1
|
Xie L, Chen Q, Xu H, Li C, Lu J, Zhu Y. The research progress on periodontitis by the National Natural Science Foundation of China. Int J Oral Sci 2025; 17:44. [PMID: 40461458 PMCID: PMC12134109 DOI: 10.1038/s41368-025-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 06/11/2025] Open
Abstract
Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.
Collapse
Affiliation(s)
- Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Qian Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cui Li
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Jiayu Lu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.
| | - Yuangui Zhu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.
| |
Collapse
|
2
|
Stanfield B, Kaeberlein M, Leroux B, Jones J, Lucas R, Arroll B. A single-center, double-blind, randomized, placebo-controlled, two-arm study to evaluate the safety and efficacy of once-weekly sirolimus (rapamycin) on muscle strength and endurance in older adults following a 13-week exercise program. Trials 2024; 25:642. [PMID: 39354527 PMCID: PMC11443903 DOI: 10.1186/s13063-024-08490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Aging leads to a decline in muscle mass and strength, contributing to frailty and decreased quality of life. Sirolimus (rapamycin) , an mTOR inhibitor, has shown potential in preclinical studies to extend lifespan and improve health span. This study evaluates the safety and efficacy of once-weekly sirolimus (rapamycin) administration on muscle strength and endurance in older adults engaged in a 13-week exercise program. METHODS This randomized, double-blind, placebo-controlled trial will enroll 40 participants aged 65-85. Participants will be randomly assigned to receive either sirolimus (rapamycin) 6 mg/week or placebo for 13 weeks, in conjunction with an at-home exercise program. The primary outcome measure is the change in muscle strength and endurance, assessed by the 30-Second Chair-Stand Test. Secondary outcome measures include adverse events, changes in muscle strength and endurance as measured by the 6-min walk test, handgrip strength, and participant-reported outcomes using the SF-36 survey. Assessments will be conducted at baseline, mid-intervention (week 6), and post-intervention (week 13). Blood samples will be collected for hematology and biochemistry analyses, including full blood count, urea and electrolytes, liver function tests, HbA1c, lipids, serum IGF-1, and hs-CRP. DNA methylation will be analyzed using TruDiagnostic™ to explore changes in biological age. DISCUSSION This study aims to provide insights into the potential benefits of intermittent sirolimus (rapamycin) administration on muscle performance in older adults. By alternating periods of mTOR inhibition through rapamycin and activation via exercise, this study will explore a novel approach to enhancing muscle strength and endurance in the aging population. The results could have significant implications for developing interventions to improve physical function and overall health outcomes in older adults. Safety and tolerability will also be closely monitored to ensure the feasibility of this regimen for wider application. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry, ACTRN12624000790549. Registered on 26 June 2024 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12624000790549 .
Collapse
Affiliation(s)
- Brad Stanfield
- Royal New Zealand College of General Practitioners, Wellington Central, Wellington, 6011, New Zealand.
- University of Auckland, Auckland, New Zealand.
| | - Matt Kaeberlein
- Optispan, Inc., Seattle, WA, USA
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Brian Leroux
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Bruce Arroll
- General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Hudson J, Kaeberlein T, Mahal A, Wong N, Ghorbanifarajzadeh M, Radella F, Isman A, Nyquist A, Zalzala S, Haddad G, Kaeberlein M, An JY. Evaluation of off-label rapamycin use on oral health. GeroScience 2024; 46:4135-4146. [PMID: 38839644 PMCID: PMC11335702 DOI: 10.1007/s11357-024-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Rapamycin (sirolimus) is an FDA approved drug with immune modulating properties that is being prescribed off-label in adults as a preventative therapy to maintain healthspan. We recently published one of the first reports on 333 adults with a history of off-label rapamycin use. Along with presenting evidence that rapamycin can be used safely in adults of normal health status, we discovered that about 26% of rapamycin users also reported oral health changes. Given the recent evidence highlighting the potential benefits of rapamycin and its derivatives in enhancing oral health, we conducted a secondary data analysis to profile the oral health of off-label rapamycin users, the true incidence of mouth sores, and present specific case studies of periodontal bone loss quantification using an FDA-approved artificial intelligence platform. Contrary to expected findings and previous literature, dimensions of rapamycin usage (such as length of use, dosage, and interval) were not found to be related to the incidence of mouth ulcers in rapamycin users. Notably, among rapamycin users, the most deleterious forms of ulcers were found to be infrequent and not statistically linked to rapamycin usage, with most rapamycin users having a common transient form of mouth ulcers. Additionally, we describe the general oral health outcomes of off-label rapamycin users and provide recommendations for individuals engaging in off-label rapamycin to be regularly checked by a dentist or an oral health care provider. This report was limited by being a secondary data analysis taken from survey data that focused on a more holistic health model. Future studies will use a focused survey that collects data on more dimensions of oral health outcomes while including questions on oral health for non-rapamycin-using participants.
Collapse
Affiliation(s)
- Johnny Hudson
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Tammi Kaeberlein
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Akashdeep Mahal
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Nelson Wong
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | - Frank Radella
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | | | | - Jonathan Y An
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. GeroScience 2024; 46:3695-3709. [PMID: 37285008 PMCID: PMC11226587 DOI: 10.1007/s11357-023-00835-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Periodontal disease is a chronic inflammatory condition that results in the destruction of the teeth supporting tissues, eventually leading to the loss of teeth and reduced quality of life. In severe cases, periodontal disease can limit proper nutritional intake, cause acute pain and infection, and cause a withdrawal from social situations due to esthetic and phonetic concerns. Similar to other chronic inflammatory conditions, periodontal disease increases in prevalence with age. Research into what drives periodontal disease pathogenesis in older adults is contributing to our general understanding of age-related chronic inflammation. This review will present periodontal disease as an age-related chronic inflammatory disease and as an effective geroscience model to study mechanisms of age-related inflammatory dysregulation. The current understanding of the cellular and molecular mechanisms that drive inflammatory dysregulation as a function of age will be discussed with a focus on the major pathogenic immune cells in periodontal disease, which include neutrophils, macrophages, and T cells. Research in the aging biology field has shown that the age-related changes in these immune cells result in the cells becoming less effective in the clearance of microbial pathogens, expansion of pathogenic subpopulations, or an increase in pro-inflammatory cytokine secretions. Such changes can be pathogenic and contribute to inflammatory dysregulation that is associated with a myriad of age-related disease including periodontal disease. An improved understanding is needed to develop better interventions that target the molecules or pathways that are perturbed with age in order to improve treatment of chronic inflammatory conditions, including periodontal disease, in older adult populations.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daniel Clark
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Elashiry M, Carroll A, Yuan J, Liu Y, Hamrick M, Cutler CW, Wang Q, Elsayed R. Oral Microbially-Induced Small Extracellular Vesicles Cross the Blood-Brain Barrier. Int J Mol Sci 2024; 25:4509. [PMID: 38674094 PMCID: PMC11049816 DOI: 10.3390/ijms25084509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1β and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.E.); (A.C.); (J.Y.); (C.W.C.)
| | - Angelica Carroll
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.E.); (A.C.); (J.Y.); (C.W.C.)
| | - Jessie Yuan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.E.); (A.C.); (J.Y.); (C.W.C.)
