sexes. Females exhibited lower OSI and TOS levels than males. Males employing different life-history strategies, namely natal (staying at home), had significantly lower oxidative stress compared to the band (roaming male groups), likely due to variations in metabolic rate, activity, and feeding rates. However, both strategies exhibited reduced oxidative stress with age, though the underlying mechanisms require further investigation. We propose that selection pressures favoring survival contributed to the observed reduction in oxidative stress with age, potentially maximizing lifetime reproductive success in this species.
Collapse
Affiliation(s)
- Paul Juan Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Sjoerd Vos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| | - Chelsea E. Bishop
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Jane M. Waterman
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| |
Collapse
|
7
|
Pithan JB, Rinehart JP, Greenlee KJ, López-Martínez G. Effects of age on oxidative stress and locomotion in the pollinator, Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104666. [PMID: 38969333 DOI: 10.1016/j.jinsphys.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
Despite numerous aging studies, the relationship between oxidative stress, aging, and decline in functions such as locomotion is still debated. Insects offer a promising model for analyzing the relationship between oxidative stress and aging, because they exhibit vast differences in lifespan that may be affected by the environment, social factors, levels of activity, and aging interventions. In this study, we explore the effects of aging on oxidative stress and locomotion using the pollinator, Megachile rotundata, a species that is very mobile and active in the adult stage. Across the adult lifespan of M. rotundata, we assessed changes in walking, flight, oxidative damage, and antioxidant defenses. Our results suggest that M. rotundata experience age-related declines in flight, but not walking. Additionally, we found that oxidative damage and antioxidant capacity initially increase with age and physical activity, but then levels are maintained. Overall, these data show that M. rotundata, like some other organisms, may not perfectly follow the free radical theory of aging.
Collapse
|
8
|
Tijerina A, Fonseca D, Aguilera-González CJ, Heya MS, Martínez N, Sánchez N, Bouzas C, Tur JA, Salas R. Plasma Antioxidant Capacity Is Related to Dietary Intake, Body Composition, and Stage of Reproductive Aging in Women. Antioxidants (Basel) 2024; 13:940. [PMID: 39199186 PMCID: PMC11351479 DOI: 10.3390/antiox13080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND women aging is a normal process of life; however, hormonal changes create an imbalance between prooxidants and antioxidants and could be measured as the antioxidant capability (AC) of an organism. OBJECTIVE to find the association between plasma AC levels, dietary intakes, and body composition in 18-64-year-old women living in the northeast of Mexico. METHODS A total of n = 514 women (18-64 years old) were grouped according to STRAW criteria as reproductive, menopausal transition, and postmenopausal. Anthropometrics, body mass index (BMI), weight-hip ratio (WHR), and weight-height ratio WHtR were determined, and percentage of body fat was analyzed by bioelectrical impedance. Dietary intake of macronutrients and vitamins A, E, and C were analyzed by a 3-day food recall. The AC status in plasma was analyzed by the ORACFL assay. RESULTS Plasma AC levels were higher in postmenopausal women (815 µmol TE/L), and menopausal transition women (806 µmol TE/L) than in reproductive women (633 µmol TE/L). BMI was overweight (>25 kg/m2) in all three groups. WHtR and WHR are above the healthy limit of 0.5 and 0.8, respectively for both menopausal transition and postmenopausal women. In reproductive women, negative relationships were calculated between plasma AC and age (Rho = -0.250, p = 0.007), BMI (Rho = -0.473, p < 0.001), WHtR (Rho = -0.563, p < 0.001), WHR (Rho = -0.499, p < 0.001), and % body fat (Rho = -0.396, p < 0.001). A negative association was determined between plasma AC and WHtR in reproductive women (B = -2.718, p = 0.026). No association resulted for those in menopausal transition, and a positive association was obtained between plasma AC and protein (B = 0.001, p = 0.024) and vitamin E (B = 0.003, p = 0.013) intakes in postmenopausal women. CONCLUSIONS the antioxidant capability (AC) in plasma was lower in reproductive women, and anthropometric parameters marking decreased physical fitness were associated with decreased AC.
Collapse
Affiliation(s)
- Alexandra Tijerina
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| | - Diego Fonseca
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| | | | - Michel Stéphane Heya
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| | - Nancy Martínez
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| | - Nydia Sánchez
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands–IUNICS, 07122 Palma de Mallorca, Spain
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands–IUNICS, 07122 Palma de Mallorca, Spain
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rogelio Salas
- Faculty of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 64460, Mexico (D.F.); (N.S.)
| |
Collapse
|
9
|
Matsuda Y, Makino T. Comparative genomics reveals convergent signals associated with the high metabolism and longevity in birds and bats. Proc Biol Sci 2024; 291:20241068. [PMID: 39191281 DOI: 10.1098/rspb.2024.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Birds and bats have long lifespans relative to their body size compared with non-flying animals. However, the genomic basis associated with longer lifespan of flying species despite their higher metabolism was unclear. In this study, we hypothesized that genes involved in the regulation of metabolism and lifespan changed with the acquisition of flight and searched for genes that show specific evolutionary patterns in flying species. As a result, we identified several genes that show different evolutionary rates in bird and bat lineages. Genes in pathways involved in lifespan regulation were conserved in birds, while they evolved at an accelerated rate in bats. We also searched for genes in which convergent amino acid substitutions occurred in birds and bats and found such substitutions in genes involved in cancer, reactive oxygen species control and immunity. Our study revealed genomic changes associated with the acquisition of flight in birds and bats and suggested that multiple genes involved in the regulation of lifespan and metabolism support both high metabolism and longevity in flying species.
