1
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
3
|
Foster TC, Kumar A. Sex, senescence, senolytics, and cognition. Front Aging Neurosci 2025; 17:1555872. [PMID: 40103928 PMCID: PMC11913825 DOI: 10.3389/fnagi.2025.1555872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
This review focuses on sexual dimorphism in cellular senescence and senolytic treatment in relation to brain health and age-related cognitive decline. The stressors of aging, DNA damage, inflammation, and oxidative stress induce cell senescence, a hallmark of aging. Senescent cells change their function and molecular profile and are primed to release pro-inflammatory cytokines. The functional changes include the activation of cell signals to prevent cell death. The release of pro-inflammatory cytokines from peripheral senescent cells during middle age induces senescence of neighbor cells and heightens the level of systemic inflammation, contributing to neuroinflammation. In response to neuroinflammation and oxidative stress, some neurons alter their physiology, decreasing neuronal excitability and synaptic transmission. Senescent neurophysiology is protective against cell death due to excitotoxicity, at the expense of a loss of normal cell function, contributing to age-related cognitive decline. The level of peripheral cell senescence and systemic inflammation may underlie sexual dimorphism in the prevalence, symptoms, and pathogenesis of age-related diseases, including neurodegenerative diseases. Sex differences have been observed for senescence of astrocytes, microglia, and peripheral cells, including those involved in innate and adaptive immune responses. Interventions that remove senescent cells, such as senolytic drugs, can reduce or ameliorate some of the aging-related loss of function. Similarities and differences in senolytic responses of males and females depend on the system examined, the treatment regimen, the level of senescent cell burden, and the age when treatment is initiated. Estrogen impacts several of these factors and influences the transcription of genes promoting growth, proliferation, and cell survival programs in a manner opposite that of senolytic drugs. In addition, estrogen has anti-aging effects that are independent of cell senescence, including rapidly modifying senescent neurophysiology. Thus, it is important to recognize that, in addition to sex differences in cell senescence, there are other sexually dimorphic mechanisms that contribute to the aging process. The results indicate that senolytics interact with fundamental biology, including sex hormones.
Collapse
Affiliation(s)
- Thomas C Foster
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Lambert M, Miquel G, Villeneuve L, Thorin-Trescases N, Thorin E. The senolytic ABT-263 improves cognitive functions in middle-aged male, but not female, atherosclerotic LDLr -/-;hApoB 100+/+ mice. GeroScience 2025:10.1007/s11357-025-01563-3. [PMID: 39982668 DOI: 10.1007/s11357-025-01563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Accumulation of cerebral senescent cells may compromise the continuum between vascular and neuronal function, leading to damage and cognitive decline. Elimination of senescent cells might therefore preserve vascular and neuronal functions. To test this hypothesis, we used male and female atherosclerotic LDLr-/-;hApoB100+/+ mice (ATX-mice), a model of vascular cognitive impairment (VCI), treated with the senolytic ABT-263 for 3 months (3- to 6-month or 9- to 12-month old). In young male ATX mice, prevention with ABT-263 improved spatial retention memory, in association with a higher endothelial sensitivity to shear stress and a higher hippocampal CD31+ endothelial cell density, lower activation of both astrocytes and glial cells. In young females, ABT-263 tended to improve delayed memory; however, atherosclerotic plaque was magnified by ABT-263, endothelial function was unaffected, hippocampal astrocyte activation increased and expression of CD31+ cells decreased. Hence, unlike in males, ABT-263 appears deleterious in young ATX females. In middle-aged males, the curative treatment improved the learning process and memory. Although no change in endothelial function was observed, the benefits of ABT-263 were associated with a decreased expression of several inflammaging markers, a higher density of CD31+ cells and a lower activation of glial cells. In middle-aged females, ABT-263 induced a surge of inflammaging markers, associated with a slower learning process. Altogether, our data demonstrate that ABT-263 differentially affects VCI, improving cognition in male while being deleterious in female ATX mice. More studies are needed to understand the mechanisms at the basis of the sexual dimorphic effects of the senolytic ABT-263.
Collapse
Affiliation(s)
- Mélanie Lambert
- Faculty of Medicine, Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada.
