1
|
Pickering G, Kotlińska-Lemieszek A, Krcevski Skvarc N, O'Mahony D, Monacelli F, Knaggs R, Morel V, Kocot-Kępska M. Pharmacological Pain Treatment in Older Persons. Drugs Aging 2024; 41:959-976. [PMID: 39465454 PMCID: PMC11634925 DOI: 10.1007/s40266-024-01151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/29/2024]
Abstract
Pharmacological pain treatment in older persons is presented by a multi-disciplinary group of European pain experts. Drugs recommended for acute or chronic nociceptive pain, also for neuropathic pain and the routes of administration of choice are the same as those prescribed for younger persons but comorbidities and polypharmacy in older persons increase the risk of adverse effects and drug interactions. Not all drugs are available or authorised in all European countries. For mild-to-moderate pain, non-opioids including paracetamol and non-steroidal anti-inflammatory drugs are first-line treatments, followed by nefopam and metamizole. Codeine, dihydrocodeine and tramadol are prescribed for moderate to severe pain and 'strong' opioids, including morphine, hydromorphone, oxycodone, fentanyl, buprenorphine, methadone and tapentadol, for severe pain. Chronic neuropathic pain treatment relies on coanalgesics, including anti-epileptics (gabapentinoids) and anti-depressants with additional option of topical lidocaine and capsaicine. The choice of analgesic(s) and the route of administration should be guided by the pain characteristics, as well as by the patient's comorbidities, organ function and medications. Several directions have been highlighted to optimise pharmacological pain management in older individuals: (1) before starting pain treatment adequately detect and assess pain and always perform a full geriatric assessment, (2) consider kidney function systematically to adjust the doses of analgesics and avoid the risks of overdose, (3) start with the lowest dose of an analgesic and increase it gradually under the control of the effect, (4) involve the older persons and family in their treatment, (5) reevaluate pain regularly during treatment and (6) combine pharmacological treatment with non-pharmacological approaches.
Collapse
Affiliation(s)
- Gisèle Pickering
- Clinical Pharmacology Department, PIC/CIC Inserm 1405-University Hospital CHU and Faculty of Medicine, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Aleksandra Kotlińska-Lemieszek
- Department of Palliative Medicine, Pharmacotherapy in Palliative Care Laboratory, Poznan University of Medical Sciences, Poznań, Poland
| | - Nevenka Krcevski Skvarc
- Institute for Palliative Medicine and Care, Faculty of Medicine of University Maribor, Maribor, Slovenia
| | - Denis O'Mahony
- Department of Medicine, University College Cork, Cork University Hospital, Cork, Ireland
- Department of Geriatric and Stroke Medicine, Cork University Hospital, Cork, Ireland
| | | | - Roger Knaggs
- University of Nottingham, University Park, Nottingham, UK
- Pain Centre Versus Arthritis, Clinical Sciences Building, City Hospital, Nottingham, UK
- Primary Integrated Community Services, Nottingham, UK
| | - Véronique Morel
- Clinical Pharmacology Department, PIC/CIC Inserm 1405-University Hospital CHU and Faculty of Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Magdalena Kocot-Kępska
- Department for Pain Research and Treatment, Medical College Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
3
|
Van den Eynde V, Gillman PK, Blackwell BB. The Prescriber's Guide to the MAOI Diet-Thinking Through Tyramine Troubles. PSYCHOPHARMACOLOGY BULLETIN 2022; 52:73-116. [PMID: 35721816 PMCID: PMC9172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This review article features comprehensive discussions on the dietary restrictions issued to patients taking a classic monoamine oxidase inhibitor (phenelzine, tranylcypromine, isocarboxazid), or high-dose (oral or transdermal) selegiline. It equips doctors with the knowledge to explain to their patients which dietary precautions are necessary, and why that is so: MAOIs alter the capacity to metabolize certain monoamines, like tyramine, which causes dose-related blood pressure elevations. Modern food production and hygiene standards have resulted in large reductions of tyramine concentrations in most foodstuffs and beverages, including many cheeses. Thus, the risk of consequential blood pressure increases is considerably reduced-but some caution remains warranted. The effects of other relevant biogenic amines (histamine, dopamine), and of the amino acids L-dopa and L-tryptophan are also discussed. The tables of tyramine data usually presented in MAOI diet guides are by nature unhelpful and imprecise, because tyramine levels vary widely within foods of the same category. For this reason, it is vital that doctors understand the general principles outlined in this guide; that way, they can tailor their instructions and advice to the individual, to his/her lifestyle and situation. This is important because the pressor response is characterized by significant interpatient variability. When all factors are weighed and balanced, the conclusion is that the MAOI diet is not all that difficult. Minimizing the intake of the small number of risky foods is all that is required. Many patients may hardly need to change their diet at all.