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (M.H.)
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (M.H.)
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.E.); (A.C.); (J.Y.); (C.W.C.)
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.E.); (A.C.); (J.Y.); (C.W.C.)
| |
Collapse
|
6
|
Svensson JE, Bolin M, Thor D, Williams PA, Brautaset R, Carlsson M, Sörensson P, Marlevi D, Spin-Neto R, Probst M, Hagman G, Morén AF, Kivipelto M, Plavén-Sigray P. Evaluating the effect of rapamycin treatment in Alzheimer's disease and aging using in vivo imaging: the ERAP phase IIa clinical study protocol. BMC Neurol 2024; 24:111. [PMID: 38575854 PMCID: PMC10993488 DOI: 10.1186/s12883-024-03596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer's disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The "Evaluating Rapamycin Treatment in Alzheimer's Disease using Positron Emission Tomography" (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer's disease. METHODS ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer's disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [18F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. DISCUSSION The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer's disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov ID NCT06022068, date of registration 2023-08-30.
Collapse
Affiliation(s)
- Jonas E Svensson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Bolin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Daniel Thor
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Carlsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Peder Sörensson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus C, Denmark
| | - Monika Probst
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Göran Hagman
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Miia Kivipelto
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
7
|
Abdul-Azees PA, Wang H, Chun YHP, Pizzini J, Dean DD, Reveles KR, Marinkovic M, Chen XD, Salmon AB, Yeh CK. Changes in oral health during aging in a novel non-human primate model. GeroScience 2024; 46:1909-1926. [PMID: 37775702 PMCID: PMC10828187 DOI: 10.1007/s11357-023-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3-V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.
Collapse
Affiliation(s)
- Parveez Ahamed Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yong-Hee P Chun
- Department of Periodontics, Department of Cell Systems and Anatomy, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason Pizzini
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kelly R Reveles
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
8
|
Shi R, Ye J, Fan H, Hu X, Wu X, Wang D, Zhao B, Dai X, Liu X. Lactobacillus plantarum LLY-606 Supplementation Ameliorates the Cognitive Impairment of Natural Aging in Mice: The Potential Role of Gut Microbiota Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4049-4062. [PMID: 38373323 DOI: 10.1021/acs.jafc.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This work explored the effects of Lactobacillus plantarum LLY-606 (LLY-606) on cognitive function in aging mice. Our findings demonstrated that LLY-606 effectively prolonged the lifespan of mice and improved age-related cognitive impairments. Additionally, our study revealed that supplementation with LLY-606 resulted in the downregulation of inflammatory cytokine levels and the upregulation of antioxidant capacity. Furthermore, probiotic supplementation effectively mitigated the deterioration of the intestinal barrier function in aging mice. Amplicon analysis indicated the successful colonization of probiotics, facilitating the regulation of age-induced gut microbiota dysbiosis. Notably, the functional abundance prediction of microbiota indicated that tryptophan metabolism pathways, glutamatergic synapse pathways, propanoate metabolism pathways, and arginine and proline metabolism pathways were enriched after the LLY-606 intervention. In summary, LLY-606 emerged as a potential functional probiotic capable of influencing cognitive function in aging mice. This effect was achieved through the modulation of gut microbiota, the regulation of synaptic plasticity, and the enhancement of neurotrophic factor levels.
Collapse
Affiliation(s)
- Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
10
|
Kaeberlein TL, Green AS, Haddad G, Hudson J, Isman A, Nyquist A, Rosen BS, Suh Y, Zalzala S, Zhang X, Blagosklonny MV, An JY, Kaeberlein M. Evaluation of off-label rapamycin use to promote healthspan in 333 adults. GeroScience 2023; 45:2757-2768. [PMID: 37191826 PMCID: PMC10187519 DOI: 10.1007/s11357-023-00818-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Rapamycin (sirolimus) is an FDA-approved drug with immune-modulating and growth-inhibitory properties. Preclinical studies have shown that rapamycin extends lifespan and healthspan metrics in yeast, invertebrates, and rodents. Several physicians are now prescribing rapamycin off-label as a preventative therapy to maintain healthspan. Thus far, however, there is limited data available on side effects or efficacy associated with use of rapamycin in this context. To begin to address this gap in knowledge, we collected data from 333 adults with a history of off-label use of rapamycin by survey. Similar data were also collected from 172 adults who had never used rapamycin. Here, we describe the general characteristics of a patient cohort using off-label rapamycin and present initial evidence that rapamycin can be used safely in adults of normal health status.
Collapse
Affiliation(s)
- Tammi L Kaeberlein
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | | | - Johnny Hudson
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15219, USA
| | | | - Jonathan Y An
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Optispan Geroscience, Seattle, WA, 98168, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Bitto A, Grillo AS, Ito TK, Stanaway IB, Nguyen BMG, Ying K, Tung H, Smith K, Tran N, Velikanje G, Urfer SR, Snyder JM, Barton J, Sharma A, Kayser EB, Wang L, Smith DL, Thompson JW, DuBois L, DePaolo W, Kaeberlein M. Acarbose suppresses symptoms of mitochondrial disease in a mouse model of Leigh syndrome. Nat Metab 2023; 5:955-967. [PMID: 37365290 DOI: 10.1038/s42255-023-00815-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anthony S Grillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Takashi K Ito
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Ian B Stanaway
- Division of Nephrology, School of Medicine, University of Washington, Seattle, WA, USA
- Harborview Medical Center, Kidney Research Institute, Seattle, WA, USA
| | - Bao M G Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kejun Ying
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | | | - Ngoc Tran
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Gunnar Velikanje
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Silvan R Urfer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jacob Barton
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ayush Sharma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Laura DuBois
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - William DePaolo
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Barnett BG, Wesselowski SR, Gordon SG, Saunders AB, Promislow DEL, Schwartz SM, Chou L, Evans JB, Kaeberlein M, Creevy KE. A masked, placebo-controlled, randomized clinical trial evaluating safety and the effect on cardiac function of low-dose rapamycin in 17 healthy client-owned dogs. Front Vet Sci 2023; 10:1168711. [PMID: 37275618 PMCID: PMC10233048 DOI: 10.3389/fvets.2023.1168711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Geroscience studies of low-dose rapamycin in laboratory species have identified numerous benefits, including reversing age-related cardiac dysfunction. Cardiovascular benefits have been observed in dogs with 10 weeks of treatment, raising questions about possible benefits and adverse effects of long-term use of low-dose rapamycin. The objectives of this study were to assess the impact of 6 months of low-dose rapamycin on echocardiographic indices of cardiac function in healthy dogs and to document the occurrence of adverse events. Methods Seventeen client-owned dogs aged 6-10 years, weighing 18-36 kg, and without significant systemic disease were included in a prospective, randomized, placebo-controlled, masked clinical trial. Low-dose rapamycin (0.025 mg/kg) or placebo was administered three times per week for 6 months. Baseline, 6-month, and 12-month evaluation included physical examination, cardiology examination, and clinicopathology. Three-month evaluation included physical examination and clinicopathology. Owners completed online questionnaires every 2 weeks. Results There were no statistically significant differences in echocardiographic parameters between rapamycin and placebo groups at 6 or 12 months. No clinically significant adverse events occurred. In 26.8% of the bi-weekly surveys owners whose dogs received rapamycin reported perceived positive changes in behavior or health, compared to 8.1% in the placebo group (p = 0.04). Discussion While no clinically significant change in cardiac function was observed in dogs treated with low-dose rapamycin, the drug was well-tolerated with no significant adverse events.