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada.
| | - Géraldine Miquel
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
| | | | - Eric Thorin
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
- Faculty of Medicine, Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Chiarini A, Armato U, Gui L, Yin M, Chang S, Dal Prà I. Early divergent modulation of NLRP2's and NLRP3's inflammasome sensors vs. AIM2's one by signals from Aβ·Calcium-sensing receptor complexes in human astrocytes. Brain Res 2024; 1846:149283. [PMID: 39426463 DOI: 10.1016/j.brainres.2024.149283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD), the most prevalent human dementia, is driven by accruals of extracellular Aβ42 senile patches and intracellular neurofibrillary tangles of hyperphosphorylated Tau (p-Tau) proteins. AD's concurrent neuroinflammation is prompted by innate immunity-related cytosolic protein oligomers named inflammasomes. Upon proper "first" (priming) and "second" (activating) signals, inflammasomes overproduce proinflammatory Interleukin (IL)-1β, and IL-18 while cleaving pyroptosis-promoting Gasdermin D's N-terminal fragments. Our earlier studies highlighted that in pure monocultures, exogenous Aβ25-35-treated nonproliferating human cortical astrocytes (HCAs) made and released surpluses of endogenous Aβ42-oligomers (-os) and p-Tau-os, just as alike-treated human cortical neurons did. Aβ25-35-exposed HCAs also over-released NO, VEGFA, and IL-6. Aβ•CaSR (Aβ·Calcium-Sensing Receptor) complexes generated intracellular signals mediating all such neurotoxic effects since CaSR's negative allosteric modulators (aka NAMs or calcilytics, e.g., NPS2143) fully suppressed them. However, it had hitherto remained unexplored whether signals from Aβ·CaSR complexes also induced the early expression and/or activation of NOD-like 2 (NLRP2) and 3 (NLRP3) and of PYHIN absent in melanoma 2 (AIM2) inflammasomes in monocultured HCAs. To clarify this topic, we used in-situ-Proximity Ligation, qRT-PCR, double antibody arrays, immunoblots, and Caspase 1/4 enzymatic assays. Aβ·CaSR complexes quickly assembled on HCAs surface and issued intracellular signals activating Akt and JAK/STAT axes. In turn, the latter upregulated NLRP2 and NLRP3 PRRs (pattern recognition receptors) yet downregulated AIM2. These effects were specific, being significantly hindered by NPS2143 and inhibitors of PI3K (LY294002), AMPKα (Dorsomorphin), mTOR (Torin1), and JAK/TYK (Brepoticinib). A wide-spectrum inhibitor, Bay11-7082, intensified the Aβ·CaSR/Akt/JAK/STAT axis-driven opposite control of NLRP3's and AIM2's PRR proteins without affecting NLRP2 PRR upregulation. However, the said effects on the PRRs proteins vanished within 24-h. Moreover, Aβ·CaSR signals neither concurrently changed ASC, pro-IL-1β, and Gasdermin-D (holo- and fragments) protein levels and Caspases 1 and 4 enzymatic activities nor induced pyroptosis. Therefore, Aβ·CaSR cues acted as "first (priming) signals" temporarily increasing NLRP2 and NLRP3 PRRs expression without activating the corresponding inflammasomes. The neatly divergent modulation of NLRP3's vs. AIM2's PRR proteins by Aβ·CaSR cues and by Bay11-7082 suggests that, when bacterial or viral DNA fragments are absent, AIM2 might play "anti-inflammasomal" or other roles in HCAs. However, Bay11-7082's no effect on NLRP2 PRR overexpression also reveals that CaSR's downstream mechanisms controlling inflammasomes' sensors are quite complex in HCAs, and hence, given AD's impact on human health, well worth further studies.