Collapse
Affiliation(s)
- Yuki Matsuda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho , Fuchu-shi, Tokyo 183-8509, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku , Sendai 980-8578, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku , Sendai 980-8578, Japan
| |
Collapse
|
10
|
Jagannathan NS, Koh JYP, Lee Y, Sobota RM, Irving AT, Wang LF, Itahana Y, Itahana K, Tucker-Kellogg L. Multi-omic analysis of bat versus human fibroblasts reveals altered central metabolism. eLife 2024; 13:e94007. [PMID: 39037770 PMCID: PMC11262796 DOI: 10.7554/elife.94007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024] Open
Abstract
Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.
Collapse
Affiliation(s)
- N Suhas Jagannathan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
| | - Javier Yu Peng Koh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Younghwan Lee
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Radoslaw Mikolaj Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and ResearchSingaporeSingapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang UniversityHainingChina
| | - Lin-fa Wang
- SingHealth Duke-NUS Global Health InstituteSingaporeSingapore
| | - Yoko Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Koji Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Lisa Tucker-Kellogg
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
11
|
McGrath AP, Horschler DJ, Hancock L. Feline Cognition and the Role of Nutrition: An Evolutionary Perspective and Historical Review. Animals (Basel) 2024; 14:1967. [PMID: 38998079 PMCID: PMC11240355 DOI: 10.3390/ani14131967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Research into cognition in cats and the impact of nutrition on cat cognitive health lags behind that in dogs but is receiving increased attention. In this review, we discuss the evolutionary history of the domesticated cat, describe possible drivers of domestication, and explore the interrelationships between nutrition and cat cognition. While most cat species are solitary, domesticated cats can live in social groups, engage in complex social encounters, and form strong attachments to humans. Researchers have recently started to study cat cognition using similar methods as those developed for dogs, with an initial primary focus on perception and social cognition. Similar to dogs, cats also show cognitive and behavioral changes associated with stress and aging, but these signs are often gradual and often considered a consequence of natural aging. Despite the fundamental role of nutrition in cognitive development, function, and maintenance, research into the association between nutrition and cognition in cats is only preliminary. Ultimately, additional research is needed to gain a full understanding of cat cognition and to explore the role of nutrition in the cognitive health of cats to help improve their welfare.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Oxidative stress plays a central role in cataract pathogenesis, a leading cause of global blindness. This review delves into the role of oxidative stress in cataract development and key biomarkers - glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) - to clarify their functions and potential applications in predictive diagnostics and therapies. RECENT FINDINGS Antioxidants serve as pivotal markers in cataract pathogenesis. GSH affects the central lens due to factors such as enzyme depletion and altered connexin expression, impairing GSH diffusion. Age-related oxidative stress may hinder GSH transport via connexin channels or an internal microcirculation system. N-acetylcysteine, a GSH precursor, shows promise in mitigating lens opacity when applied topically. Additionally, SOD, particularly SOD1, correlates with increased cataract development and gel formulations have exhibited protective effects against posterior subscapular cataracts. Lastly, markers of lipid peroxidation, MDA and 4-HNE, have been shown to reflect disease severity. Studies suggest a potential link between 4-HNE and connexin channel modification, possibly contributing to reduced GSH levels. SUMMARY Oxidative stress is a significant contributor to cataract development, underscoring the importance of antioxidants in diagnosis and treatment. Notably, GSH depletion, SOD decline, and lipid peroxidation markers are pivotal factors in cataract pathogenesis, offering promising avenues for both diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Bryanna Lee
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | | | | |
Collapse
|
13
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
14
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
15
|
Lin Y, Lin C, Cao Y, Chen Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed Pharmacother 2023; 167:115594. [PMID: 37776641 DOI: 10.1016/j.biopha.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Natural antioxidants have recently emerged as a highly exciting and significant topic in anti-aging research. Diverse organism models present a viable protocol for future research. Notably, many breakthroughs on natural antioxidants have been achieved in the nematode Caenorhabditis elegans, an animal model frequently utilized for the study of aging research and anti-aging drugs in vivo. Due to the conservation of signaling pathways on oxidative stress resistance, lifespan regulation, and aging disease between C. elegans and multiple high-level organisms (humans), as well as the low and controllable cost of time and labor, it gradually develops into a trustworthy in vivo model for high-throughput screening and validation of natural antioxidants with anti-aging actions. First, information and models on free radicals and aging are presented in this review. We also describe indexes, detection methods, and molecular mechanisms for studying the in vivo antioxidant and anti-aging effects of natural antioxidants using C. elegans. It includes lifespan, physiological aging processes, oxidative stress levels, antioxidant enzyme activation, and anti-aging pathways. Furthermore, oxidative stress and healthspan improvement induced by natural antioxidants in humans and C. elegans are compared, to understand the potential and limitations of the screening model in preclinical studies. Finally, we emphasize that C. elegans is a useful model for exploring more natural antioxidant resources and uncovering the mechanisms underlying aging-related risk factors and diseases.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, Southern Medical University, Zhongshan 528400, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China; State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
16
|
Shen J, Liu Y, Teng X, Jin L, Feng L, Sun X, Zhao F, Huang B, Zhong J, Chen Y, Wang L. Spatial Transcriptomics of Aging Rat Ovaries Reveals Unexplored Cell Subpopulations with Reduced Antioxidative Defense. Gerontology 2023; 69:1315-1329. [PMID: 37717573 DOI: 10.1159/000533922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Ovarian aging is characterized by a gradual decline in quantity and quality of oocytes and lower chance of fertility. Better understanding the genetic modulation during ovarian aging can further address available treatment options for aging-related ovarian diseases and fertility preservation. METHODS A novel technique spatial transcriptomics (ST) was used to investigate the spatial transcriptome features of rat ovaries. Transcriptomes from ST spots in the young and aged ovaries were clustered using differentially expressed genes. These data were analyzed to determine the spatial organization of age-induced heterogeneity and potential mechanisms underlying ovarian aging. RESULTS In this study, ST technology was applied to profile the comprehensive spatial imaging in young and aged rat ovary. Fifteen ovarian cell clusters with distinct gene-expression signatures were identified. The gene expression dynamics of granulosa cell clusters revealed three sub-types with sequential developmental stages. Aged ovary showed a significant decrease in the number of granulosa cells from the antral follicle. Besides, a remarkable rearrangement of interstitial gland cells was detected in aging ovary. Further analysis of aging-associated transcriptional changes revealed that the disturbance of oxidative pathway was a crucial factor in ovarian aging. CONCLUSIONS This study firstly described an aging-related spatial transcriptome changes in ovary and identified the potential targets for prevention of ovarian aging. These data may provide the basis for further investigations of the diagnosis and treatment of aging-related ovarian disorders.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Yuanyuan Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyuan Teng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ligui Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liquan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Vintila AR, Slade L, Cooke M, Willis CRG, Torregrossa R, Rahman M, Anupom T, Vanapalli SA, Gaffney CJ, Gharahdaghi N, Szabo C, Szewczyk NJ, Whiteman M, Etheridge T. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216141120. [PMID: 37523525 PMCID: PMC10410709 DOI: 10.1073/pnas.2216141120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.