Collapse
Affiliation(s)
- Brian G. Barnett
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Sonya R. Wesselowski
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Sonya G. Gordon
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stephen M. Schwartz
- Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lucy Chou
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy B. Evans
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Ikegami K, Yamashita M, Suzuki M, Nakamura T, Hashimoto K, Kitagaki J, Yanagita M, Kitamura M, Murakami S. Cellular senescence with SASP in periodontal ligament cells triggers inflammation in aging periodontal tissue. Aging (Albany NY) 2023; 15:1279-1305. [PMID: 36863315 PMCID: PMC10042704 DOI: 10.18632/aging.204569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
The direct cause of periodontitis is periodontopathic bacteria, while various environmental factors affect the severity of periodontitis. Previous epidemiological studies have shown positive correlations between aging and periodontitis. However, whether and how aging is linked to periodontal health and disease in biological processes is poorly understood. Aging induces pathological alterations in organs, which promotes systemic senescence associated with age-related disease. Recently, it has become evident that senescence at the cellular level, cellular senescence, is a cause of chronic diseases through production of various secretory factors including proinflammatory cytokines, chemokines, and matrix metalloproteinases (MMPs), which is referred to the senescence-associated secretory phenotype (SASP). In this study, we examined the pathological roles of cellular senescence in periodontitis. We found localization of senescent cells in periodontal tissue, particularly the periodontal ligament (PDL), in aged mice. Senescent human PDL (HPDL) cells showed irreversible cell cycle arrest and SASP-like phenotypes in vitro. Additionally, we observed age-dependent upregulation of microRNA (miR)-34a in HPDL cells. These results suggest that chronic periodontitis is mediated by senescent PDL cells that exacerbate inflammation and destruction of periodontal tissues through production of SASP proteins. Thus, miR-34a and senescent PDL cells might be promising therapeutic targets for periodontitis in elderly people.
Collapse
Affiliation(s)
- Kuniko Ikegami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mio Suzuki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomomi Nakamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koki Hashimoto
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jirouta Kitagaki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Yanagita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Elsayed R, Elashiry M, Liu Y, Morandini AC, El-Awady A, Elashiry MM, Hamrick M, Cutler CW. Microbially-Induced Exosomes from Dendritic Cells Promote Paracrine Immune Senescence: Novel Mechanism of Bone Degenerative Disease in Mice. Aging Dis 2023; 14:136-151. [PMID: 36818565 PMCID: PMC9937696 DOI: 10.14336/ad.2022.0623] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
As the aging population grows, chronic age-related bone degenerative diseases become more prevalent and severe. One such disease, periodontitis (PD), rises to 70.1% prevalence in Americans 65 years and older. PD has been linked to increased risk of other age-related diseases with more serious mortality and morbidity profiles such as Alzheimer's disease and cardiovascular disease, but the cellular and biological mechanisms remain unclear. Recent in vitro studies from our group indicate that murine dendritic cells (DCs) and T cells are vulnerable to immune senescence. This occurs through a distinct process involving invasion of DCs by dysbiotic pathogen Porphyromonas gingivalis (Pg) activating the senescence associated secretory phenotype (SASP). Exosomes of the Pg-induced SASP transmit senescence to normal bystander DC and T cells, ablating antigen presentation. The biological significance of these findings in vivo and the mechanisms involved were examined in the present study using young (4-5mo) or old (22-24mo) mice subjected to ligature-induced PD, with or without dysbiotic oral pathogen and injection of Pg-induced DC exosomes. Senescence profiling of gingiva and draining lymph nodes (LN) corroborates role of advanced age and PD in elevation of senescence biomarkers beta galactosidase (SA-β-Gal), p16 INK4A p21Waf1/Clip1, IL6, TNFα, and IL1β, with attendant increase in alveolar bone loss, reversed by senolytic agent rapamycin. Immunophenotyping of gingiva and LN revealed that myeloid CD11c+ DCs and T cells are particularly vulnerable to senescence in vivo under these conditions. Moreover, Pg-induced DC exosomes were the most potent inducers of alveolar bone loss and immune senescence, and capable of overcoming senescence resistance of LN T cells in young mice. We conclude that immune senescence, compounded by advanced age, and accelerated by oral dysbiosis and its induced SASP exosomes, plays a pivotal role in the pathophysiology of experimental periodontitis.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Ana C. Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, GA, USA.
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mohamed M. Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo Egypt.
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| |
Collapse
|
16
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
17
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
A Tale of Two Fimbriae: How Invasion of Dendritic Cells by Porphyromonas gingivalis Disrupts DC Maturation and Depolarizes the T-Cell-Mediated Immune Response. Pathogens 2022; 11:pathogens11030328. [PMID: 35335652 PMCID: PMC8954744 DOI: 10.3390/pathogens11030328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a unique pathogen implicated in severe forms of periodontitis (PD), a disease that affects around 50% of the US population. P. gingivalis is equipped with a plethora of virulence factors that it uses to exploit its environment and survive. These include distinct fimbrial adhesins that enable it to bind to other microbes, colonize inflamed tissues, acquire nutrients, and invade cells of the stroma and immune system. Most notable for this review is its ability to invade dendritic cells (DCs), which bridge the innate and adaptive immune systems. This invasion process is tightly linked to the bridging functions of resultant DCs, in that it can disable (or stimulate) the maturation function of DCs and cytokines that are secreted. Maturation molecules (e.g., MHCII, CD80/CD86, CD40) and inflammatory cytokines (e.g., IL-1b, TNFa, IL-6) are essential signals for antigen presentation and for proliferation of effector T-cells such as Th17 cells. In this regard, the ability of P. gingivalis to coordinately regulate its expression of major (fimA) and minor (mfa-1) fimbriae under different environmental influences becomes highly relevant. This review will, therefore, focus on the immunoregulatory role of P. gingivalis fimbriae in the invasion of DCs, intracellular signaling, and functional outcomes such as alveolar bone loss and immune senescence.
