1
|
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Age-related changes in liver metabolism and antioxidant capacity of laying hens. Poult Sci 2021; 100:101478. [PMID: 34695635 PMCID: PMC8554276 DOI: 10.1016/j.psj.2021.101478] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the age-related changes of hepatic metabolism and antioxidant capacity of laying hens at 3 different ages. A total of 192 Hy-line Brown laying hens were assigned into 3 groups: 1) 195-day-old (D195 group); 2) 340-day-old (D340 group); 3) 525-day-old (D525 group). Each group replicated 8 times with 8 hens at the same age. Higher activity of aspartate aminotransferase and lower contents of total protein and globulin were observed in the serum of 525-day-old hens in comparison with their 195-day-old counterparts (P < 0.05). The 525-day-old hens accumulated higher contents of total cholesterol and triglyceride in the liver than 195-day-old birds. Additionally, compared with hens from D195 or D340 group, 525-day-old birds exhibited a lower circulating estradiol level (P < 0.05). For antioxidant capacity, birds in the D525 group showed a higher malondialdehyde concentration in both serum and liver as compared with D195 or D340 group (P < 0.05). The 525-day-old hens also exhibited lower glutathione peroxidase activities in both serum and liver when compared with 195-day-old birds (P < 0.05). Simultaneously, there was a decline of hepatic superoxide dismutase activity in the D525 group in comparison with D195 group (P < 0.05). Compared with 195-day-old counterparts, 340-day-old birds upregulated the mRNA abundance of nuclear factor erythroid-2 related factor 2 and glutathione peroxidase 1 in the liver (P < 0.05). In contrast, hens from D525 group showed the downregulation of hepatic nuclear factor erythroid-2 related factor 2, NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 when compared with D340 group (P < 0.05). These results indicated that increasing age can adversely affect liver metabolism and function of laying hens.
Collapse
Affiliation(s)
- Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - R Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
2
|
Synergistic Neuroprotective Effects of a Natural Product Mixture against AD Hallmarks and Cognitive Decline in Caenorhabditis elegans and an SAMP8 Mice Model. Nutrients 2021; 13:nu13072411. [PMID: 34371921 PMCID: PMC8308558 DOI: 10.3390/nu13072411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The study of different natural products can provide a wealth of bioactive compounds, and more interestingly, their combination can exert a new strategy for several neurodegenerative diseases with major public health importance, such as Alzheimer’s disease (AD). Here, we investigated the synergistic neuroprotective effects of a mixed extract composed of docosahexaenoic acid, Ginkgo biloba, D-pinitol, and ursolic acid in several transgenic Caenorhabditis elegans (C. elegans) and a senescence-accelerated prone mice 8 (SAMP8) model. First, we found a significantly higher survival percentage in the C. elegans group treated with the natural product mixture compared to the single extract-treated groups. Likewise, we found a significantly increased lifespan in group of C. elegans treated with the natural product mixture compared to the other groups, suggesting synergistic effects. Remarkably, we determined a significant reduction in Aβ plaque accumulation in the group of C. elegans treated with the natural product mixture compared to the other groups, confirming synergy. Finally, we demonstrated better cognitive performance in the group treated with the natural product mixture in both AD models (neuronal Aβ C. elegans strain CL2355 and the SAMP8 mice model), confirming the molecular results and unraveling the synergist effects of this combination. Therefore, our results proved the potential of this new natural product mixture for AD therapeutic strategies.