Collapse
Affiliation(s)
- Adriana Raluca Vintila
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Luke Slade
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Michael Cooke
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, BradfordBD7 1DP, United Kingdom
| | - Roberta Torregrossa
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX74909
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Christopher J. Gaffney
- Lancaster University Medical School, Lancaster University, LancasterLA1 4YW, United Kingdom
| | - Nima Gharahdaghi
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, FribourgCH-1700, Switzerland
| | - Nathaniel J. Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH45701
| | - Matthew Whiteman
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| |
Collapse
|
18
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
19
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
20
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
21
|
He H, Chen X, Miao D, Zhang H, Wang Y, He X, Chen X, Dai N. Composite Dietary Antioxidant Index and Plasma Levels of Soluble Klotho: Insights from NHANES. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3524611. [PMID: 36798687 PMCID: PMC9928515 DOI: 10.1155/2023/3524611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 02/10/2023]
Abstract
Objectives The association between dietary antioxidants and soluble Klotho (S-Klotho) levels remains unknown. We investigated to explore whether the composite dietary antioxidant index (CDAI) was associated with serum levels of S-Klotho in the middle-aged population. Methods Eligible participants were identified from the National Health and Nutrition Examination Surveys (NHANES) from 2007 until 2016. The CDAI was calculated from the intake of six dietary antioxidants. The serum levels of S-Klotho were measured via enzyme-linked immunosorbent assay (ELISA). Generalized linear and nonlinear models were established to analyze the relationship between CDAI and S-Klotho levels. Results Based on the S-Klotho quartiles, S-Klotho levels were higher in young women, Blacks, higher education, never smokers, lower waistlines, no medication use, and those with higher CDAI. Univariate analysis revealed that age, gender, race, smoking status, body mass index, waistline, and medication use were associated with serum levels of S-Klotho. When potential confounders were controlled, CDAI was significantly associated with S-Klotho levels. Subgroup analysis also revealed that this association remained significant in individuals who had the highest quartiles of CDAI, aged population (>60 years), male, and never smoker. A nonlinear relationship was observed between the CDAI and S-Klotho plasma concentrations. Conclusion CDAI was positively correlated with plasma levels of S-Klotho after controlling for covariates. Further studies are needed to validate the current findings and explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Huiqin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Da Miao
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Hongxia Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Yu Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xiaoli Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| |
Collapse
|
22
|
Vo KCT, Sato Y, Kawamura K. Improvement of oocyte quality through the SIRT signaling pathway. Reprod Med Biol 2023; 22:e12510. [PMID: 36845003 PMCID: PMC9949364 DOI: 10.1002/rmb2.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Background Oocyte quality is one of the major deciding factors in female fertility competence. Methods PubMed database was searched for reviews by using the following keyword "oocyte quality" AND "Sirtuins". The methodological quality of each literature review was assessed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement. Main Findings Oxidative stress has been recognized as the mechanism attenuating oocyte quality. Increasing evidence from animal experiments and clinical studies has confirmed the protective roles of the sirtuin family in improving oocyte quality via an antioxidant effect. Conclusion The protective roles in the oocyte quality of the sirtuin family have been increasingly recognized.
Collapse
Affiliation(s)
- Kim Cat Tuyen Vo
- Graduate School of MedicineInternational University of Health and Welfare School of MedicineNarita‐shiJapan
- Department of Obstetrics & GynaecologyUniversity of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Yorino Sato
- Graduate School of MedicineInternational University of Health and Welfare School of MedicineNarita‐shiJapan
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineBunkyokuJapan
| | - Kazuhiro Kawamura
- Graduate School of MedicineInternational University of Health and Welfare School of MedicineNarita‐shiJapan
- Department of Obstetrics and GynecologyJuntendo University Faculty of MedicineBunkyokuJapan
| |
Collapse
|
23
|
Jeske R, Chen X, Ma S, Zeng EZ, Driscoll T, Li Y. Bioreactor Expansion Reconfigures Metabolism and Extracellular Vesicle Biogenesis of Human Adipose-derived Stem Cells In Vitro. Biochem Eng J 2022; 188:108711. [PMID: 36540623 PMCID: PMC9762695 DOI: 10.1016/j.bej.2022.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human mesenchymal stem cells (hMSCs), including human adipose tissue-derived stem cells (hASCs), as well as the secreted extracellular vesicles (EVs), are promising therapeutics in treating inflammatory and neural degenerative diseases. However, prolonged expansion can lead to cellular senescence characterized by a gradual loss of self-renewal ability while altering secretome composition and EV generation. Additionally, hMSCs are highly sensitive to biophysical microenvironment in bioreactor systems utilized in scaling production. In this study, hASCs grown on Plastic Plus or Synthemax II microcarriers in a spinner flask bioreactor (SFB) system were compared to traditional 2D culture. The SFB microenvironment was found to increase the expression of genes associated with hASC stemness, nicotinamide adenine dinucleotide (NAD+) metabolism, glycolysis, and the pentose phosphate pathway as well as alter cytokine secretion (e.g., PGE2 and CXCL10). Elevated reactive oxidative species levels in hASCs of SFB culture were observed without increasing rates of cellular senescence. Expression levels of Sirtuins responsible for preventing cellular senescence through anti-oxidant and DNA repair mechanisms were also elevated in SFB cultures. In particular, the EV biogenesis genes were significantly upregulated (3-10 fold) and the EV production increased 40% per cell in SFB cultures of hASCs. This study provides advanced understanding of hASC sensitivity to the bioreactor microenvironment for EV production and bio-manufacturing towards the applications in treating inflammatory and neural degenerative diseases.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Eric Z Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| |
Collapse
|
24
|
Trigo D, Vitória JJ, da Cruz e Silva OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res 2022; 18:991-995. [PMID: 36254979 PMCID: PMC9827793 DOI: 10.4103/1673-5374.355750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors (such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer's disease and Parkinson's disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Correspondence to: Diogo Trigo, .