Collapse
Affiliation(s)
- Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Li Gui
- Department of Neurology, Southwest Hospital, Army Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Meifang Yin
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Shusen Chang
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| |
Collapse
|
7
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
8
|
López-Teros M, Alarcón-Aguilar A, Castillo-Aragón A, Königsberg M, Luna-López A. Cytokine profiling in senescent and reactive astrocytes: A systematic review. Neurobiol Aging 2024; 138:28-35. [PMID: 38522384 DOI: 10.1016/j.neurobiolaging.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Astrocytes play an important role in neuroinflammation by producing proinflammatory molecules. In response to various stressful stimuli, astrocytes can become senescent or reactive, both are present in age-associated cognitive impairment and other neurodegenerative diseases, and contribute to neuroinflammation. However, there are no studies that compare the cytokines secreted by these types of astrocytes in the brain during aging. Hence, we aimed to broaden the picture of the secretory profiles and to differentiate the variability between them. Therefore, a systematic review was conducted following the guidelines of the "Reporting Items for Systematic Review and Meta-Analyses". Only three studies that met the inclusion terms evaluated age-related cytokine secretion, however, no evaluation of senescence or gliosis was performed. Consequently, to increase the spectrum of the review, studies where those phenotypes were induced and cytokines determined were included. Although some cytokines were common for gliosis and senescence, some interesting differences were also found. The dissimilarities in cytokines secretion between these phenotypes could be studied in the future as potential markers.
Collapse
Affiliation(s)
- Michel López-Teros
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico; Posgrado en Biología Experimental. Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Alejandra Castillo-Aragón
- Centro de Investigación en Nutrición y Salud-Instituto de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico.
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, Mexico.
| |
Collapse
|
9
|
He B, Liao Y, Tian M, Tang C, Tang Q, Ma F, Zhou W, Leng Y, Zhong D. Identification and verification of a novel signature that combines cuproptosis-related genes with ferroptosis-related genes in osteoarthritis using bioinformatics analysis and experimental validation. Arthritis Res Ther 2024; 26:100. [PMID: 38741149 DOI: 10.1186/s13075-024-03328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.
Collapse
Affiliation(s)
- Baoqiang He
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
- Southwest Medical University, Lu Zhou City, China
| | - Yehui Liao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Minghao Tian
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Chao Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Qiang Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Fei Ma
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Wenyang Zhou
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China
| | - Yebo Leng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Meishan Tianfu New Area People's Hospital, Meishan City, China.
| | - Dejun Zhong
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, No. 25 Taping Street, Lu Zhou City, China.
- Southwest Medical University, Lu Zhou City, China.
| |
Collapse
|
10
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Mitroshina EV, Krivonosov MI, Pakhomov AM, Yarullina LE, Gavrish MS, Mishchenko TA, Yarkov RS, Vedunova MV. Unravelling the Collective Calcium Dynamics of Physiologically Aged Astrocytes under a Hypoxic State In Vitro. Int J Mol Sci 2023; 24:12286. [PMID: 37569663 PMCID: PMC10419080 DOI: 10.3390/ijms241512286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Mikhail I. Krivonosov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Alexander M. Pakhomov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 603950 Nizhny Novgorod, Russia
| | - Laysan E. Yarullina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria S. Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| |
Collapse
|
13
|
Ma Y, Farny NG. Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene 2023; 871:147437. [PMID: 37084987 PMCID: PMC10205695 DOI: 10.1016/j.gene.2023.147437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Cellular senescence increases with aging. While senescence is associated with an exit of the cell cycle, there is ample evidence that post-mitotic cells including neurons can undergo senescence as the brain ages, and that senescence likely contributes significantly to the progression of neurodegenerative diseases (ND) such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Stress granules (SGs) are stress-induced cytoplasmic biomolecular condensates of RNA and proteins, which have been linked to the development of AD and ALS. The SG seeding hypothesis of NDs proposes that chronic stress in aging neurons results in static SGs that progress into pathological aggregates Alterations in SG dynamics have also been linked to senescence, though studies that link SGs and senescence in the context of NDs and the aging brain have not yet been performed. In this Review, we summarize the literature on senescence, and explore the contribution of senescence to the aging brain. We describe senescence phenotypes in aging neurons and glia, and their links to neuroinflammation and the development of AD and ALS. We further examine the relationships of SGs to senescence and to ND. We propose a new hypothesis that neuronal senescence may contribute to the mechanism of SG seeding in ND by altering SG dynamics in aged cells, thereby providing additional aggregation opportunities within aged neurons.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
