1
|
Sciaraffa N, Santoni D, Li Greci A, Genovese SI, Coronnello C, Arancio W. Transcripts derived from AmnSINE1 repetitive sequences are depleted in the cortex of autism spectrum disorder patients. FRONTIERS IN BIOINFORMATICS 2025; 5:1532981. [PMID: 40270680 PMCID: PMC12015672 DOI: 10.3389/fbinf.2025.1532981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Aims Autism spectrum disorder (ASD) is a brain developmental disability with a not-fully clarified etiogenesis. Current ASD research largely focuses on coding regions of the genome, but up to date much less is known about the contribution of non-coding elements to ASD risk. The non-coding genome is largely made of DNA repetitive sequences (RS). Although RS were considered slightly more than "junk DNA", today RS have a recognized role in almost every aspect of human biology, especially in developing human brain. Our aim was to test if RS transcription may play a role in ASD. Methods Global RS transcription was firstly investigated in postmortem dorsolateral prefrontal cortex of 13 ASD patients and 39 matched controls. Results were validated in independent datasets. Results AmnSINE1 was the only RS significantly downregulated in ASD specimens. The role of AmnSINE1 in ASD has been investigated at multiple levels, showing that the 1,416 genes containing AmnSINE1 are associated with nervous system development and autism susceptibility. This has been confirmed in a different experimental setting, such as in organoid models of the human cerebral cortex, harboring different ASD causative mutations. AmnSINE1 related genes are transcriptionally co-regulated and are involved not only in brain formation but can specifically be involved in ASD development. Looking for a possible direct role of AmnSINE1 non-coding transcripts in ASD, we report that AmnSINE1 transcripts may alter the miRNA regulatory landscape for genes involved in neurogenesis. Conclusion Our findings provide preliminary evidence supporting a role for AmnSINE1 in ASD development.
Collapse
Affiliation(s)
| | - Daniele Santoni
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy (IASI-CNR), Rome, Italy
| | - Andrea Li Greci
- Advanced Data Analysis Group, Ri. MED Foundation, Palermo, Italy
| | | | | | - Walter Arancio
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| |
Collapse
|
2
|
Li C, Qian Q, Yan C, Lu M, Li L, Li P, Fan Z, Lei W, Shang K, Wang P, Wang J, Lu T, Huang Y, Yang H, Wei H, Han J, Xiao J, Chen F. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res 2024; 52:D1315-D1326. [PMID: 37870452 PMCID: PMC10767980 DOI: 10.1093/nar/gkad904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiheng Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Pan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenyan Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Shang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihan Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haobin Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing100101, China
| |
Collapse
|
3
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Repetitive Sequence Transcription in Breast Cancer. Cells 2022; 11:cells11162522. [PMID: 36010599 PMCID: PMC9406339 DOI: 10.3390/cells11162522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Repetitive sequences represent about half of the human genome. They are actively transcribed and play a role during development and in epigenetic regulation. The altered activity of repetitive sequences can lead to genomic instability and they can contribute to the establishment or the progression of degenerative diseases and cancer transformation. In this work, we analyzed the expression profiles of DNA repetitive sequences in the breast cancer specimens of the HMUCC cohort. Satellite expression is generally upregulated in breast cancers, with specific families upregulated per histotype: in HER2-enriched cancers, they are the human satellite II (HSATII), in luminal A and B, they are part of the ALR family and in triple-negative, they are part of SAR and GSAT families, together with a perturbation in the transcription from endogenous retroviruses and their LTR sequences. We report that the background expression of repetitive sequences in healthy tissues of cancer patients differs from the tissues of non-cancerous controls. To conclude, peculiar patterns of expression of repetitive sequences are reported in each specimen, especially in the case of transcripts arising from satellite repeats.