| | - José João Vitória
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
The Use of Cryotherapy in Cosmetology and the Influence of Cryogenic Temperatures on Selected Skin Parameters—A Review of the Literature. COSMETICS 2022. [DOI: 10.3390/cosmetics9050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cryotherapy is becoming an increasingly popular method used in medicine, physiotherapy, and cosmetology. It is used in the form of whole-body cryotherapy (WBC) and local cryotherapy. It is a tool for achieving analgesic and anti-inflammatory effects. Since the beginning of its use, its influence on the mental state has also been pointed out. The aim of this study was to analyze the available literature on the effect of cryogenic temperatures on the skin and the mechanisms induced by such a stimulus and its influence on well-being. A literature search of keywords or phrases was performed in PubMed®. Various effects of WBC on skin characteristics (hydration, pH, level of transepidermal water loss), mechanisms of anti-inflammatory effects, and effects on adipocytes were shown. Research on the impact of individual skin characteristics is not consistent. Positive effects on the reduction of inflammation and oxidative stress have been noted. Cryotherapy is also successfully used in dermatology to treat lentil spots, actinic keratosis, and ingrown toenails, remove viral warts, or relieve itching in atopic dermatitis. The results of the review also indicate the effectiveness of WBC as an adjunctive treatment for obesity. The number of papers available on the direct effects of WBC on the skin is still limited, despite the fact that it represents the first contact of the human body with cryogenic temperatures. Available data show that cold as a physical stimulus can be a safe and useful tool in cosmetology.
Collapse
|
26
|
Naked mole-rats resist the accumulation of hypoxia-induced oxidative damage. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111282. [PMID: 35907588 DOI: 10.1016/j.cbpa.2022.111282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Naked mole-rats are among the few mammals with the ability to endure severe hypoxia. These unique rodents use metabolic rate depression along with various molecular mechanisms to successfully overcome the challenges of oxygen-limitation, which they experience in their underground borrows. While studies have reported that naked mole-rats exhibit inherently higher levels of oxidative damage across their lifespan as compared to mice, it has yet to be determined whether naked mole-rats are vulnerable to oxidative damage during periods of low oxygen exposure. To investigate this phenomenon, we examined cellular oxidative damage markers of macromolecules: DNA oxidation determined as 8-oxo-2'deoxyguanosine (8-OHdG8) levels, RNA oxidation as 8-hydroxyguanosine (8-OHG), protein carbonylation, and lipid peroxidation in normoxic (control), acute (4 h at 7% O2), and chronic (24 h at 7% O2) hypoxia-exposed naked mole-rats. Brain appears to be the most resilient organ to hypoxia-induced oxidative damage, with both brain and heart exhibiting enhanced antioxidant capacity during hypoxia. Levels of DNA and RNA oxidation were minimally changed in all tissues and no changes were observed in protein carbonylation. Most tissues experienced lipid peroxidation, with liver displaying a 9.6-fold increase during hypoxia. Concomitantly, levels of DNA damage repair proteins were dynamically regulated in a tissue-specific manner, with white adipose displaying a significant reduction during hypoxia. Our findings show that naked mole-rats largely avoid hypoxia-induced oxidative damage, possibly due to their high tolerance to redox stress, or to reduced oxidative requirements made possible during their hypometabolic response when oxygen supply is limited.
Collapse
|
27
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
28
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
29
|
Horn AJ, Carter CS. Love and longevity: A Social Dependency Hypothesis. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 8:100088. [PMID: 35757670 PMCID: PMC9216627 DOI: 10.1016/j.cpnec.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mammals, including humans, are reliant for survival and reproduction on adaptations associated with sociality and physiological investment, which can be linked to interactions with their parents or other bonded adult conspecifics. A wide range of evidence in human and non-human mammal species links social behaviors and relationships - including those characterized by what humans call "love" - to positive health and longevity. In light of this evidence, we propose a Social Dependency Hypothesis of Longevity, suggesting that natural selection has favored longer and healthier adult lives in species or in individuals exhibiting enhanced caregiver responsibilities contributing to the success of the next generation. In highlighting cellular, physiological, and behavioral effects of mammalian reproductive hormones, we examine the specific hypothesis that the neuropeptide oxytocin links longevity to the benefits of parental investment and associated relationships. Oxytocin is a pleiotropic molecule with anti-oxidant and anti-inflammatory properties, capable of regulating the hypothalamic-pituitary-adrenal axis, the parasympathetic nervous system and other systems associated with the management of various challenges, including chronic diseases and therefore may be crucial to establishing the maximum longevity potential of a species or an individual.
Collapse
Affiliation(s)
| | - C. Sue Carter
- University of Virginia and Indiana University, United States
| |
Collapse
|
30
|
Role of Melatonin in Angiotensin and Aging. Molecules 2021; 26:molecules26154666. [PMID: 34361818 PMCID: PMC8347812 DOI: 10.3390/molecules26154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.