Collapse
Affiliation(s)
- Vincent Van den Eynde
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| | - Peter Kenneth Gillman
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| | - Barry B Blackwell
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| |
Collapse
|
4
|
Bahrampour N, Movahedi A, Djazayery A, Clark CCT. The relationship between dietary sulfur amino acids intake and severity and frequency of pain in Iranian patients with musculoskeletal pains, 2020. BMC Res Notes 2022; 15:13. [PMID: 35012649 PMCID: PMC8744055 DOI: 10.1186/s13104-021-05899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Musculoskeletal pain conditions (MPs) are a widespread public problem that can affect 13.5% to 47% of the total population. Dietary changes can have strong effects on person's health; for instance, Sulfur amino acids (SAAs) can act as a precursor of neurotransmitters, antioxidative metabolic intermediates, such as glutathione, impact inflammation, and play a role in severity and frequency of MPs. We evaluated the relationship between dietary SAAs intake with severity and frequency of pain in patients with MPs. RESULTS This cross-sectional study consisted of 175 men and woman. Anthropometric measurements and pain assessments were conducted via questionnaires. Dietary data were collected using 7 days 24-h recall. ANOVA and Spearman correlation coefficients were used to examine the relationship and correlation, respectively, between exposure and outcome variables. There was a significant correlation between age, weight, waist circumference (WC), waist circumference to height (WHtR), body mass index (BMI), and severity and frequency of MPs among women. There was a correlation between age and severity of pain in men. The present study highlights a positive association between the dietary SAAs and severity of pain, even after adjusting for confounding variables.
Collapse
Affiliation(s)
- Niki Bahrampour
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ariyo Movahedi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abolghassem Djazayery
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
5
|
Folz JS, Shalon D, Fiehn O. Metabolomics analysis of time-series human small intestine lumen samples collected in vivo. Food Funct 2021; 12:9405-9415. [PMID: 34606553 DOI: 10.1039/d1fo01574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.
Collapse
Affiliation(s)
- Jacob S Folz
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | | | - Oliver Fiehn
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, Ibrahim B, Drum CL. A metabolomic analysis of thiol response for standard and modified N-acetyl cysteine treatment regimens in patients with acetaminophen overdose. Clin Transl Sci 2021; 14:1476-1489. [PMID: 33742775 PMCID: PMC8301594 DOI: 10.1111/cts.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
Collapse
Affiliation(s)
- James W Dear
- Pharmacology, Toxicology, and TherapeuticsCentre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Mei Li Ng
- Cardiovascular Research InstituteNational University Health SystemSingapore CitySingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- Advanced Medical and Dental InstituteUniversiti Sains MalaysiaKepala BatasMalaysia
| | - D. Nicholas Bateman
- Pharmacology, Toxicology, and TherapeuticsCentre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | | | - Hyungwon Choi
- Cardiovascular Research InstituteNational University Health SystemSingapore CitySingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and ResearchSingapore CitySingapore
| | - Benjamin Bing Jie Khoo
- Cardiovascular Research InstituteNational University Health SystemSingapore CitySingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Baharudin Ibrahim
- School of Pharmaceutical SciencesUniversiti Sains MalaysiaKepala BatasMalaysia
| | - Chester Lee Drum
- Cardiovascular Research InstituteNational University Health SystemSingapore CitySingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
7
|
Sestili P, Fimognari C. Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness? Front Pharmacol 2020; 11:579944. [PMID: 33117175 PMCID: PMC7577213 DOI: 10.3389/fphar.2020.579944] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
COVID-19 pandemic is posing an unprecedented sanitary threat: antiviral and host-directed medications to treat the disease are urgently needed. A great effort has been paid to find drugs and treatments for hospitalized, severely ill patients. However, medications used for the domiciliary management of early symptoms, notwithstanding their importance, have not been and are not presently regarded with the same attention and seriousness. In analogy with other airways viral infections, COVID-19 patients in the early phase require specific antivirals (still lacking) and non-etiotropic drugs to lower pain, fever, and control inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) and paracetamol (PAC) are widely used as non-etiotropic agents in common airways viral infections and hence are both theoretically repurposable for COVID-19. However, a warning from some research reports and National Authorities raised NSAIDs safety concerns because of the supposed induction of angiotensin-converting enzyme 2 (ACE2) levels (the receptor used by SARS-CoV2 to enter host airways cells), the increased risk of bacterial superinfections and masking of disease symptoms. As a consequence, the use of NSAIDs was, and is still, discouraged while the alternative adoption of paracetamol is still preferred. On the basis of novel data and hypothesis on the possible role of scarce glutathione (GSH) levels in the exacerbation of COVID-19 and of the GSH depleting activity of PAC, this commentary raises the question of whether PAC may be the better choice.