Collapse
|
3
|
Fernández A, Quintana E, Velasco P, Moreno-Jimenez B, de Andrés B, Gaspar ML, Liste I, Vilar M, Mira H, Cano E. Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation. J Neuroinflammation 2021; 18:75. [PMID: 33736657 PMCID: PMC7977588 DOI: 10.1186/s12974-021-02104-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging and age-related diseases are strong risk factors for the development of neurodegenerative diseases. Neuroinflammation (NIF), as the brain's immune response, plays an important role in aged associated degeneration of central nervous system (CNS). There is a need for well characterized animal models that will allow the scientific community to understand and modulate this process. METHODS We have analyzed aging-phenotypical and inflammatory changes of brain myeloid cells (bMyC) in a senescent accelerated prone aged (SAMP8) mouse model, and compared with their senescence resistant control mice (SAMR1). We have performed morphometric methods to evaluate the architecture of cellular prolongations and determined the appearance of Iba1+ clustered cells with aging. To analyze specific constant brain areas, we have performed stereology measurements of Iba1+ cells in the hippocampal formation. We have isolated bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch), and analyzed their response to systemic lipopolysaccharide (LPS)-driven inflammation. RESULTS Aged 10 months old SAMP8 mice present many of the hallmarks of aging-dependent neuroinflammation when compared with their SAMR1 control, i.e., increase of protein aggregates, presence of Iba1+ clusters, but not an increase in the number of Iba1+ cells. We have further observed an increase of main inflammatory mediator IL-1β, and an augment of border MHCII+Iba1+ cells. Isolated CD45+ bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch) have been analyzed, showing that there is not a significant increase of CD45+ cells from the periphery. Our data support that aged-driven pro-inflammatory cytokine interleukin 1 beta (IL-1β) transcription is enhanced in CD45+BP cells. Furthermore, LPS-driven systemic inflammation produces inflammatory cytokines mainly in border bMyC, sensed to a lesser extent by the BP bMyC, showing that IL-1β expression is further augmented in aged SAMP8 compared to control SAMR1. CONCLUSION Our data validate the SAMP8 model to study age-associated neuroinflammatory events, but careful controls for age and strain are required. These animals show morphological changes in their bMyC cell repertoires associated to age, corresponding to an increase in the production of pro-inflammatory cytokines such as IL-1β, which predispose the brain to an enhanced inflammatory response after LPS-systemic challenge.
Collapse
Affiliation(s)
- Andrés Fernández
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Elena Quintana
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Patricia Velasco
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Belén Moreno-Jimenez
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Belén de Andrés
- Unidad de Inmunobiología, Instituto de Salud Carlos II, Madrid, Spain
| | | | - Isabel Liste
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva Cano
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
4
|
Forman K, Martínez F, Cifuentes M, Fernández M, Bertinat R, Torres P, Salazar K, Godoy A, Nualart F. Dehydroascorbic acid, the oxidized form of vitamin C, improves renal histology and function in old mice. J Cell Physiol 2020; 235:9773-9784. [PMID: 32437012 DOI: 10.1002/jcp.29791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Oxidative stress and inflammation are crucial factors that increase with age. In the progression of multiple age-related diseases, antioxidants and bioactive compounds have been recognized as useful antiaging agents. Oxidized or reduced vitamin C exerts different actions on tissues and has different metabolism and uptake. In this study, we analyzed the antiaging effect of vitamin C, both oxidized and reduced forms, in renal aging using laser microdissection, quantitative reverse-transcription polymerase chain reaction, and immunohistochemical analyses. In the kidneys of old SAM mice (10 months of age), a model of accelerated senescence, vitamin C, especially in the oxidized form (dehydroascorbic acid [DHA]) improves renal histology and function. Serum creatinine levels and microalbuminuria also decrease after treatment with a decline in azotemia. In addition, sodium-vitamin C cotransporter isoform 1 levels, which were increased during aging, are normalized. In contrast, the pattern of glucose transporter 1 expression is not affected by aging or vitamin C treatment. We conclude that oxidized and reduced vitamin C are potent antiaging therapies and that DHA reverses the kidney damage observed in senescence-accelerated prone mouse 8 to a greater degree.
Collapse
Affiliation(s)
- Katherine Forman
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.,Department of Nutrition and Dietetics, Pharmacy School, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.,Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Malaga, Spain
| | - Marcos Fernández
- Department of Pharmacy, Pharmacy School, University of Concepcion, Concepcion, Chile
| | - Romina Bertinat
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.,Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Pablo Torres
- Department of Pharmacy, Pharmacy School, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.,Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Alejandro Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencias, Universidad San Sebastían, Santiago, Chile.,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Francisco Nualart
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile.,Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
5
|
Yücetepe A, Altin G, Özçelik B. A novel antioxidant source: evaluation of
in vitro
bioaccessibility, antioxidant activity and polyphenol profile of phenolic extract from black radish peel wastes (