Collapse
|
31
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
32
|
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Dev Neurobiol 2021; 81:653-670. [PMID: 33942547 DOI: 10.1002/dneu.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) is one of the most significant propagators of systemic damage with implications for widespread pathologies such as vascular disease, accelerated aging, degenerative disease, inflammation, and traumatic injury. OS can be induced by numerous factors such as environmental conditions, lifestyle choices, disease states, and genetic susceptibility. It is tied to the accumulation of free radicals, mitochondrial dysfunction, and insufficient antioxidant protection, which leads to cell aging and tissue degeneration over time. Unregulated systemic increase in reactive species, which contain harmful free radicals, can lead to diverse tissue-specific OS responses and disease. Studies of OS in the brain, for example, have demonstrated how this state contributes to neurodegeneration and altered neural plasticity. As the worldwide life expectancy has increased over the last few decades, the prevalence of OS-related diseases resulting from age-associated progressive tissue degeneration. Unfortunately, vital translational research studies designed to identify and target disease biomarkers in human patients have been impeded by many factors (e.g., limited access to human brain tissue for research purposes and poor translation of experimental models). In recent years, stem cell-derived three-dimensional tissue cultures known as "brain organoids" have taken the spotlight as a novel model for studying central nervous system (CNS) diseases. In this review, we discuss the potential of brain organoids to model the responses of human neural cells to OS, noting current and prospective limitations. Overall, brain organoids show promise as an innovative translational model to study CNS susceptibility to OS and elucidate the pathophysiology of the aging brain.
Collapse
Affiliation(s)
- Foluwasomi A Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics/Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Christopher G Wilson
- Lawrence D. Longo, MD, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael J Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
33
|
Braude S, Holtze S, Begall S, Brenmoehl J, Burda H, Dammann P, Del Marmol D, Gorshkova E, Henning Y, Hoeflich A, Höhn A, Jung T, Hamo D, Sahm A, Shebzukhov Y, Šumbera R, Miwa S, Vyssokikh MY, von Zglinicki T, Averina O, Hildebrandt TB. Surprisingly long survival of premature conclusions about naked mole-rat biology. Biol Rev Camb Philos Soc 2021; 96:376-393. [PMID: 33128331 DOI: 10.1111/brv.12660] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about.
Collapse
Affiliation(s)
- Stan Braude
- Biology Department, Washington University, One Brookings Drive, St. Louis, MO, 63130, U.S.A
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin, 10315, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr, Essen, 45147, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, Dummerstorf, 18196, Germany
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, 16500, Czech Republic
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr, Essen, 45147, Germany
- University Hospital Essen, Hufelandstr, Essen, 45141, Germany
| | - Delphine Del Marmol
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, 5000, Belgium
| | - Ekaterina Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yoshiyuki Henning
- University Hospital Essen, Hufelandstr, Essen, 45141, Germany
- Institute of Physiology Department of General Zoology, University of Duisburg, Essen, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology, FBN Dummerstorf, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, 14558, Germany
| | - Dania Hamo
- Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, 10117, Germany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, 07745, Germany
| | - Yury Shebzukhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, 119991, Russia
- Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, 13353, Germany
| | - Radim Šumbera
- Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - Satomi Miwa
- Biosciences Institute, Edwardson building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, U.K
| | - Mikhail Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Thomas von Zglinicki
- Biosciences Institute, Edwardson building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, U.K
| | - Olga Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin, 10315, Germany
| |
Collapse
|
34
|
Dal Magro BM, Stone V, Klein CP, Maurmann RM, Saccomori AB, Dos Santos BG, August PM, Rodrigues KS, Conrado L, de Sousa FAB, Dreimeier D, Mello F, Matté C. Developmental programming: intrauterine caloric restriction promotes upregulation of mitochondrial sirtuin with mild effects on oxidative parameters in the ovaries and testes of offspring. Reprod Fertil Dev 2021; 32:763-773. [PMID: 32389177 DOI: 10.1071/rd19384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
According to the developmental origins of health and disease (DOHaD) hypothesis, changes in the maternal environment are known to reprogram the metabolic response of offspring. Known for its redox modulation, caloric restriction extends the lifespan of some species, which contributes to diminished cellular damage. Little is known about the effects of gestational caloric restriction, in terms of antioxidant parameters and molecular mechanisms of action, on the reproductive organs of offspring. This study assessed the effects of moderate (20%) caloric restriction on redox status parameters, molecular expression of sirtuin (SIRT) 1 and SIRT3 and histopathological markers in the ovaries and testes of adult rats that were subjected to gestational caloric restriction. Although enzyme activity was increased, ovaries from female pups contained high levels of oxidants, whereas testes from male pups had decreased antioxidant enzyme defences, as evidenced by diminished glyoxalase I activity and reduced glutathione content. Expression of SIRT3, a deacetylase enzyme related to cellular bioenergetics, was increased in both ovaries and testes. Previous studies have suggested that, in ovaries, diminished antioxidant metabolism can lead to premature ovarian failure. Unfortunately, there is little information regarding the redox profile in the testis. This study is the first to assess the redox network in both ovaries and testes, suggesting that, although intrauterine caloric restriction improves molecular mechanisms, it has a negative effect on the antioxidant network and redox status of reproductive organs of young adult rats.
Collapse
Affiliation(s)
- B M Dal Magro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - V Stone
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - C P Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - R M Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - A B Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - B G Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - P M August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - K S Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - L Conrado
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - F A B de Sousa
- Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - D Dreimeier
- Setor de Anatomia Patológica Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - F Mello
- Centro de Reprodução e Experimentação Animal, Universidade Federal do Rio Grande do Sul, Campus do Vale, Prédio 43.300, Agronomia, RS, 91509-900, Brazil
| | - C Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, R. Sarmento Leite, n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil; and Corresponding author.
| |
Collapse
|
35
|
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 2021; 9:628157. [PMID: 33644065 PMCID: PMC7905231 DOI: 10.3389/fcell.2021.628157] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.