Collapse
Affiliation(s)
- Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Università degli Studi di Bologna, Rimini, Italy
| |
Collapse
|
8
|
Mian P, Allegaert K, Spriet I, Tibboel D, Petrovic M. Paracetamol in Older People: Towards Evidence-Based Dosing? Drugs Aging 2018; 35:603-624. [PMID: 29916138 PMCID: PMC6061299 DOI: 10.1007/s40266-018-0559-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paracetamol is the most commonly used analgesic in older people, and is mainly dosed according to empirical dosing guidelines. However, the pharmacokinetics and thereby the effects of paracetamol can be influenced by physiological changes occurring with ageing. To investigate the steps needed to reach more evidence-based paracetamol dosing regimens in older people, we applied the concepts used in the paediatric study decision tree. A search was performed to retrieve studies on paracetamol pharmacokinetics and safety in older people (> 60 years) or studies that performed a (sub) analysis of pharmacokinetics and/or safety in older people. Of 6088 articles identified, 259 articles were retained after title and abstract screening. Further abstract and full-text screening identified 27 studies, of which 20 described pharmacokinetics and seven safety. These studies revealed no changes in absorption with ageing. A decreased (3.9-22.9%) volume of distribution (Vd) in robust older subjects and a further decreased Vd (20.3%) in frail older compared with younger subjects was apparent. Like Vd, age and frailty decreased paracetamol clearance (29-45.7 and 37.5%) compared with younger subjects. Due to limited and heterogeneous evidence, it was difficult to draw firm and meaningful conclusions on changed risk for paracetamol safety in older people. This review is a first step towards bridging knowledge gaps to move to evidence-based paracetamol dosing in older subjects. Remaining knowledge gaps are safety when using therapeutic dosages, pharmacokinetics changes in frail older people, and to what extent changes in paracetamol pharmacokinetics should lead to a change in dosage in frail and robust older people.
Collapse
Affiliation(s)
- Paola Mian
- Intensive Care and Department of Paediatric Surgery, Erasmus MC, Sophia Children's Hospital, Room NA-1723, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands.
| | - Karel Allegaert
- Intensive Care and Department of Paediatric Surgery, Erasmus MC, Sophia Children's Hospital, Room NA-1723, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Louvain, Belgium
- Pharmacy Department, University Hospital Leuven, Louvain, Belgium
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus MC, Sophia Children's Hospital, Room NA-1723, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Mirko Petrovic
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Impact of medication on protein and amino acid metabolism in the elderly: the sulfur amino acid and paracetamol case. Nutr Res Rev 2018; 31:179-192. [PMID: 29554987 DOI: 10.1017/s0954422418000021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The optimisation of nutritional support for the growing number of older individuals does not usually take into account medication. Paracetamol (acetaminophen; APAP) is the first intention treatment of chronic pain that is highly prevalent and persistent in the elderly. Detoxification of APAP occurs in the liver and utilises sulfate and glutathione (GSH), both of which are issued from cysteine (Cys), a conditionally indispensable amino acid. The detoxification-induced siphoning of Cys could reduce the availability of Cys for skeletal muscle. Consequently, APAP could worsen sarcopenia, an important component of the frailty syndrome leading to dependency. The present review provides the rationale for the potential pro-sarcopenic effect of APAP then recent results concerning the effect of chronic APAP treatment on muscle mass and metabolism are discussed. The principal findings are that chronic treatments with doses of APAP comparable with the maximum posology for humans can increase the requirement for sulfur amino acids (SAA), reduce Cys availability for muscle, reduce muscle protein synthesis and aggravate sarcopenia in animals. One clinical study is in favour of an enhanced SAA requirement in the older individual under chronic treatment with APAP. Few clinical studies investigated the effect of chronic treatment with APAP combined with exercise, in nutritional conditions that probably did not affect Cys and GSH homeostasis. Whether APAP can aggravate sarcopenia in older individuals with low protein intake remains to be tested. If true, nutritional strategies based on enhancing Cys supply could be of prime interest to cut down the pro-sarcopenic effect of chronic treatment with APAP.