Collapse
|
19
|
Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update 2022; 28:172-189. [PMID: 34918084 PMCID: PMC8888999 DOI: 10.1093/humupd/dmab038] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality as well as uterine and placental dysfunctions. These changes lead to infertility, pregnancy complications and birth defects in the offspring. As the mean age of giving birth is increasing worldwide, prevention of age-associated infertility and pregnancy complications, along with the more frequent use of ART, become extremely important. Currently, significant research is being conducted to unravel the mechanisms underlying female reproductive aging. Among the potential mechanisms involved, recent evidence has suggested a contributing role for cellular senescence, a cellular state of irreversible growth arrest characterized by a hypersecretory and pro-inflammatory phenotype. Elucidating the role of senescence in female reproductive aging holds the potential for developing novel and less invasive therapeutic measures to prevent or even reverse female reproductive aging and increase offspring wellbeing. OBJECTIVE AND RATIONALE The review will summarize the positive and negative implications of cellular senescence in the pathophysiology of the female reproductive organs during aging and critically explore the use of novel senotherapeutics aiming to reverse and/or eliminate their detrimental effects. The focus will be on major senescence mechanisms of the ovaries, the uterus, and the placenta, as well as the potential and risks of using senotherapies that have been discovered in recent years. SEARCH METHODS Data for this review were identified by searches of MEDLINE, PubMed and Google Scholar. References from relevant articles using the search terms 'Cellular Senescence', 'Aging', 'Gestational age', 'Maternal Age', 'Anti-aging', 'Uterus', 'Pregnancy', 'Fertility', 'Infertility', 'Reproduction', 'Implant', 'Senolytic', 'Senostatic', 'Senotherapy' and 'Senotherapeutic' where selected. A total of 182 articles published in English between 2005 and 2020 were included, 27 of which focus on potential senotherapies for reproductive aging. Exclusion criteria were inclusion of the terms 'male' and 'plants'. OUTCOMES Aging is a major determinant of reproductive wellbeing. Cellular senescence is a basic aging mechanism, which can be exploited for therapeutic interventions. Within the last decade, several new strategies for the development and repurposing of drugs targeting senescent cells have emerged, such as modulators of the anti-inflammatory response, oxidative stress, DNA damage, and mitochondria and protein dysfunctions. Several studies of female reproductive aging and senotherapies have been discussed that show promising results for future interventions. WIDER IMPLICATIONS In most countries of the Organization for Economic Co-operation and Development, the average age at which women give birth is above 30 years. Currently, in countries such as the Netherlands, Australia, Spain, Finland, Germany and the UK, birth rates among 30- to 34-year-olds are now higher than in any other age groups. This review will provide new knowledge and scientific advancement on the senescence mechanisms during female reproductive aging, and benefit fundamental and clinical scientists and professionals in the areas of reproduction, cancer, immunobiology and fibrosis.
Collapse
Affiliation(s)
- Laura Secomandi
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| |
Collapse
|
20
|
Elashiry M, Elsayed R, Cutler CW. Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells 2021; 11:cells11010115. [PMID: 35011677 PMCID: PMC8750541 DOI: 10.3390/cells11010115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the 'directors' of the immune response, are receiving favorable safety and tolerance profiles in phase I and II clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes (EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen species and DNA damage. Such cell stressors can promote premature senescence in young cells through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune therapy, as well as the pathogenic potential of endogenous DC exosomes.
Collapse
|
21
|
Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol 2000 2021; 87:143-156. [PMID: 34463998 PMCID: PMC8771712 DOI: 10.1111/prd.12380] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with the development of disease. Periodontal disease is one of the many diseases and conditions that increase in prevalence with age. In addition to the traditional focus on individual age-related conditions, there is now a greater recognition that multisystem conditions such as frailty play an important role in the health of older populations. Frailty is a clinical condition in older adults that increases the risk of adverse health outcomes. Both frailty and periodontal disease are common chronic conditions in older populations and share several risk factors. There is likely a bidirectional relationship between periodontal disease and frailty. Comorbid systemic diseases, poor physical functioning, and limited ability to self-care in frail older people have been implicated as underlying the association between frailty and periodontal disease. In addition, both frailty and periodontal disease also have strong associations with inflammatory dysregulation and other age-related pathophysiologic changes that may similarly underlie their development and progression. Investigating age-related changes in immune cells that regulate inflammation may lead to a better understanding of age-related disease and could lead to therapeutic targets for the improved management of frailty and periodontal disease.
Collapse
Affiliation(s)
- Daniel Clark
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Eftychia Kotronia
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
22
|
Bitto A, Tatom N, Krivak T, Grotz P, Kaeberlein M. Evidence that C/EBP-β LAP Increases Fat Metabolism and Protects Against Diet-Induced Obesity in Response to mTOR Inhibition. FRONTIERS IN AGING 2021; 2:738512. [PMID: 35822052 PMCID: PMC9261321 DOI: 10.3389/fragi.2021.738512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023]
Abstract
Aging and obesity are common risk factors for numerous chronic pathologies, and the compounding effects of old age and increased adiposity pose a serious threat to public health. Starting from the assumption that aging and obesity may have shared underpinnings, we investigated the antiobesogenic potential of a successful longevity intervention, the mTORC1 inhibitor rapamycin. We find that rapamycin prevents diet-induced obesity in mice and increases the activity of C/EBP-β LAP, a transcription factor that regulates the metabolic shift to lipid catabolism observed in response to calorie restriction. Independent activation of C/EBP-β LAP with the antiretroviral drug adefovir dipivoxil recapitulates the anti-obesogenic effects of rapamycin without reducing signaling through mTORC1 and increases markers of fat catabolism in the liver. Our findings support a model that C/EBP-β LAP acts downstream of mTORC1 signaling to regulate fat metabolism and identifies a novel drug that may be exploited to treat obesity and decrease the incidence of age-related disease.
Collapse
|
23
|
Zhang Y, Zhang J, Wang S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res Rev 2021; 70:101376. [PMID: 34089901 DOI: 10.1016/j.arr.2021.101376] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022]
Abstract
Aging can not only shorten a healthy lifespan, but can also lead to multi-organ dysfunction and failure. Anti-aging is a complex and worldwide conundrum for eliminating the various pathologies of senility. The past decade has seen great progress in the understanding of the aging-associated signaling pathways and their application for developing anti-aging approaches. Currently, some drugs can improve quality of life. The activation of mammalian target of rapamycin (mTOR) signaling is one of the core and detrimental mechanisms related to aging; rapamycin can reduce the rate of aging, improve age-related diseases by inhibiting the mTOR pathway, and prolong lifespan and healthspan effectively. However, the current evidence for rapamycin in lifespan extension and organ aging is fragmented and scattered. In this review, we summarize the efficacy and safety of rapamycin in prolonging a healthy lifespan by systematically alleviating aging in multiple organ systems, i.e., the nervous, urinary, digestive, circulatory, motor, respiratory, endocrine, reproductive, integumentary and immune systems, to provide a theoretical basis for the future clinical application of rapamycin in anti-aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Jiang F, Zhou Y, Zhang R, Wen Y. miR-205 and HMGB1 expressions in chronic periodontitis patients and their associations with the inflammatory factors. Am J Transl Res 2021; 13:9224-9232. [PMID: 34540038 PMCID: PMC8430143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This paper sets out to investigate the miR-205 and HMGB1 expressions in chronic periodontitis (PO) patients and their associations with the inflammatory factors. METHODS From February 2016 to May 2018, 68 PO patients treated in our hospital were recruited for the study and placed in a patient