Collapse
Affiliation(s)
- Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Paladugu L, Gharaibeh A, Kolli N, Learman C, Hall TC, Li L, Rossignol J, Maiti P, Dunbar GL. Liraglutide Has Anti-Inflammatory and Anti-Amyloid Properties in Streptozotocin-Induced and 5xFAD Mouse Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:E860. [PMID: 33467075 PMCID: PMC7829894 DOI: 10.3390/ijms22020860] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Recent clinical and epidemiological studies support the contention that diabetes mellitus (DM) is a strong risk factor for the development of Alzheimer's disease (AD). The use of insulin cell toxin, streptozotocin (STZ), when injected into the lateral ventricles, develops an insulin resistant brain state (IRBS) and represents a non-transgenic, or sporadic AD model (SAD), with several AD-like neuropathological features. The present study explored the effects of an anti-diabetic drug, liraglutide (LIR), in reversing major pathological hallmarks in the prodromal disease stage of both the 5xFAD transgenic and SAD mouse models of AD. Three-month-old 5xFAD and age-matched wild type mice were given a single intracerebroventricular (i.c.v) injection of STZ or vehicle (saline) and were subsequently treated with LIR, intraperitoneally (IP), once a day for 30 days. The extent of neurodegeneration, Aβ plaque load, and key proteins associated with the insulin signaling pathways were measured using Western blot and neuroinflammation (via immunohistological assays) in the cortical and hippocampal regions of the brain were assessed following a series of behavioral tests used to measure cognitive function after LIR or vehicle treatments. Our results indicated that STZ significantly increased neuroinflammation, Aβ plaque deposition and disrupted insulin signaling pathway, while 25 nmol/kg LIR, when injected IP, significantly decreased neuroinflammatory responses in both SAD and 5xFAD mice before significant cognitive changes were observed, suggesting LIR can reduce early neuropathology markers prior to the emergence of overt memory deficits. Our results indicate that LIR has neuroprotective effects and has the potential to serve as an anti-inflammatory and anti-amyloid prophylactic therapy in the prodromal stages of AD.
Collapse
Affiliation(s)
- Leela Paladugu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Abeer Gharaibeh
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Insight Research Center, Insight Institute of Neurosurgery and Neuroscience, Flint, MI 48607, USA
| | - Nivya Kolli
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Cameron Learman
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Tia C. Hall
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Lixin Li
- Physician Assistant Program, Central Michigan University, Mount Pleasant, MI 48859, USA;
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Field Neurosciences Institute, Ascension St. Mary’s, Saginaw, MI 48604, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710, USA
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA; (A.G.); (N.K.); (C.L.); (T.C.H.); (J.R.); (P.M.)
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Field Neurosciences Institute, Ascension St. Mary’s, Saginaw, MI 48604, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
37
|
Bhatt S, Puli L, Patil CR. Role of reactive oxygen species in the progression of Alzheimer's disease. Drug Discov Today 2020; 26:794-803. [PMID: 33306995 DOI: 10.1016/j.drudis.2020.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) involves neurodegeneration following the deposition of β-amyloid (Aβ) plaques and neurofibrillary tangles in vulnerable brain regions. The vulnerability of the brain to reactive oxygen species (ROS) is now emerging as a key detrimental factor driving AD pathogenesis. Oxidative stress (OS) irreversibly damages cellular biomolecules and perturbs neuronal functions. Scientific evidence is emerging that supports the therapeutic effects of antioxidants in preventing the onset and delaying the progression of AD pathology. In this review, we highlight the role of the OS in AD and the importance of antioxidants in its treatment.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India.
| | - Lakshman Puli
- Dept. of Pharmacology, SVKM's Narsee Monjee Institute of Management Studies Deemed-to-be University, Mahbubnagar, Telangana, 509 301, India
| | - Chandragauda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, PushpVihar, Sector-3, New Delhi, 110017, India
| |
Collapse
|
38
|
Seo AY, Speakman JR, Selman C. Metabolic rate through the life-course: From the organism to the organelle. Exp Gerontol 2020; 140:111059. [PMID: 32853835 DOI: 10.1016/j.exger.2020.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arnold Y Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen, China; Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
39
|
Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, Lewis KN, Wan J, Swerdloff R, Mattison JA, Buffenstein R, Breton CV, Wang C, Longo V, Atzmon G, Wallace D, Barzilai N, Cohen P. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY) 2020; 12:11185-11199. [PMID: 32575074 PMCID: PMC7343442 DOI: 10.18632/aging.103534] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Humanin is a member of a new family of peptides that are encoded by short open reading frames within the mitochondrial genome. It is conserved in animals and is both neuroprotective and cytoprotective. Here we report that in C. elegans the overexpression of humanin is sufficient to increase lifespan, dependent on daf-16/Foxo. Humanin transgenic mice have many phenotypes that overlap with the worm phenotypes and, similar to exogenous humanin treatment, have increased protection against toxic insults. Treating middle-aged mice twice weekly with the potent humanin analogue HNG, humanin improves metabolic healthspan parameters and reduces inflammatory markers. In multiple species, humanin levels generally decline with age, but here we show that levels are surprisingly stable in the naked mole-rat, a model of negligible senescence. Furthermore, in children of centenarians, who are more likely to become centenarians themselves, circulating humanin levels are much greater than age-matched control subjects. Further linking humanin to healthspan, we observe that humanin levels are decreased in human diseases such as Alzheimer's disease and MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes). Together, these studies are the first to demonstrate that humanin is linked to improved healthspan and increased lifespan.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H. Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - YanHe Lue
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James Hoang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noel Guerrero
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Port
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuli Bi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gerardo Navarrete
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Noel Lewis
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ronald Swerdloff
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, Dickerson, MD 20892, USA
| | - Rochelle Buffenstein
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Christina Wang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valter Longo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived Pipistrelle bats. Aging (Albany NY) 2020; 11:1664-1685. [PMID: 30892277 PMCID: PMC6461166 DOI: 10.18632/aging.101861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
It is accepted that smaller mammals with higher metabolic rates have shorter lifespans. The very few species that do not follow these rules can give insights into interesting differences. The recorded maximum lifespans of bats are exceptional - over 40 years, compared with the laboratory mouse of 4 years. We investigated the differences in the biochemical composition of mitochondria between bat and mouse species. We used proteomics and ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry lipidomics, to interrogate mitochondrial fractions prepared from Mus musculus and Pipistrellus pipistrellus brain and skeletal muscle. Fatty acid binding protein 3 was found at different levels in mouse and bat muscle mitochondria and its orthologues were investigated in Caenorhabditis elegans knock-downs for LBP 4, 5 and 6. In the bat, high levels of free fatty acids and N-acylethanolamine lipid species together with a significantly greater abundance of fatty acid binding protein 3 in muscle (1.8-fold, p=0.037) were found. Manipulation of fatty acid binding protein orthologues in C. elegans suggest these proteins and their role in lipid regulation are important for mitochondrial function.