Collapse
|
10
|
Dietary supplementation with cysteine prevents adverse metabolic outcomes of repeated cures with paracetamol in old rats. Br J Nutr 2017; 118:889-896. [PMID: 29173208 DOI: 10.1017/s0007114517002847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cysteine (Cys), a conditionally indispensable amino acid, is required for the detoxification of paracetamol (acetaminophen, N-acetyl-para-aminophenol, 4-hydroxy-acetanilide, APAP), a drug of widespread use in older persons. We recently reported that repeated APAP cures could worsen sarcopenia in old rats, likely to be due to the impairment of Cys/GSH homoeostasis. The aim of the study was to evaluate whether a dietary Cys supplementation during APAP cures could improve Cys/GSH homoeostasis and thus preserve skeletal muscle. Male 21·5-month-old Wistar rats received three 2-week-long cures of APAP (1 % of diet) alone or with extra Cys (0·5 % of diet), intercalated with washout periods of 2 weeks (APAP and APAP-Cys groups, respectively). They were compared with untreated control rats (CT group). CT and APAP-Cys groups were pair-fed to the APAP group. Dietary Cys supplementation was efficient to prevent increase in liver mass (P<0·0001), decrease in liver GSH (P<0·0001), increase in blood GSH concentration (P<0·0001), and to some extent, decrease in plasma free Cys concentration (P<0·05), all induced by repeated APAP cures. The addition of Cys to APAP cures decreased plasma alanine transaminase (P<0·05), the fractional synthesis rate of liver proteins (P<0·01), and increased masses of extensor digitorum longus (P<0·01), and soleus (P<0·05), compared with the APAP group. Cys supplementation prevented alteration in Cys/GSH homoeostasis and increased some muscle masses in old rats under repeated cures with a non-toxic dose of APAP.
Collapse
|
11
|
Consensus multidisciplinaire d’experts en douleur et gériatrie : utilisation des antalgiques dans la prise en charge de la douleur de la personne âgée (hors anesthésie). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.douler.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Wang X, Wu Q, Liu A, Anadón A, Rodríguez JL, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab Rev 2017; 49:395-437. [PMID: 28766385 DOI: 10.1080/03602532.2017.1354014] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- a Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain.,b National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Qinghua Wu
- c College of Life Science , Yangtze University , Jingzhou , China.,d Faculty of Informatics and Management , Center for Basic and Applied Research, University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Aimei Liu
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Arturo Anadón
- a Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - José-Luis Rodríguez
- a Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - María-Rosa Martínez-Larrañaga
- a Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - Zonghui Yuan
- b National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues , Huazhong Agricultural University , Wuhan , Hubei , China.,e MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei , China.,f Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - María-Aránzazu Martínez
- a Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
13
|
Wang X, Wang J, Wang Z, Wang Q, Li H. Dynamic monitoring of plasma amino acids and carnitine during chemotherapy of patients with alimentary canal malignancies and its clinical value. Onco Targets Ther 2015; 8:1989-96. [PMID: 26300648 PMCID: PMC4535544 DOI: 10.2147/ott.s86562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study was to observe the plasma amino acid and carnitine characteristics in patients with metastatic gastrointestinal malignancies during chemotherapy and to identify markers for the early diagnosis and evaluation of adverse reactions and prognosis of the digestive tract malignant tumor patients. METHODS Blood samples of 30 patients with metastatic gastrointestinal malignancies were collected at four time points: before chemotherapy, the first day after chemotherapy (+1 day), bone marrow depression period (+14 days), and hematopoietic recovery period (+21 days). The plasma amino acids and carnitine from those 30 patients were determined by high-performance liquid chromatography-tandem mass spectrometry method. Simultaneously, the levels of 21 amino acids were detected in 30 healthy individuals, who were considered as control. Biochemical indexes were also detected at four time points, adverse