14
|
Meldolesi J. Role of Senescent Astrocytes in Health and Disease. Int J Mol Sci 2023; 24:ijms24108498. [PMID: 37239843 DOI: 10.3390/ijms24108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
For many decades after their discovery, astrocytes, the abundant glial cells of the brain, were believed to work as a glue, supporting the structure and metabolic functions of neurons. A revolution that started over 30 years ago revealed many additional functions of these cells, including neurogenesis, gliosecretion, glutamate homeostasis, assembly and function of synapses, neuronal metabolism with energy production, and others. These properties have been confirmed, limited however, to proliferating astrocytes. During their aging or following severe brain stress lesions, proliferating astrocytes are converted into their no-longer-proliferating, senescent forms, similar in their morphology but profoundly modified in their functions. The changed specificity of senescent astrocytes is largely due to their altered gene expression. The ensuing effects include downregulation of many properties typical of proliferating astrocytes, and upregulation of many others, concerned with neuroinflammation, release of pro-inflammatory cytokines, dysfunction of synapses, etc., specific to their senescence program. The ensuing decrease in neuronal support and protection by astrocytes induces the development, in vulnerable brain regions, of neuronal toxicity together with cognitive decline. Similar changes, ultimately reinforced by astrocyte aging, are also induced by traumatic events and molecules involved in dynamic processes. Senescent astrocytes play critical roles in the development of many severe brain diseases. The first demonstration, obtained for Alzheimer's disease less than 10 years ago, contributed to the elimination of the previously predominant neuro-centric amyloid hypothesis. The initial astrocyte effects, operating a considerable time before the appearance of known Alzheimer's symptoms evolve with the severity of the disease up to their proliferation during the final outcome. Involvement of astrocytes in other neurodegenerative diseases and cancer is now intensely investigated.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
- CNR Institute of Neuroscience, Milano-Bicocca University, Vedano al Lambro, 20854 Milan, Italy
| |
Collapse
|
15
|
Villablanca C, Vidal R, Gonzalez-Billault C. Are cytoskeleton changes observed in astrocytes functionally linked to aging? Brain Res Bull 2023; 196:59-67. [PMID: 36935053 DOI: 10.1016/j.brainresbull.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.
Collapse
Affiliation(s)
- Cristopher Villablanca
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - René Vidal
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Nutrition and Food Technologies, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
17
|
Asghar M, Odeh A, Fattahi AJ, Henriksson AE, Miglar A, Khosousi S, Svenningsson P. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson's disease and Lewy body dementia. Sci Rep 2022; 12:17578. [PMID: 36266468 PMCID: PMC9584960 DOI: 10.1038/s41598-022-22400-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Progressive age is the single major risk factor for neurodegenerative diseases. Cellular aging markers during Parkinson's disease (PD) have been implicated in previous studies, however the majority of studies have investigated the association of individual cellular aging hallmarks with PD but not jointly. Here, we have studied the association of PD with three aging hallmarks (telomere attrition, mitochondrial dysfunction, and cellular senescence) in blood and the brain tissue. Our results show that PD patients had 20% lower mitochondrial DNA copies but 26% longer telomeres in blood compared to controls. Moreover, telomere length in blood was positively correlated with medication (Levodopa Equivalent Daily Dose, LEDD) and disease duration. Similar results were found in brain tissue, where patients with Parkinson's disease (PD), Parkinson's disease dementia (PDD) and Dementia with Lewy Bodies (DLB) showed (46-95%) depleted mtDNA copies, but (7-9%) longer telomeres compared to controls. In addition, patients had lower mitochondrial biogenesis (PGC-1α and PGC-1β) and higher load of a cellular senescence marker in postmortem prefrontal cortex tissue, with DLB showing the highest effect among the patient groups. Our results suggest that mitochondrial dysfunction (copy number and biogenesis) in blood might be a valuable marker to assess the risk of PD. However, further studies with larger sample size are needed to evaluate these findings.