Collapse
|
41
|
Phenolic profiling and anti-Alzheimer’s evaluation of Eremobium aegyptiacum. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00408-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Abstract
Bats live longer than similar-sized mammals, but the number of lineages that have independently evolved extreme longevity has not previously been determined. Here we reconstruct the evolution of size-corrected longevity on a recent molecular phylogeny and find that at least four lineages of bats have lifespans more than fourfold those of similar-sized placental mammals, with the ancestral bat projected to live 2.6 times as long. We then evaluate a series of phylogenetic generalized least-squares models containing up to nine variables hypothesized to influence extrinsic mortality. These analyses reveal that body mass and hibernation predict longevity. Among hibernators, longevity is predicted by the absolute value of the median latitude of the species range and cave use, while cave use and lack of sexual dimorphism predict longevity among non-hibernators. The importance of torpor in extending lifespan is further supported by the one lineage with extreme longevity that does not hibernate but exhibits flexible thermoregulation, the common vampire bat. We propose several potential mechanisms that may enable bats to live so long, and suggest that the ability to tolerate a wide range of body temperatures could be important for surviving viral or other pathogen infections.
Collapse
Affiliation(s)
- Gerald S Wilkinson
- Department of Biology, University of Maryland , College Park 20742, MD , USA
| | - Danielle M Adams
- Department of Biology, University of Maryland , College Park 20742, MD , USA
| |
Collapse
|
43
|
Reiterer M, Schmidt-Kastner R, Milton SL. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease. Free Radic Res 2019; 53:1144-1154. [PMID: 31775527 DOI: 10.1080/10715762.2019.1662899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research has shown that oxidative stress is strongly associated with aging, senescence and several diseases, including neurodegenerative and psychiatric disorders. Oxidative stress is caused by the overproduction of reactive oxygen species (ROS) that can be counteracted by both enzymatic and nonenzymatic antioxidants. One of these antioxidant mechanisms is the widely studied methionine sulfoxide reductase system (Msr). Methionine is one of the most easily oxidized amino acids and Msr can reverse this oxidation and restore protein function, with MsrA and MsrB reducing different stereoisomers. This article focuses on experimental and genetic research performed on Msr and its link to brain diseases. Studies on several model systems as well as genome-wide association studies are compiled to highlight the role of MSRA in schizophrenia, Alzheimer's disease, and Parkinson's disease. Genetic variation of MSRA may also contribute to the risk of psychosis, personality traits, and metabolic factors.
Collapse
Affiliation(s)
- Melissa Reiterer
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Sarah L Milton
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
44
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
45
|
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627. [DOI: 10.1016/j.exger.2019.05.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
46
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|
47
|
Dzięgielewska-Gęsiak S, Płóciniczak A, Wilemska-Kucharzewska K, Kokot T, Muc-Wierzgoń M, Wysocka E. The relationship between plasma lipids, oxidant-antioxidant status, and glycated proteins in individuals at risk for atherosclerosis. Clin Interv Aging 2019; 14:789-796. [PMID: 31190766 PMCID: PMC6514120 DOI: 10.2147/cia.s196016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: Ageing is one of the major risks for atherosclerosis. The age-related changes of interactions between plasma lipids, oxidative stress, antioxidant defense, and glycation processes are still not established while we age. Thus, the aim of the study was to analyze such relationships in individuals at risk for atherosclerosis due to their age. Methods: Elderly and middle-aged persons with no acute disease or severe chronic disorder were assessed. Fasting plasma lipids (total cholesterol (T-C), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol, and triacylglycerols), thiobarbituric acid reacting substances (TBARS), plasma total antioxidant status (TAS), and glucose and glycated proteins (fructosamine (FA) and glycated hemoglobin (HbA1c)) were determined. An oral glucose tolerance test allowed exclusion of persons with type 2 diabetes. Results: Lipid profiles were significantly profitable, increased HDL-C especially (p<0.0001), in the elderly versus middle-aged group. Decreased TBARS and TAS were found in the elderly versus middle-aged group (p=0.0001 and p=0.00002, respectively). Increased fructosamine was found in the elderly (255±30 μmol/L) versus middle-aged (236±33 μmol/L) group (p=0.006). Multiple regression analysis showed that in the middle-aged group TBARS correlated with T-C and HDL-C, and in the elderly group with HbA1c and FA independently of other factors. Conclusion: The factors which have an impact on oxidant–antioxidant status are crucial to understanding the pathomechanisms of senescence as well as the development of chronic diseases. Healthy aging may be maintained throughout proper lipid control. Moreover, data support the premise that the balance between lipid metabolism and oxidative stress may play a role in the initial phases of glycation plasma proteins particularly among elderly persons.