Raphanus sativus
L. var.
niger
) during simulated gastrointestinal digestion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aysun Yücetepe
- Department of Food Engineering Faculty of Engineering Aksaray University Aksaray 68100Turkey
| | - Gokce Altin
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak, Istanbul 34469Turkey
- Molecular Engineering & Science Institute University of Washington 3946 W Stevens Way NE Seattle WA 98105USA
| | - Beraat Özçelik
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak, Istanbul 34469Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co. Maslak, Istanbul 34469Turkey
| |
Collapse
|
6
|
Hao ZH, Huang Y, Wang MR, Huo TT, Jia Q, Feng RF, Fan P, Wang JH. SS31 ameliorates age-related activation of NF-κB signaling in senile mice model, SAMP8. Oncotarget 2018; 8:1983-1992. [PMID: 28030844 PMCID: PMC5356771 DOI: 10.18632/oncotarget.14077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
Aging has been attributed to oxidative stress and inflammatory response, in which NF-κB and Nrf2-ARE signaling pathways play significant roles. Senescence accelerated mouse prone 8 (SAMP8) is generally used an animal model for aging studies. Here, we investigated the NF-κB and Nrf2-ARE signaling pathways in SAMP8 brains at different ages and their responses to SS31 peptide treatment. Thirty six SAMP8 mice were separated into aging groups and SS31-treatment groups. The hippocampus from each mouse was dissected for RNA and protein extraction. Cytokines and ROS levels were measured using ELISA and standardised method. Gene expressions of NF-κB, Nrf2 and HO-1 were measured by RT-qPCR. Total protein amount of NF-κB and HO-1, as well as the concentrations of nuclear and cytoplasmic Nrf2 were measured using Western blots. Our data showed that aging could activate both NF-κB and Nrf2-ARE signaling pathways, which could be suppressed and activated by SS31 treatment respectively. Regression analysis revealed that NF-κB gene expression was the most important parameter predicting aging process and SS31 treatment effects in SAMP8. Our findings suggested that SS31 treatment may modulate the inflammatory and oxidative stress status of the aged brains and exert protective effects during brain aging.
Collapse
Affiliation(s)
- Zhi-Hua Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Huang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Mei-Rong Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tian-Tian Huo
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qian Jia
- Graduate School,Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong-Fang Feng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ping Fan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Hua Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Davis C, Dukes A, Drewry M, Helwa I, Johnson MH, Isales CM, Hill WD, Liu Y, Shi X, Fulzele S, Hamrick MW. MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Eng Part A 2017; 23:1231-1240. [PMID: 28363268 PMCID: PMC5689127 DOI: 10.1089/ten.tea.2016.0525] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
Microvesicle- and exosome-mediated transport of microRNAs (miRNAs) represents a novel cellular and molecular pathway for cell-cell communication. In this study, we tested the hypothesis that these extracellular vesicles (EVs) and their miRNAs might change with age, contributing to age-related stem cell dysfunction. EVs were isolated from the bone marrow interstitial fluid (supernatant) of young (3-4 months) and aged (24-28 months) mice to determine whether the size, concentration, and miRNA profile of EVs were altered with age in vivo. Results show that EVs isolated from bone marrow are CD63 and CD9 positive, and the concentration and size distribution of bone marrow EVs are similar between the young and aged mice. Bioanalyzer data indicate that EVs from both young and aged mice are highly enriched in miRNAs, and the miRNA profile of bone marrow EVs differs significantly between the young and aged mice. Specifically, the miR-183 cluster (miR-96/-182/-183) is highly expressed in aged EVs. In vitro assays demonstrate that aged EVs are endocytosed by primary bone marrow stromal cells (BMSCs), and these aged EVs inhibit the osteogenic differentiation of young BMSCs. Transfection of BMSCs with miR-183-5p mimic reduces cell proliferation and osteogenic differentiation, increases senescence, and decreases protein levels of the miR-183-5p target heme oxygenase-1 (Hmox1). In vitro assays utilizing H2O2-induced oxidative stress show that H2O2 treatment of BMSCs increases the abundance of miR-183-5p in BMSC-derived EVs, and Amplex Red assays demonstrate that H2O2 is elevated in the bone marrow microenvironment with age. Together, these data indicate that aging and oxidative stress can significantly alter the miRNA cargo of EVs in the bone marrow microenvironment, which may in turn play a role in stem cell senescence and osteogenic differentiation by reducing Hmox1 activity.