reactions were recorded during the chemotherapy process, and patients were followed up for 1 year to observe time to progression (TTP) and progression-free survival (PFS). RESULTS Compared to healthy people in the control group, patients with malignancies showed significantly increased levels of plasma amino acids such as Arg, Asp, Cit, Gly, Orn, Tyr, Val, and carnitine (such as C2). The levels of compounds such as C3, Asn, Leu, Lys, Pip, Pro, C0, C5:1 decreased significantly before chemotherapy. The levels of Cit, Cys, Lys, Pro, Tyr, Val, C0, and C2 decreased significantly on the second day of chemotherapy (+1 day), whereas the level of C3 increased significantly. During myelosuppression (+14 days), the levels of Asp, Cit, Met, and Orn were observed to still decrease significantly, whereas the level of Val appeared to increase significantly. The levels of Asp, Glu, and Met were clearly different among patients with gastric carcinoma, rectal cancer, and colon cancer. Compared to the control group, aspartate amino transferase and alanine aminotransferase were found to be higher in eight patients with hypocarnitinemia, yet TTP, PFS, and RR (response rate) were lower. No significant difference was observed for adverse reactions. The indexes in 12 patients with citrullinemia showed no difference compared with control group. All the results showed statistically significant differences (P<0.05). CONCLUSION Real-time monitoring of plasma amino acids and carnitine in patients with metastatic gastrointestinal malignancies can directly reflect the body's metabolism and nutritional status. The results provide a reference for nutrition therapy or support for patients with alimentary canal malignancies. Hypocarnitinemia is a risk factor for gastrointestinal cancer patients and affects TTP, PFS, and RR by liver function. This study shows that tandem mass spectrometry can be used to detect blood amino acids and carnitine spectrum may be used for an early diagnosis and evaluation of adverse reactions and prognosis of the digestive tract malignant tumor patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Jiaqi Wang
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Zhenghua Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Qingjun Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Hua Li
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
14
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
15
|
Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 2013; 232:260-4. [PMID: 24468136 DOI: 10.1016/j.atherosclerosis.2013.10.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023]
Abstract
AIMS Age is one of the most important determinants of cardiovascular health, therefore the management of cardiovascular diseases (CVD) in elderly people entails great challenge. A possible explanation of vascular senescence process is the mitochondrial damage and dysfunction. We hypothesized that metabolomic profiling would identify biomarkers predicting major cardiovascular events (MACEs) in elderly people, improving the clinical standard cardiovascular risk factors. METHODS AND RESULTS Targeted-mass-spectrometry-based profiling of 49 metabolites was performed in a group of very old participants (n = 67, mean age = 85 ± 3 years) with a high rate of previous CVD (68%). Principal Component Analysis, Random Survival Forest analysis and Cox proportional hazards regression modeling were used to evaluate the relation between the metabolite factors and recurring MACEs. We tested discrimination ability and reclassification of clinical and metabolomic models. At follow-up (median = 3.5 years), 17 MACEs occurred (5 cardiovascular deaths, 1 nonfatal myocardial infarction, 7 nonfatal strokes and 4 peripheral artery surgeries) (incidence = 7.3% person-years). Metabolite factor 1, composed by medium- and long-chain acylcarnitines, and factor 7 (alanine) were independently associated with MACEs, after adjustment for clinical CV covariates [HR = 1.77 (95%CI = 1.11-2.81, p = 0.016) and HR = 2.18 (95%CI = 1.17-4.07, p = 0.014), respectively]. However, only factor 1 significantly increases the prediction accuracy of the Framingham Recurring-Coronary-Heart-Disease-Score, with a significant improvement in discrimination (integrated discrimination improvement = 7%, p = 0.01) and correctly reclassifying 41% of events and 37% of non-events resulting in a cNRI = 0.79 (p = 0.005). CONCLUSIONS Aging mitochondrial dysfunction evaluated by metabolomic profiling is associated with MACEs, independently of standard predictors.
Collapse
|
16
|
|