Collapse
Affiliation(s)
- Muhammad Asghar
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden ,grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Amani Odeh
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Ahmad Jouni Fattahi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexandra Edwards Henriksson
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Aurelie Miglar
- grid.465198.7Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden
| | - Shervin Khosousi
- grid.465198.7Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden ,grid.13097.3c0000 0001 2322 6764Basal and Clinical Neuroscience, Institute of Psychiatry, King’s College London, Psychology & Neuroscience, London, UK
| | - Per Svenningsson
- grid.465198.7Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden ,grid.13097.3c0000 0001 2322 6764Basal and Clinical Neuroscience, Institute of Psychiatry, King’s College London, Psychology & Neuroscience, London, UK
| |
Collapse
|
18
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
19
|
Involvement of astrocyte senescence in Alzheimer's disease. Curr Opin Neurobiol 2022; 76:102594. [PMID: 35779313 DOI: 10.1016/j.conb.2022.102594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023]
|
20
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
21
|
Preininger MK, Kaufer D. Blood-Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. Int J Mol Sci 2022; 23:6217. [PMID: 35682895 PMCID: PMC9180977 DOI: 10.3390/ijms23116217] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
As the most abundant cell types in the brain, astrocytes form a tissue-wide signaling network that is responsible for maintaining brain homeostasis and regulating various brain activities. Here, we review some of the essential functions that astrocytes perform in supporting neurons, modulating the immune response, and regulating and maintaining the blood-brain barrier (BBB). Given their importance in brain health, it follows that astrocyte dysfunction has detrimental effects. Indeed, dysfunctional astrocytes are implicated in age-related neuropathology and participate in the onset and progression of neurodegenerative diseases. Here, we review two mechanisms by which astrocytes mediate neuropathology in the aging brain. First, age-associated blood-brain barrier dysfunction (BBBD) causes the hyperactivation of TGFβ signaling in astrocytes, which elicits a pro-inflammatory and epileptogenic phenotype. Over time, BBBD-associated astrocyte dysfunction results in hippocampal and cortical neural hyperexcitability and cognitive deficits. Second, senescent astrocytes accumulate in the brain with age and exhibit a decreased functional capacity and the secretion of senescent-associated secretory phenotype (SASP) factors, which contribute to neuroinflammation and neurotoxicity. Both BBBD and senescence progressively increase during aging and are associated with increased risk of neurodegenerative disease, but the relationship between the two has not yet been established. Thus, we discuss the potential relationship between BBBD, TGFβ hyperactivation, and senescence with respect to astrocytes in the context of aging and disease and identify future areas of investigation in the field.
Collapse
Affiliation(s)
- Marcela K. Preininger
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Guan L, Crasta KC, Maier AB. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res Rev 2022; 78:101634. [PMID: 35460888 DOI: 10.1016/j.arr.2022.101634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence has gained increasing interest during recent years, particularly due to causal involvement in the aging process corroborated by multiple experimental findings. Indeed, cellular senescence considered to be one of the hallmarks of aging, is defined as a stable growth arrest predominantly mediated by cell cycle regulators p53, p21 and p16. Senescent cells have frequently been studied in the peripheral blood of humans due to its accessibility. This review summarizes ex vivo studies describing cell cycle regulators as markers of senescence in human peripheral blood cells, along with detection methodologies and associative studies examining demographic and clinical characteristics. The utility of techniques such as the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), microarray, RNA sequencing and nCounter technologies for detection at the transcriptional level, along with Western blotting, enzyme-linked immunosorbent assay and flow cytometry at the translational level, will be brought up at salient points throughout this review. Notably, housekeeping genes or proteins serving as controls such as GAPDH and β-Actin, were found not to be stably expressed in some contexts. As such, optimization and validation of such genes during experimental design were recommended. In addition, the expression of cell cycle regulators was found to vary not only between different types of blood cells such as T cells and B cells but also between stages of cellular differentiation such as naïve T cells and highly differentiated T cells. On the other hand, the associations of the presence of cell cycle regulators with demographics (age, gender, ethnicity, and socioeconomic status), clinical characteristics (body mass index, specific diseases, disease-related parameters) and lifestyle vary in groups of participants. One envisions that increased understanding and insights into the assessment of cell cycle regulators as markers of senescence in human peripheral blood cells will help inform prognostication and clinical intervention in elderly individuals.
Collapse
Affiliation(s)
- Lihuan Guan
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia.
| | - Karen C Crasta
- Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore.
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia; Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
23
|
Kiss T, Nyúl-Tóth Á, DelFavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C, Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csiszar A. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 2022; 44:661-681. [PMID: 35098444 PMCID: PMC9135953 DOI: 10.1007/s11357-022-00521-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- First Department of Pediatrics, Semmelweis University, HU, 1083, Budapest, Hungary.