Collapse
Affiliation(s)
- Colleen Davis
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Amy Dukes
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Michelle Drewry
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Inas Helwa
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Maribeth H Johnson
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Carlos M Isales
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - William D Hill
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Xingming Shi
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
8
|
Abstract
Brain inflammaging is increasingly considered as contributing to age-related cognitive loss and neurodegeneration. Despite intensive research in multiple models, no clinically effective pharmacological treatment has been found yet. Here, in the mouse model of brain senescence SAMP8, we tested the effects of proinsulin, a promising neuroprotective agent that was previously proven to be effective in mouse models of retinal neurodegeneration. Proinsulin is the precursor of the hormone insulin but also upholds developmental physiological effects, particularly as a survival factor for neural cells. Adeno-associated viral vectors of serotype 1 bearing the human proinsulin gene were administered intramuscularly to obtain a sustained release of proinsulin into the blood stream, which was able to reach the target area of the hippocampus. SAMP8 mice and the control strain SAMR1 were treated at 1 month of age. At 6 months, behavioral testing exhibited cognitive loss in SAMP8 mice treated with the null vector. Remarkably, the cognitive performance achieved in spatial and recognition tasks by SAMP8 mice treated with proinsulin was similar to that of SAMR1 mice. In the hippocampus, proinsulin induced the activation of neuroprotective pathways and the downstream signaling cascade, leading to the decrease of neuroinflammatory markers. Furthermore, the decrease of astrocyte reactivity was a central effect, as demonstrated in the connectome network of changes induced by proinsulin. Therefore, the neuroprotective effects of human proinsulin unveil a new pharmacological potential therapy in the fight against cognitive loss in the elderly.
Collapse
|
9
|
Anti-Inflammatory Properties of Brazilian Green Propolis Encapsulated in a γ-Cyclodextrin Complex in Mice Fed a Western-Type Diet. Int J Mol Sci 2017; 18:ijms18061141. [PMID: 28587122 PMCID: PMC5485965 DOI: 10.3390/ijms18061141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/18/2017] [Indexed: 01/05/2023] Open
Abstract
Ageing is often accompanied by chronic inflammation. A fat- and sugar-rich Western-type diet (WTD) may accelerate the ageing phenotype. Cell culture studies have indicated that artepillin C-containing Brazilian green propolis exhibits anti-inflammatory properties. However, little is known regarding its anti-inflammatory potential in mouse liver in vivo. In this study, female C57BL/6NRj wild-type mice were fed a WTD, a WTD supplemented with Brazilian green propolis supercritical extract (GPSE) encapsulated in γ-cyclodextrin (γCD) or a WTD plus γCD for 10 weeks. GPSE-γCD did not affect the food intake, body weight or body composition of the mice. However, mRNA levels of the tumour necrosis factor α were significantly downregulated (p < 0.05) in these mice compared to those in the WTD-fed controls. Furthermore, the gene expression levels of other pro-inflammatory markers, including serum amyloid P, were significantly (p < 0.001) decreased following GPSE-γCD treatment. GPSE-γCD significantly induced hepatic ferritin gene expression (p < 0.01), which may contribute to its anti-inflammatory properties. Conversely, GPSE-γCD did not affect the biomarkers of endogenous antioxidant defence, including catalase, glutathione peroxidase-4, paraoxonase-1, glutamate cysteine ligase and nuclear factor erythroid 2-related factor-2 (Nrf2). Overall, the present data suggest that dietary GPSE-γCD exhibits anti-inflammatory, but not antioxidant activity in mouse liver in vivo. Thus, GPSE-γCD has the potential to serve as a natural hepatoprotective bioactive compound for dietary-mediated strategies against chronic inflammation.
Collapse
|
10
|
Forman K, Martínez F, Cifuentes M, Bertinat R, Salazar K, Nualart F. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney. J Cell Physiol 2017; 232:2418-2426. [DOI: 10.1002/jcp.25504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Katherine Forman
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
- Departamento de Nutrición y Dietética, Facultad de Farmacia; Universidad de Concepción; Concepción Chile
| | - Fernando Martínez
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Manuel Cifuentes
- Departamento de Biología Celular, Génetica y Fisiología, Laboratorio de Fisiología Animal; Facultad de Ciencias, Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universidad de Málaga; Málaga España
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Katterine Salazar
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO BIO; Facultad de Ciencias Biológicas, Universidad de Concepción; Concepción Chile
| |
Collapse
|
11
|
Hagl S, Asseburg H, Heinrich M, Sus N, Blumrich EM, Dringen R, Frank J, Eckert GP. Effects of Long-Term Rice Bran Extract Supplementation on Survival, Cognition and Brain Mitochondrial Function in Aged NMRI Mice. Neuromolecular Med 2016; 18:347-63. [PMID: 27350374 DOI: 10.1007/s12017-016-8420-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
Aging represents a major risk factor for the development of neurodegenerative diseases like Alzheimer's disease (AD). As mitochondrial dysfunction plays an important role in brain aging and occurs early in the development of AD, the prevention of mitochondrial dysfunction might help to slow brain aging and the development of neurodegenerative diseases. Rice bran extract (RBE) contains high concentrations of vitamin E congeners and γ-oryzanol. We have previously shown that RBE increased mitochondrial function and protected from mitochondrial dysfunction in vitro and in short-term in vivo feeding studies. To mimic the use of RBE as food additive, we have now investigated the effects of a long-term (6 months) feeding of RBE on survival, behavior and brain mitochondrial function in aged NMRI mice. RBE administration significantly increased survival and performance of aged NMRI mice in the passive avoidance and Y-maze test. Brain mitochondrial dysfunction found in aged mice was ameliorated after RBE administration. Furthermore, data from mRNA and protein expression studies revealed an up-regulation of mitochondrial proteins in RBE-fed mice, suggesting an increase in mitochondrial content which is mediated by a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-dependent mechanism. Our findings suggest that a long-term treatment with a nutraceutical containing RBE could be useful for slowing down brain aging and thereby delaying or even preventing AD.