group (PG), and 60 healthy volunteers were also recruited and placed in a healthy group (HG). Serum samples were collected from both groups for the identification of miR-205 using qPCR, as well as to determine the HMGB1 and inflammatory factor (IL-1β, IL-6, TNF-α) expression levels using ELISA. The correlations of the miR-205 and HMGB1 expression levels with the periodontal clinical indicators and the inflammatory factors were analyzed using a correlation analysis. RESULTS In comparison with the HG expression, the serum miR-205 expression was lower, and the HMGB1 was elevated in PG (P < 0.05). An ROC curve analysis showed that the areas under the curve (AUCs) of the serum miR-205 and HMGB1 expressions in diagnosing PO were 0.936 and 0.955 respectively. However, the serum miR-205 expression in PG increased while the HMGB1 expression decreased post treatment (P < 0.05). A correlation analysis revealed an inverse association between the serum miR-205 expression levels and the periodontal clinical indicators [bleeding index (BI), probing depth (PD), plaque index (PLI), and attachment loss (AL)], and the inflammatory factors [interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)], but there was a positive association between the HMGB1 expression level and these parameters. CONCLUSIONS miR-205 and HMGB1 are closely related to the progression of PO, and may be candidate biomarkers for the diagnosis and treatment of PO.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| | - Yanling Zhou
- Department of Dental, North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| | - Rendan Zhang
- Laboratory of The Dental Department, North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| | - Yuhan Wen
- Laboratory of The Dental Department, North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| |
Collapse
|
25
|
Gibbs NH, Michalski H, Promislow DEL, Kaeberlein M, Creevy KE. Reasons for Exclusion of Apparently Healthy Mature Adult and Senior Dogs From a Clinical Trial. Front Vet Sci 2021; 8:651698. [PMID: 34150883 PMCID: PMC8206478 DOI: 10.3389/fvets.2021.651698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Interventional clinical trials intended to maintain health in aging dogs are unusual and require particular attention to exclusion criteria. Objectives: To describe reasons for exclusion when a mature adult and senior canine population with normal health status was sought. Animals: Fifty six companion dogs nominated for a randomized controlled trial (RCT). Procedures: Exclusions occurred within Stage 1 (S1): owner-provided survey information; Stage 2 (S2): medical records review; and Stage 3 (S3): screening examination and within Owner, Dog, or Other factor categories. Results: Of 56 nominated dogs, 39 were excluded at S1 (n = 19), S2 (n = 5), and S3 (n = 15), respectively. Dogs were excluded for Owner (n = 4), Dog (n = 27), Other (n = 6), and concurrent (Owner + Dog; n = 2) factors. The most common exclusion period was S1 (n = 19), with weight outside the target range being the most common exclusion factor in that stage (n = 10). Heart murmurs were the second most common exclusion factor (S1: n = 1; S3: n = 5); suspected or confirmed systemic illness was third most common (S1: n = 2; S2: n = 3; S3: n = 2). Among dogs who passed S1 and S2 screening (n = 32), 15 dogs (48%) were excluded at S3, for heart murmur > grade II/VI (n = 5), cardiac arrhythmias (n = 2), and clinicopathologic abnormalities (n = 2). Conclusions and Clinical Relevance: Dogs nominated for a clinical trial for healthy mature adult and senior dogs were excluded for size, previous diagnoses, and newly discovered cardiac abnormalities. For future interventions in mature adult and senior dogs of normal health status, it is important to define expected age-related abnormalities to ensure that meaningful exclusion criteria are used.
Collapse
Affiliation(s)
- Nicole H Gibbs
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Hannah Michalski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E L Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Elsayed R, Elashiry M, Liu Y, El-Awady A, Hamrick M, Cutler CW. Porphyromonas gingivalis Provokes Exosome Secretion and Paracrine Immune Senescence in Bystander Dendritic Cells. Front Cell Infect Microbiol 2021; 11:669989. [PMID: 34141629 PMCID: PMC8204290 DOI: 10.3389/fcimb.2021.669989] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a disease of ageing or inflammaging, and is comorbid with other more severe age-related chronic diseases. With advanced age comes an increase in accumulation of senescent cells that release soluble and insoluble pro-inflammatory factors collectively termed the senescence associated secretory phenotype (SASP). In the present report, we examined whether immune cells typical of those at the oral mucosa-microbe interface, are vulnerable to cellular senescence (CS) and the role of dysbiotic oral pathogen Porphyromonas gingivalis. Bone marrow-derived dendritic cells (DCs) from young (yDCs) and old (oDCs) mice were co-cultured in vitro with CS inducer doxorubicin or P.gingivalis (Pg), plus or minus senolytic agent rapamycin. CS profiling revealed elevated CS mediators SA-β-Gal, p16 INK4A, p53, and p21Waf1/Clip1 in oDCs, or yDCs in response to doxorubicin or P. gingivalis, reversible with rapamycin. Functional studies indicate impaired maturation function of oDCs, and yDC exposed to P. gingivalis; moreover, OVA-driven proliferation of CD4+ T cells from young OTII transgenic mice was impaired by oDCs or yDCs+Pg. The SASP of DCs, consisting of secreted exosomes and inflammasome-related cytokines was further analyzed. Exosomes of DCs cocultured with P. gingivalis (PgDCexo) were purified, quantitated and characterized. Though typical in terms of size, shape and phenotype, PgDCexo were 2-fold greater in number than control DCs, with several important distinctions. Namely, PgDCexo were enriched in age-related miRNAs, and miRNAs reported to disrupt immune homeostasis through negative regulation of apoptosis and autophagy functions. We further show that PgDCexo were enriched in P. gingivalis fimbrial adhesin protein mfa1 and in inflammasome related cytokines IL-1β, TNFα and IL-6. Functionally PgDCexo were readily endocytosed by recipient yDCs, amplifying functional impairment in maturation and ability to promote Ova-driven proliferation of OTII CD4+ T cells from young mice. In conclusion P. gingivalis induces premature (autocrine) senescence in DCs by direct cellular invasion and greatly amplifies senescence, in paracrine, of bystander DCs by secretion of inflammatory exosomes. The implications of this pathological pathway for periodontal disease in vivo is under investigation in mouse models.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, United States
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, United States
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Christopher W. Cutler,
| |
Collapse
|
27
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Lee MB, Bitto A, Kaeberlein M. Proceedings from the annual University of Washington Geroscience Symposium, October 23, 2020. GeroScience 2021; 43:1585-1589. [PMID: 33791939 PMCID: PMC8012076 DOI: 10.1007/s11357-021-00346-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
The University of Washington Nathan Shock Center of Excellence in the Biology of Aging in conjunction with the Healthy Aging and Longevity Research Institute held its annual geroscience symposium virtually on October 23, 2020. The symposium was divided into three sessions: (I) organ aging and growth signaling, (II) neurodegeneration and metabolism, and (III) innovative approaches in geroscience and aging research. Nine speakers affiliated with the University of Washington and three invited guest speakers, predominantly trainee, and junior faculty presented their research. Here, we summarize research presented during the symposium. A geroscience special issue, of which this is a part, collects submissions from symposium presenters as well as trainees supported by the Biological Mechanisms of Healthy Aging training program.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357470, Seattle, WA, 98195-7470, USA.
| |
Collapse
|
29
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
30
|
The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19. LANCET HEALTHY LONGEVITY 2021; 2:e105-e111. [PMID: 33665645 PMCID: PMC7906698 DOI: 10.1016/s2666-7568(20)30068-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COVID-19 disproportionately affects older people, with likelihood of severe complications and death mirroring that of other age-associated diseases. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) has been shown to delay or reverse many age-related phenotypes, including declining immune function. Rapamycin (sirolimus) and rapamycin derivatives are US Food and Drug Administration-approved inhibitors of mTORC1 with broad clinical utility and well established dosing and safety profiles. Based on preclinical and clinical evidence, a strong case can be made for immediate large-scale clinical trials to assess whether rapamycin and other mTORC1 inhibitors can prevent COVID-19 infection in these populations and also to determine whether these drugs can improve outcomes in patients with severe COVID-19.