Collapse
Affiliation(s)
| | - Alicja Płóciniczak
- Department of Laboratory Diagnostics, Poznan University of Medical Science, 60-569 Poznan, Poland
| | | | - Teresa Kokot
- Department of Internal Medicine, Medical University of Silesia, 44-902 Bytom, Poland
| | | | - Ewa Wysocka
- Department of Laboratory Diagnostics, Poznan University of Medical Science, 60-569 Poznan, Poland
| |
Collapse
|
48
|
Tan DX. Aging: An evolutionary competition between host cells and mitochondria. Med Hypotheses 2019; 127:120-128. [PMID: 31088635 DOI: 10.1016/j.mehy.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Here, a new theory of aging is proposed. This new theory is referred as the Host-Mitochondria Intracellular Innate Immune Theory of Aging (HMIIITA). The main point of this theory is that the aging is rooted from an evolutionary competition, that is, a never ending coevolutionary race between host cells and mitochondria. Mitochondria are the descendants of bacteria. The host cells will inevitably sense their bacterial origin, particularly their circular mtDNA. The host intracellular innate immune pressure (HIIIP) aims to eliminate mtDNA as more as possible while mitochondria have to adapt the HIIIP for survival. Co-evolution is required for both of them. From biological point of view, the larger, the mtDNA, the higher, the chance, it becomes the target of HIIIP. As a result, mitochondria have to reduce their mtDNA size via deletion. This process has last for 1.5-2 billion yeas and the result is that mitochondria have lost excessive 95% of their DNA. This mtDNA deletion is not associated with free radical attack but a unique trait acquired during evolution. In the postmitotic cells, the deletion is passively selected by the mitochondrial fission-fusion cycles. Eventually, the accumulation of deletion will significantly jeopardize the mitochondrial function. The dysfunctional mitochondria no longer provide sufficient ATP to support host cells' continuous demanding for growth. At this stage, the cell or the organism aging is inevitable.
Collapse
Affiliation(s)
- Dun-Xian Tan
- The Department of Cell System and Anatomy, The University of Texas, Health, San Antonio, TX 78229, USA.
| |
Collapse
|
49
|
Saldmann F, Viltard M, Leroy C, Friedlander G. The Naked Mole Rat: A Unique Example of Positive Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4502819. [PMID: 30881592 PMCID: PMC6383544 DOI: 10.1155/2019/4502819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023]
Abstract
The oxidative stress theory of aging, linking reactive oxygen species (ROS) to aging, has been accepted for more than 60 years, and numerous studies have associated ROS with various age-related diseases. A more precise version of the theory specifies that mitochondrial oxidative stress is a direct cause of aging. The naked mole rat, a unique animal with exceptional longevity (32 years in captivity), appears to be an ideal model to study successful aging and the role of ROS in this process. Several studies in the naked mole rat have shown that these animals exhibit a remarkable resistance to oxidative stress. At low concentrations, ROS serve as second messengers, and these important intracellular signalling functions are crucial for the regulation of cellular processes. In this review, we examine the literature on ROS and their functions as signal transducers. We focus specifically on the longest-lived rodent, the naked mole rat, which is a perfect example of the paradox of living an exceptionally long life with slow aging despite high levels of oxidative damage from a young age.
Collapse
Affiliation(s)
- Frédéric Saldmann
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Melanie Viltard
- 1Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Christine Leroy
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Gérard Friedlander
- 2Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- 3Université Paris Descartes, Faculté de Médecine, Paris, France
- 4INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| |
Collapse
|
50
|
Goya RG, Lehmann M, Chiavellini P, Canatelli-Mallat M, Hereñú CB, Brown OA. Rejuvenation by cell reprogramming: a new horizon in gerontology. Stem Cell Res Ther 2018; 9:349. [PMID: 30558644 PMCID: PMC6296020 DOI: 10.1186/s13287-018-1075-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The discovery of animal cloning and subsequent development of cell reprogramming technology were quantum leaps as they led to the achievement of rejuvenation by cell reprogramming and the emerging view that aging is a reversible epigenetic process. Here, we will first summarize the experimental achievements over the last 7 years in cell and animal rejuvenation. Then, a comparison will be made between the principles of the cumulative DNA damage theory of aging and the basic facts underlying the epigenetic model of aging, including Horvath's epigenetic clock. The third part will apply both models to two natural processes, namely, the setting of the aging clock in the mammalian zygote and the changes in the aging clock along successive generations in mammals. The first study demonstrating that skin fibroblasts from healthy centenarians can be rejuvenated by cell reprogramming was published in 2011 and will be discussed in some detail. Other cell rejuvenation studies in old humans and rodents published afterwards will be very briefly mentioned. The only in vivo study reporting that a number of organs of old progeric mice can be rejuvenated by cyclic partial reprogramming will also be described in some detail. The cumulative DNA damage theory of aging postulates that as an animal ages, toxic reactive oxygen species generated as byproducts of the mitochondria during respiration induce a random and progressive damage in genes thus leading cells to a progressive functional decline. The epigenetic model of aging postulates that there are epigenetic marks of aging that increase with age, leading to a progressive derepression of DNA which in turn causes deregulated expression of genes that disrupt cell function. The cumulative DNA damage model of aging fails to explain the resetting of the aging clock at the time of conception as well as the continued vitality of species as millenia go by. In contrast, the epigenetic model of aging straightforwardly explains both biologic phenomena. A plausible initial application of rejuvenation in vivo would be preventing adult individuals from aging thus eliminating a major risk factor for end of life pathologies. Further, it may allow the gradual achievement of whole body rejuvenation.
Collapse
Affiliation(s)
- Rodolfo G. Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Martina Canatelli-Mallat
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Claudia B. Hereñú
- Institute for Experimental Pharmacology Cordoba(IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Oscar A. Brown
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| |
Collapse
|