Collapse
Affiliation(s)
- Stephanie Hagl
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Heike Asseburg
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Martina Heinrich
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Nadine Sus
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany. .,Institute of Nutritional Sciences, University of Giessen, Wilhelmstrasse 20, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
13
|
Hagl S, Berressem D, Grewal R, Sus N, Frank J, Eckert GP. Rice bran extract improves mitochondrial dysfunction in brains of aged NMRI mice. Nutr Neurosci 2015; 19:1-10. [PMID: 26241203 DOI: 10.1179/1476830515y.0000000040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Aging represents a major risk factor for neurodegenerative diseases such as Alzheimer's disease. Mitochondria are significantly involved in both the aging process and neurodegeneration. One strategy to protect the brain and to prevent neurodegeneration is a healthy lifestyle including a diet rich in antioxidants and polyphenols. Rice bran extract (RBE) contains various antioxidants including natural vitamin E forms (tocopherols and tocotrienols) and gamma-oryzanol. In this work, we examined the effects of a stabilized RBE on mitochondrial function in 18-month-old Naval Medical Research Institute mice (340 mg/kg body weight/day), which received the extract for 3 weeks via oral gavage. METHODS Mitochondrial parameters were measured using high-resolution respirometry (Oroboros Oxygraph-2k), Western blot analysis, and photometric methods in dissociated brain cells, isolated mitochondria, and brain homogenate. Vitamin E concentrations in blood plasma and brain tissue were measured using HPLC with fluorescence detection. RESULTS Aging leads to decreased mitochondrial function (decreased mitochondrial respiration and ATP production) and decreased protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1alpha). RBE administration increased alpha-tocopherol concentrations in the brain and compensated for age-related mitochondrial dysfunction by increasing mitochondrial respiration, membrane potential, PGC1alpha protein expression, and citrate synthase activity. Furthermore, resistance of brain cells to sodium nitroprusside-induced nitrosative stress was improved. DISCUSSION According to these results, RBE is a promising candidate nutraceutical for the prevention of age-related neurodegenerative diseases.
Collapse
|
14
|
Scoditti E, Capurso C, Capurso A, Massaro M. Vascular effects of the Mediterranean diet-part II: role of omega-3 fatty acids and olive oil polyphenols. Vascul Pharmacol 2014; 63:127-34. [PMID: 25446163 DOI: 10.1016/j.vph.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 12/27/2022]
Abstract
The lower occurrence of cardiovascular disease and cancer in populations around the Mediterranean basin as detected in the 1950s was correctly attributed to the peculiar dietary habits of those populations. Essentially, until the mid-20th century, typical Mediterranean diets were rich in fruits, vegetables, legumes, whole-wheat bread, nuts, fish, and, as a common culinary trait, the routine use of extra-virgin olive oil. Nowadays, the regular adoption of such dietary patterns is still thought to result in healthful benefits. Such patterns ensure the assumption of molecules with antioxidant and anti-inflammatory actions, among which ω-3 polyunsaturated fatty acids (PUFAs), ω-9 monounsaturated fatty acids (oleic acid), and phenolic compounds. The aim of this review is to provide an update of the vasculo-protective pathways mediated by ω-3 PUFAs and polyphenols in the context of the modern Mediterranean dietary habits, including the possible cross-talk and synergy between these typical components. This review complements a parallel one focusing on the role of dietary nitrates and alimentary fats.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy.
| | - Cristiano Capurso
- Dept. of Medical and Surgical Science, Section on Geriatrics and Internal Medicine, University of Foggia, Italy.
| | - Antonio Capurso
- Faculty of Medicine, Section of Geriatrics and Gerontology, University of Bari, Italy.