Collapse
|
31
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Sári Z, Kovács T, Csonka T, Török M, Sebő É, Toth J, Tóth D, Mikó E, Kiss B, Szeőcs D, Uray K, Karányi Z, Kovács I, Méhes G, Árkosy P, Bai P. Fecal expression of Escherichia coli lysine decarboxylase (LdcC) is downregulated in E-cadherin negative lobular breast carcinoma. Physiol Int 2020; 107:349-358. [PMID: 32692716 DOI: 10.1556/2060.2020.00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
Abstract
Breast cancer is characterized by oncobiosis, the abnormal composition of the microbiome in neoplastic diseases. The biosynthetic capacity of the oncobiotic flora in breast cancer is suppressed, as suggested by metagenomic studies. The microbiome synthesizes a set of cytostatic and antimetastatic metabolites that are downregulated in breast cancer, including cadaverine, a microbiome metabolite with cytostatic properties. We set out to assess how the protein expression of constitutive lysine decarboxylase (LdcC), a key enzyme for cadaverine production, changes in the feces of human breast cancer patients (n = 35). We found that the fecal expression of Escherichia coli LdcC is downregulated in lobular cases as compared to invasive carcinoma of no special type (NST) cases. Lobular breast carcinoma is characterized by low or absent expression of E-cadherin. Fecal E. coli LdcC protein expression is downregulated in E-cadherin negative breast cancer cases as compared to positive ones. Receiver operating characteristic (ROC) analysis of LdcC expression in lobular and NST cases revealed that fecal E. coli LdcC protein expression might have predictive values. These data suggest that the oncobiotic transformation of the microbiome indeed leads to the downregulation of the production of cytostatic and antimetastatic metabolites. In E-cadherin negative lobular carcinoma that has a higher potential for metastasis formation, the protein levels of enzymes producing antimetastatic metabolites are downregulated. This finding represents a new route that renders lobular cases permissive for metastasis formation. Furthermore, our findings underline the role of oncobiosis in regulating metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Zs Sári
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - T Kovács
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - T Csonka
- 2Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - M Török
- 3Department of Pathology, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - É Sebő
- 4Kenézy Breast Center, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - J Toth
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - D Tóth
- 6Department of Surgery, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc, 3526, Hungary
| | - E Mikó
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - B Kiss
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - D Szeőcs
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - K Uray
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zs Karányi
- 7Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - I Kovács
- 3Department of Pathology, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - G Méhes
- 2Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - P Árkosy
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - P Bai
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,8MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.,9Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
33
|
Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 2020; 19:513-532. [DOI: 10.1038/s41573-020-0067-7] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
34
|
An JY, Kerns KA, Ouellette A, Robinson L, Morris HD, Kaczorowski C, Park SI, Mekvanich T, Kang A, McLean JS, Cox TC, Kaeberlein M. Rapamycin rejuvenates oral health in aging mice. eLife 2020; 9:e54318. [PMID: 32342860 PMCID: PMC7220376 DOI: 10.7554/elife.54318] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice. Here, we demonstrate that short-term treatment with rapamycin rejuvenates the aged oral cavity of elderly mice, including regeneration of periodontal bone, attenuation of gingival and periodontal bone inflammation, and revertive shift of the oral microbiome toward a more youthful composition. This provides a geroscience strategy to potentially rejuvenate oral health and reverse periodontal disease in the elderly.
Collapse
Affiliation(s)
- Jonathan Y An
- Department of Oral Health Sciences, University of WashingtonSeattleUnited States
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Kristopher A Kerns
- Department of Oral Health Sciences, University of WashingtonSeattleUnited States
- Center of Excellence in Maternal and Child Health, University of WashingtonSeattleUnited States
| | | | | | | | | | - So-Il Park
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Title Mekvanich
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Alex Kang
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Jeffrey S McLean
- Department of Oral Health Sciences, University of WashingtonSeattleUnited States
- Department of Periodontics, University of WashingtonSeattleUnited States
| | - Timothy C Cox
- Department of Pediatrics, University of Washington, Seattle Children’s Research InstituteSeattleUnited States
| | - Matt Kaeberlein
- Department of Oral Health Sciences, University of WashingtonSeattleUnited States
- Department of Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
35
|
An JY, Kerns KA, Ouellette A, Robinson L, Morris HD, Kaczorowski C, Park SI, Mekvanich T, Kang A, McLean JS, Cox TC, Kaeberlein M. Rapamycin rejuvenates oral health in aging mice. eLife 2020. [PMID: 32342860 DOI: 10.7554/elife.54318.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice. Here, we demonstrate that short-term treatment with rapamycin rejuvenates the aged oral cavity of elderly mice, including regeneration of periodontal bone, attenuation of gingival and periodontal bone inflammation, and revertive shift of the oral microbiome toward a more youthful composition. This provides a geroscience strategy to potentially rejuvenate oral health and reverse periodontal disease in the elderly.
Collapse
Affiliation(s)
- Jonathan Y An
- Department of Oral Health Sciences, University of Washington, Seattle, United States.,Department of Pathology, University of Washington, Seattle, United States
| | - Kristopher A Kerns
- Department of Oral Health Sciences, University of Washington, Seattle, United States.,Center of Excellence in Maternal and Child Health, University of Washington, Seattle, United States
| | | | | | | | | | - So-Il Park
- Department of Pathology, University of Washington, Seattle, United States
| | - Title Mekvanich
- Department of Pathology, University of Washington, Seattle, United States
| | - Alex Kang
- Department of Pathology, University of Washington, Seattle, United States
| | - Jeffrey S McLean
- Department of Oral Health Sciences, University of Washington, Seattle, United States.,Department of Periodontics, University of Washington, Seattle, United States
| | - Timothy C Cox
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, United States
| | - Matt Kaeberlein
- Department of Oral Health Sciences, University of Washington, Seattle, United States.,Department of Pathology, University of Washington, Seattle, United States
| |
Collapse
|
36
|
RTB101 and immune function in the elderly: Interpreting an unsuccessful clinical trial. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Wiedenhoeft T, Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Balasubramanian P, Lipecz A, Kiss T, Csiszar A, Csiszar A, Ungvari Z. Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice. GeroScience 2019; 41:711-725. [PMID: 31654270 PMCID: PMC6925096 DOI: 10.1007/s11357-019-00102-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Adjustment of cerebral blood flow (CBF) to the increased oxygen and nutrient demands of active brain regions via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In advanced age, cerebromicrovascular oxidative stress and endothelial dysfunction impair neurovascular coupling, contributing to age-related cognitive decline. Recently we developed a resveratrol (3,4',5-trihydroxystilbene)-containing fusogenic liposome (FL-RSV)-based molecular delivery system that can effectively target cultured cerebromicrovascular endothelial cells, attenuating age-related oxidative stress. To assess the cerebromicrovascular protective effects of FL-RSV in vivo, aged (24-month-old) C57BL/6 mice were treated with FL-RSV for four days. To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dyes in cells of the neurovascular unit was confirmed using two-photon imaging (through a chronic cranial window). NVC was assessed by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. Treatment with FL-RSV significantly improved NVC responses by increasing NO-mediated vasodilation. These findings are paralleled by the protective effects of FL-RSV on endothelium-dependent relaxation in the aorta. Thus, treatment with FL-RSV rescues endothelial function and NVC responses in aged mice. We propose that resveratrol containing fusogenic liposomes could also be used for combined delivery of various anti-geronic factors, including proteins, small molecules, DNA vectors and mRNAs targeting key pathways involved in microvascular aging and neurovascular dysfunction for the prevention/treatment of age-related cerebromicrovascular pathologies and development of vascular cognitive impairment (VCI) in aging.