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Janet Faakye
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Graham Wiley
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Martino Adami PV, Orellana A, García P, Kleineidam L, Alarcón-Martín E, Montrreal L, Aguilera N, Espinosa A, Abdelnour C, Rosende-Roca M, Tartari JP, Vargas L, Mauleón A, Esteban-De Antonio E, López-Cuevas R, Dalmasso MC, Martin RC, Parveen K, Andrade Fuentes VM, Amin N, Ahmad S, Ikram MA, Lewczuk P, Kornhuber J, Peters O, Frölich L, Rüther E, Wiltfang J, Tarraga L, Boada M, Maier W, de Rojas I, Cano A, Sanabria A, Alegret M, Hernández I, Marquié M, Valero S, van Duijn CM, Wagner M, Jessen F, Schneider A, Sáez Goñi ME, Pérez AG, Ruiz A, Ramírez A. Matrix metalloproteinase 10 is linked to the risk of progression to dementia of the Alzheimer's type. Brain 2022; 145:2507-2517. [PMID: 35088840 DOI: 10.1093/brain/awac024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease has a long asymptomatic phase that offers a substantial time window for intervention. Utilizing this window of opportunity will require early diagnostic and prognostic biomarkers to detect Alzheimer's disease pathology at pre-dementia stages, thus allowing identification of patients who will most probably progress to dementia of the Alzheimer's type and benefit from specific disease-modifying therapies. Consequently, we searched for CSF proteins associated with disease progression along with the clinical disease staging. We measured the levels of 184 proteins in CSF samples from 556 subjective cognitive decline and mild cognitive impairment patients from three independent memory clinic longitudinal studies (Spanish ACE, n = 410; German DCN, n = 93; German Mannheim, n = 53). We evaluated the association between protein levels and clinical stage, and the effect of protein levels on the progression from mild cognitive impairment to dementia of the Alzheimer's type. Mild cognitive impairment subjects with increased CSF level of matrix metalloproteinase 10 showed a higher probability of progressing to dementia of the Alzheimer's type and a faster cognitive decline. CSF matrix metalloproteinase 10 increased the prediction accuracy of CSF Aβ42, P-tau181, and T-tau for conversion to dementia of the Alzheimer's type. Including matrix metalloproteinase 10 to the [A/T/(N)] scheme improved considerably the prognostic value in mild cognitive impairment patients with abnormal Aβ42, but normal P-tau181 and T-tau, and in mild cognitive impairment patients with abnormal Aβ42, P-tau181, and T-tau. Matrix metalloproteinase 10 was correlated with age in subjects with normal Aβ42, P-tau181, and T-tau levels. Our findings support the use of CSF matrix metalloproteinase 10 as a prognostic marker for dementia of the Alzheimer's type and its inclusion to the [A/T/(N)] scheme to incorporate pathologic aspects beyond amyloid and tau. CSF level of matrix metalloproteinase 10 may reflect ageing and neuroinflammation.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Pablo García
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Nuria Aguilera
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Maitee Rosende-Roca
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Juan Pablo Tartari
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Ana Mauleón
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Ester Esteban-De Antonio
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Rogelio López-Cuevas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Rafael Campos Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Kayenat Parveen
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Victor M Andrade Fuentes
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, University of Oxford Richard Doll Building, Old Road Campus, Headington, Oxford OX3 7LF, UK
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Oliver Peters
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.,Department of Psychiatry, Charité University Medicine, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen. von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen. von-Siebold-Str. 5, 37075 Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro. Aradas 3810-193, Aveiro, Portugal
| | - Lluis Tarraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Merce Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Amanda Cano
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Angela Sanabria
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | | | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | | | | | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, International University of Catalonia, 8029 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Alfredo Ramírez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, 78229 San Antonio, Texas, USA.,Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne. Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| |
Collapse
|
25
|
Contribution of senescent and reactive astrocytes on central nervous system inflammaging. Biogerontology 2022; 23:21-33. [PMID: 35084630 DOI: 10.1007/s10522-022-09952-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Astrocytes, the most predominant cells in the central nervous system (CNS), have well-recognized neuroprotective functions. However, during the CNS aging, astrocytes can become neurotoxic and contribute to chronic inflammation in age-associated brain deterioration and disease. Astrocytes are known to become senescent or reactive due to the exposure to stressful stimuli, in both cases they contribute to an impaired cognitive function through the production of pro-inflammatory mediators. Although both scenarios (senescence and reactive gliosis) have been studied independently, there are no direct studies comparing their secretomes simultaneously in the aging-brain. In this review we discuss the most recent studies in that respect, in order to analyze their simultaneous participation in brain aging.