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
15
|
Alvarez-López MJ, Molina-Martínez P, Castro-Freire M, Cosín-Tomás M, Cristòfol R, Párrizas M, Escorihuela RM, Pallàs M, Sanfeliu C, Kaliman P. Rcor2 underexpression in senescent mice: a target for inflammaging? J Neuroinflammation 2014; 11:126. [PMID: 25051986 PMCID: PMC4128581 DOI: 10.1186/1742-2094-11-126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
Abstract
Background Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. Methods To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. Results P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-β and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. Conclusions Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Perla Kaliman
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Rosellón 149, E-08036 Barcelona, Spain.
| |
Collapse
|
16
|
Iozzo P, Holmes M, Schmidt MV, Cirulli F, Guzzardi MA, Berry A, Balsevich G, Andreassi MG, Wesselink JJ, Liistro T, Gómez-Puertas P, Eriksson JG, Seckl J. Developmental ORIgins of Healthy and Unhealthy AgeiNg: the role of maternal obesity--introduction to DORIAN. Obes Facts 2014; 7:130-51. [PMID: 24801105 PMCID: PMC5644840 DOI: 10.1159/000362656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022] Open
Abstract
Europe has the highest proportion of elderly people in the world. Cardiovascular disease, type 2 diabetes, sarcopenia and cognitive decline frequently coexist in the same aged individual, sharing common early risk factors and being mutually reinforcing. Among conditions which may contribute to establish early risk factors, this review focuses on maternal obesity, since the epidemic of obesity involves an ever growing number of women of reproductive age and children, calling for appropriate studies to understand the consequences of maternal obesity on the offspring's health and for developing effective measures and policies to improve people's health before their conception and birth. Though the current knowledge suggests that the long-term impact of maternal obesity on the offspring's health may be substantial, the outcomes of maternal obesity over the lifespan have not been quantified, and the molecular changes induced by maternal obesity remain poorly characterized. We hypothesize that maternal insulin resistance and reduced placental glucocorticoid catabolism, leading to oxidative stress, may damage the DNA, either in its structure (telomere shortening) or in its function (via epigenetic changes), resulting in altered gene expression/repair, disease during life, and pathological ageing. This review illustrates the background to the EU-FP7-HEALTH-DORIAN project.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pis
- *Patricia Iozzo, MD, PhD, Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa (Italy),
| | - Megan Holmes
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | - Tiziana Liistro
- Institute of Clinical Physiology, National Research Council (CNR), Pis
| | | | - Johan G. Eriksson
- Samfundet Folkhälsan i Svenska Finland rf (Folkhälsan), Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Jonathan Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Vitamin C and lifespan in model organisms. Food Chem Toxicol 2013; 58:255-63. [DOI: 10.1016/j.fct.2013.04.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 12/17/2022]
|
18
|
The p66Shc gene paves the way for healthspan: Evolutionary and mechanistic perspectives. Neurosci Biobehav Rev 2013; 37:790-802. [DOI: 10.1016/j.neubiorev.2013.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
|
19
|
Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem Int 2013; 62:595-602. [PMID: 23422877 DOI: 10.1016/j.neuint.2013.02.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 11/22/2022]
Abstract
The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n=10) and SAMP8 mice (n=7) were fed a Western type diet (control groups) for 5months and one group of SAMP8 mice (n=6) was fed an identical diet fortified with 500mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction.
Collapse
|
20
|
Pallàs M. Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/917167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The causes of aging remain unknown, but they are probably intimately linked to a multifactorial process that affects cell networks to varying degrees. Although a growing number of aging and Alzheimer’s disease (AD) animal models are available, a more comprehensive and physiological mouse model is required. In this context, the senescence-accelerated mouse prone 8 (SAMP8) has a number of advantages, since its rapid physiological senescence means that it has about half the normal lifespan of a rodent. In addition, according to data gathered over the last five years, some of its behavioral traits and histopathology resemble AD human dementia. SAMP8 has remarkable pathological similarities to AD and may prove to be an excellent model for acquiring more in-depth knowledge of the age-related neurodegenerative processes behind brain senescence and AD in particular. We review these facts and particularly the data on parameters related to neurodegeneration. SAMP8 also shows signs of aging in the immune, vascular, and metabolic systems, among others.
Collapse
Affiliation(s)
- Mercè Pallàs
- Unitat de Farmacologia i Farmacognòosia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona y Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| |
Collapse
|