Collapse
Affiliation(s)
- Tabea Wiedenhoeft
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience,Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience,Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Agnes Csiszar
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
38
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
39
|
Age-dependent effects of caloric restriction on mTOR and ubiquitin-proteasome pathways in skeletal muscles. GeroScience 2019; 41:871-880. [PMID: 31676964 DOI: 10.1007/s11357-019-00109-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 01/12/2023] Open
Abstract
In skeletal muscles, calorie restriction (CR) preserves muscle mass in middle-aged rats but not younger rats. The underlying mechanisms for this age-specific response are unknown. Skeletal muscle mass depends on several factors, with protein synthesis and degradation playing major roles. Therefore, the purpose of this study was to investigate whether CR affects younger and older animals differently on mTOR signaling and ubiquitin-proteasome pathway (UPP). Four-, 8-, and 16-month-old rats, with or without 40% CR for a duration of 14 weeks, were sacrificed after an overnight fasting. Total protein content and the phosphorylation level of AKT, mTOR, S6K, and 4EBP1 and protein content of key markers in the UPP (FOXO3a, atrogin, MuRF1, ubiquitinated proteins, proteasome subunits alpha 7 and beta 5) were determined. Unlike younger rats, CR decreased the content of phosphorylated mTOR, S6K, phosphorylated S6K, FOXO3a, and ubiquitinated proteins in middle-aged rats. In conclusion, CR-induced reduction of content/ phosphorylation levels of key proteins in mTOR signaling and the UPP occurred in the middle-aged rats but not younger rats. The age-dependent effects of CR on mTOR signaling and the UPP indirectly explained the age-related effects of CR on muscle mass of animals.
Collapse
|
40
|
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019; 11:8048-8067. [PMID: 31586989 PMCID: PMC6814615 DOI: 10.18632/aging.102355] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
From the dawn of civilization, humanity has dreamed of immortality. So why didn't the discovery of the anti-aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible (and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been implemented for potential life extension in humans. If you read this article from the very beginning to its end, you may realize that the time is now.
Collapse
|
41
|
Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, DelFavero J, Ahire C, Ungvari A, Nyúl-Tóth Á, Farkas E, Benyo Z, Tóth A, Csiszar A, Ungvari Z. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience 2019; 41:533-542. [PMID: 31679124 PMCID: PMC6885075 DOI: 10.1007/s11357-019-00101-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) plays an important role in the maintenance of healthy cognitive function. Strong evidence demonstrates that age-related cerebromicrovascular endothelial dysfunction and consequential impairment of NVC responses contribute importantly to cognitive decline. Recent studies demonstrate that NAD+ availability decreases with age in the vasculature and that supplemental NAD+ precursors can ameliorate cerebrovascular dysfunction, rescuing NVC responses and improving cognitive performance in aged mice. The mechanisms underlying the age-related decline in [NAD+] in cells of the neurovascular unit are likely multifaceted and may include increased utilization of NAD+ by activated poly (ADP-ribose) polymerase (PARP-1). The present study was designed to test the hypothesis that inhibition of PARP-1 activity may confer protective effects on neurovascular function in aging, similar to the recently demonstrated protective effects of treatment with the NAD+ precursor nicotinamide mononucleotide (NMN). To test this hypothesis, 24-month-old C57BL/6 mice were treated with PJ-34, a potent PARP inhibitor, for 2 weeks. NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. Treatment with PJ-34 improved NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory. PJ-34 treatment also improved endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, PARP-1 activation, likely by decreasing NAD+ availability, contributes to age-related endothelial dysfunction and neurovascular uncoupling, exacerbating cognitive decline. The cerebromicrovascular protective effects of pharmacological inhibition of PARP-1 highlight the preventive and therapeutic potential of treatments that restore NAD+ homeostasis as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eszter Farkas
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Benyo
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Tóth
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
42
|
Abstract
Traditional animal models have been used to make seminal discoveries in biomedical research including a better understanding of the biology of the aging process. However, translation of these findings from laboratory to clinical populations has likely been hindered due to fundamental biological and physiological differences between common laboratory animals and humans. Non-human primates (NHP) may serve as an effective bridge towards translation, and short-lived NHP like the common marmoset offer many advantages as models for aging research. Here, we address these advantages and discuss what is currently understood about the changes in physiology and pathology that occur with age in the marmoset. In addition, we discuss how aging research might best utilize this model resource, and outline an ongoing study to address whether pharmaceutical intervention can slow aging in the marmoset. With this manuscript, we clarify how common marmosets might assist researchers in geroscience as a potential model for pre-clinical translation.
Collapse
Affiliation(s)
- Corinna N Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, TX, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and The University of Texas Health Science Center at San Antonio, San Antonio TX, USA.,Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
43
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
44
|
Fernandez E, Ross C, Liang H, Javors M, Tardif S, Salmon AB. Evaluation of the pharmacokinetics of metformin and acarbose in the common marmoset. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2019; 9:1657756. [PMID: 31497263 PMCID: PMC6719263 DOI: 10.1080/20010001.2019.1657756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
Metformin has beneficial effects on several age-related diseases (e.g., diabetes, obesity, cancer) and extends lifespan in nematodes and mice. Acarbose, an FDA-approved agent for treating type 2 diabetes, prevents breakdown of complex carbohydrates. Both compounds have been suggested as potential anti-aging interventions and acarbose has been shown to extend mouse longevity by the Intervention Testing Program (ITP). One potential next step is to assess the effect of these interventions on healthspan and lifespan in non-human primates. The common marmoset (Callithrix jacchus) is a small new world monkey with a relatively short life span and small size, both valuable for the translation potential of this nonhuman primate species for the study of aging and chronic disease. However, the dosing and assessment of potential side effects of either metformin or acarbose in this species have yet to be assessed. This study evaluated the pharmacokinetics of two dosage levels each of metformin or acarbose (given separately) in two small groups of young marmosets (n = 5/group) treated for 24 h to define the pharmacokinetics of each drug. The ability to rapidly and reliably dose socially housed marmosets with an oral form of acarbose or metformin that is well tolerated indicates that this species is a reliable model for testing acarbose and metformin in a safe and efficient way in a long-term intervention.