Collapse
|
5
|
Fang X, Crumpler RF, Thomas KN, Mazique JN, Roman RJ, Fan F. Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiol Int 2022; 109:10.1556/2060.2022.00020. [PMID: 35238800 PMCID: PMC10710737 DOI: 10.1556/2060.2022.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
Abstract
Cognitive impairment and dementia are significant health burdens worldwide. Aging, hypertension, and diabetes are the primary risk factors for Alzheimer's disease and Alzheimer's disease and related dementias (AD/ADRD). There are no effective treatments for AD/ADRD to date. An emerging body of evidence indicates that cerebral vascular dysfunction and hypoperfusion precedes the development of other AD pathological phenotypes and cognitive impairment. However, vascular contribution to dementia is not currently well understood. This commentary highlights the emerging concepts and mechanisms underlying the microvascular contribution to AD/ADRD, including hypotheses targeting the anterograde and retrograde cerebral vascular pathways, as well as the cerebral capillaries and the venous system. We also briefly discuss vascular endothelial dysfunction, oxidative stress, inflammation, and cellular senescence that may contribute to impaired cerebral blood flow autoregulation, neurovascular uncoupling, and dysfunction of cerebral capillaries and the venous system.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Reece F. Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kirby N. Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jena’ N. Mazique
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
6
|
Mustafin RN, Khusnutdinova EK. The relationship of lamins with epigenetic factors during aging. Vavilovskii Zhurnal Genet Selektsii 2022; 26:40-49. [PMID: 35342861 PMCID: PMC8892175 DOI: 10.18699/vjgb-22-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
The key factor of genome instability during aging is transposon dysregulation. This may be due to senile changes in the expression of lamins, which epigenetically modulate transposons. Lamins directly physically interact with transposons. Epigenetic regulators such as SIRT7, BAF, and microRNA can also serve as intermediaries for their interactions. There is also an inverse regulation, since transposons are sources of miRNAs that affect lamins. We suggest that lamins can be attributed to epigenetic factors, since they are part of the NURD, interact with histone deacetylases and regulate gene expression without changing the nucleotide sequences. The role of lamins in the etiopathogenesis of premature aging syndromes may be associated with interactions with transposons. In various human cells, LINE1 is present in the heterochromatin domains of the genome associated with lamins, while SIRT7 facilitates the interaction of this retroelement with lamins. Both retroelements and the nuclear lamina play an important role in the antiviral response of organisms. This may be due to the role of lamins in protection from both viruses and transposons, since viruses and transposons are evolutionarily related. Transposable elements and lamins are secondary messengers of environmental stressors that can serve as triggers for aging and carcinogenesis. Transposons play a role in the development of cancer, while the microRNAs derived from them, participating in the etiopathogenesis of tumors, are important in human aging. Lamins have similar properties, since lamins are dysregulated in cancer, and microRNAs affecting them are involved in carcinogenesis. Changes in the expression of specif ic microRNAs were also revealed
in laminopathies. Identif ication of the epigenetic mechanisms of interaction of lamins with transposons during
aging
can become the basis for the development of methods of life extension and targeted therapy of age-associated
cancer
Collapse
Affiliation(s)
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| |
Collapse
|
7
|
Arancio W, Coronnello C. Repetitive sequences in aging. Aging (Albany NY) 2021; 13:10816-10817. [PMID: 33895726 PMCID: PMC8109129 DOI: 10.18632/aging.203020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Walter Arancio
- Advanced Data Analysis Group, Fondazione Ri.MED, Palermo, 90133, Italy
| | | |
Collapse
|
8
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
9
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Gruchot J, Kremer D, Küry P. Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Front Genet 2019; 10:655. [PMID: 31354794 PMCID: PMC6637040 DOI: 10.3389/fgene.2019.00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral elements, which invaded the human germ line several million years ago. Subsequent retrotransposition events amplified these sequences, resulting in approximately 8% of the human genome being composed of HERV sequences today. These genetic elements, normally dormant within human genomes, can be (re)-activated by environmental factors such as infections with other viruses, leading to the expression of viral proteins and, in some instances, even to viral particle production. Several studies have shown that the expression of these retroviral elements correlates with the onset and progression of neurological diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Further studies provided evidence on additional roles for HERVs in schizophrenia (SCZ). Since these diseases are still not well understood, HERVs might constitute a new category of pathogenic components that could significantly change our understanding of these pathologies. Moreover, knowledge about their mode of action might also help to develop novel and more powerful approaches for the treatment of these complex diseases. Therefore, the main scope of this review is a description of the current knowledge on the involvement of HERV-W and HERV-K in neurological disease specifically focusing on the effects they exert on neural cells of the central nervous system.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|