Collapse
Affiliation(s)
- Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veteran's Health Care System, San Antonio.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Corinna Ross
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Department of Arts & Sciences, Texas A&M-San Antonio, San Antonio, TX, USA
| | - Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veteran's Health Care System, San Antonio
| | - Martin Javors
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Suzette Tardif
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veteran's Health Care System, San Antonio.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
45
|
Garcia DN, Saccon TD, Pradiee J, Rincón JAA, Andrade KRS, Rovani MT, Mondadori RG, Cruz LAX, Barros CC, Masternak MM, Bartke A, Mason JB, Schneider A. Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience 2019; 41:395-408. [PMID: 31359237 PMCID: PMC6815295 DOI: 10.1007/s11357-019-00087-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Caloric restriction (CR) increases the preservation of the ovarian primordial follicular reserve, which can potentially delay menopause. Rapamycin also increases preservation on the ovarian reserve, with similar mechanism to CR. Therefore, the aim of our study was to evaluate the effects of rapamycin and CR on metabolism, ovarian reserve, and gene expression in mice. Thirty-six female mice were allocated into three groups: control, rapamycin-treated (4 mg/kg body weight every other day), and 30% CR. Caloric restricted females had lower body weight (P < 0.05) and increased insulin sensitivity (P = 0.003), while rapamycin injection did not change body weight (P > 0.05) and induced insulin resistance (P < 0.05). Both CR and rapamycin females displayed a higher number of primordial follicles (P = 0.02 and 0.04, respectively), fewer primary, secondary, and tertiary follicles (P < 0.05) and displayed increased ovarian Foxo3a gene expression (P < 0.05). Despite the divergent metabolic effects of the CR and rapamycin treatments, females from both groups displayed a similar increase in ovarian reserve, which was associated with higher expression of ovarian Foxo3a.
Collapse
Affiliation(s)
- Driele N. Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Tatiana D. Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Jorgea Pradiee
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Joao A. A. Rincón
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | | | - Monique T. Rovani
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | | | - Luis A. X. Cruz
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Carlos C. Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Michal M. Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL USA
| | - Jeffrey B. Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
46
|
Lorenzo-Pouso AI, Castelo-Baz P, Pérez-Sayáns M, Lim J, Leira Y. Autophagy in periodontal disease: Evidence from a literature review. Arch Oral Biol 2019; 102:55-64. [DOI: 10.1016/j.archoralbio.2019.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
47
|
Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316:H1124-H1140. [PMID: 30848677 PMCID: PMC6580383 DOI: 10.1152/ajpheart.00776.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andrea Molnar
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center , Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Eszter Farkas
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School , Pecs , Hungary
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University , Chicago, Illinois
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Semmelweis University, Department of Pulmonology , Budapest , Hungary
| |
Collapse
|
48
|
Potential Application of Ixeris dentata in the Prevention and Treatment of Aging-Induced Dry Mouth. Nutrients 2018; 10:nu10121989. [PMID: 30558302 PMCID: PMC6316753 DOI: 10.3390/nu10121989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Dry mouth is a common complaint among the elderly population. The aim of this study was to investigate the effect of Ixeris dentata (IXD) extract on aging-induced dry mouth. We used young (two months) and aged (20 months) SD rats in our study. Using water as the vehicle, IXD extract (25, 50, and 100 mg/kg) was given via oral gavage to the young and aged rats for eight weeks. We found that the salivary flow rate relative to the submandibular gland weight was differently influenced by IXD extract treatment. IXD extract augmented the submandibular gland acinar cells, which are depleted during aging. In addition, the decreased salivary alpha-amylase, inositol triphosphate receptor, and aquaporin-5 in the aging rats were upregulated by IXD treatment. Free radical-induced oxidative stress in the aging rats was also alleviated in the IXD-treated group. The formation of high molecular weight complexes of protein disulfide isomerase, decreased expression of an ER chaperone (GRP78), and increased ER stress response (ATF-4, CHOP and p-JNK) in aging rats was regulated with IXD treatment, and eventually increased salivary secretions from the aging submandibular glands. These are the first data to suggest that IXD extract might ameliorate aging-associated oral dryness by regulating the ER environment.
Collapse
|
49
|
Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S. Advances and challenges in geroscience research: An update. Physiol Int 2018; 105:298-308. [PMID: 30587027 PMCID: PMC9341286 DOI: 10.1556/2060.105.2018.4.32] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Aging remains the most pervasive risk factor for a wide range of chronic diseases that afflict modern societies. In the United States alone, incidence of age-related diseases (e.g., cardiovascular disease, stroke, Alzheimer's disease, vascular cognitive impairment and dementia, cancer, hypertension, type-2 diabetes, chronic obstructive pulmonary disease, and osteoarthritis) is on the rise, posing an unsustainable socioeconomic burden even for the most developed countries. Tackling each and every age-related disease alone is proving to be costly and ineffective. The emerging field of geroscience has posed itself as an interdisciplinary approach that aims to understand the relationship between the biology of aging and the pathophysiology of chronic age-related diseases. According to the geroscience concept, aging is the single major risk factor that underlies several age-related chronic diseases, and manipulation of cellular and systemic aging processes can delay the manifestation and/or severity of these age-related chronic pathologies. The goal of this endeavor is to achieve health improvements by preventing/delaying the pathogenesis of several age-related diseases simultaneously in the elderly population by targeting key cellular and molecular processes of aging instead of managing diseases of aging as they arise individually. In this review, we discuss recent advances in the field of geroscience, highlighting their implications for potential future therapeutic targets and the associated scientific challenges and opportunities that lay ahead.
Collapse
Affiliation(s)
- A Yabluchanskiy
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| | - Z Ungvari
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
- 4 Department of Pulmonology, Semmelweis University , Budapest, Hungary
| | - A Csiszar
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
| | - S Tarantini
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| |
Collapse
|
50
|
Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. GeroScience 2018; 40:513-521. [PMID: 30470983 DOI: 10.1007/s11357-018-0047-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022] Open
Abstract
Aging-induced pro-inflammatory phenotypic alterations of the cerebral vasculature critically contribute to the pathogenesis of vascular cognitive impairment. Cellular senescence is a fundamental aging process that promotes inflammation; however, its role in cerebrovascular aging remains unexplored. The present study was undertaken to test the hypothesis that advanced aging promotes cellular senescence in the cerebral vasculature. We found that in cerebral arteries of 24-month-old mice, expression of molecular markers of senescence (p16INK4a, p21) is upregulated as compared to that in young controls. Induction of senescence programs in cerebral arteries is associated by an upregulation of a wide range of inflammatory cytokines and chemokines, which are known to contribute to the senescence-associated secretory phenotype (SASP) in vascular cells. Age-related cerebrovascular senescence and inflammation are associated with neuroinflammation, as shown by the molecular footprint of microglia activation in the hippocampus. Genetic depletion of the pro-survival/anti-aging transcriptional regulator Nrf2 exacerbated age-related induction of senescence markers and inflammatory SASP factors and resulted in a heightened inflammatory status of the hippocampus. In conclusion, our studies provide evidence that aging and Nrf2 dysfunction promote cellular senescence in cerebral vessels, which may potentially cause or exacerbate age-related pathology.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Pulmonology, Semmelweis University, Budapest, Hungary. .,Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|