Collapse
|
26
|
Csipo T, Lipecz A, Owens C, Mukli P, Perry JW, Tarantini S, Balasubramanian P, Nyúl-Tóth Á, Yabluchanska V, Sorond FA, Kellawan JM, Purebl G, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A. Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Sci Rep 2021; 11:20994. [PMID: 34697326 PMCID: PMC8546061 DOI: 10.1038/s41598-021-00188-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation (SD) is a common condition and an important health concern. In addition to metabolic and cardiovascular risks, SD associates with decreases in cognitive performance. Neurovascular coupling (NVC, "functional hyperemia") is a critical homeostatic mechanism, which maintains adequate blood supply to the brain during periods of intensive neuronal activity. To determine whether SD alters NVC responses and cognitive performance, cognitive and hemodynamic NVC assessments were conducted prior to and 24 h post-SD in healthy young male individuals (n = 10, 27 ± 3 years old). Cognition was evaluated with a battery of tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Hemodynamic components of NVC were measured by transcranial Doppler sonography (TCD) during cognitive stimulation, dynamic retinal vessel analysis (DVA) during flicker light stimulation, and functional near infrared spectroscopy (fNIRS) during finger tapping motor task. Cognitive assessments revealed impairments in reaction time and sustained attention after 24 h of SD. Functional NIRS analysis revealed that SD significantly altered hemodynamic responses in the prefrontal cortex and somatosensory cortex during a motor task. NVC-related vascular responses measured by DVA and TCD did not change significantly. Interestingly, TCD detected decreased task-associated cerebral blood flow (CBF) in the right middle cerebral artery in sleep deprived participants. Our results demonstrate that 24 h of SD lead to impairments in cognitive performance together with altered CBF and hemodynamic components of cortical NVC responses.
Collapse
Affiliation(s)
- Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Josa Andras Hospital, Nyíregyháza, Hungary
| | - Cameron Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jonathan W Perry
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Valeriya Yabluchanska
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - György Purebl
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Cell Biology and Molecular Medicine and Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Cell Biology and Molecular Medicine and Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1301, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
27
|
Rouillard ME, Sutter PA, Durham OR, Willis CM, Crocker SJ. Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. Aging Dis 2021; 12:1462-1475. [PMID: 34527422 PMCID: PMC8407882 DOI: 10.14336/ad.2021.0608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are an abundant and dynamic glial cell exclusive to the central nervous system (CNS). In the context of injury, inflammation, and/or diseases of the nervous system, astrocyte responses, termed reactive astrogliosis, are a recognized pathological feature across a range of conditions and diseases. However, the impact of reactive astrogliosis is not uniform and varies by context and duration (time). In recent years, extracellular communication between glial cells via extracellular vesicles (EVs) has garnered interest as a process connected with reactive astrogliosis. In this review, we relate recent findings on astrocyte-derived extracellular vesicles (ADEVs) with a focus on factors that can influence the effects of ADEVs and identified age related changes in the function of ADEVs. Additionally, we will discuss the current limitations of existing experimental approaches and identify questions that highlight areas for growth in this field, which will continue to enhance our understanding of ADEVs in age-associated processes.
Collapse
Affiliation(s)
- Megan E Rouillard
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Pearl A Sutter
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Olivia R Durham
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Cory M Willis
- 2Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen J Crocker
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
28
|
Mori H, Funahashi Y, Yoshino Y, Kumon H, Ozaki Y, Yamazaki K, Ochi S, Tachibana A, Yoshida T, Shimizu H, Mori T, Iga JI, Ueno SI. Blood CDKN2A Gene Expression in Aging and Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:1737-1744. [PMID: 34219731 PMCID: PMC8461666 DOI: 10.3233/jad-210483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A (CDKN2A) is an important gene in cellular senescence and aging. OBJECTIVE This study assessed the utility of blood CDKN2A mRNA expression levels and methylation status as a potential biomarker for aging and the pathogenesis of Alzheimer's disease (AD). METHODS The correlation between CDKN2A mRNA expression levels and age was examined in 45 healthy subjects, after which mRNA expression levels were compared among 46 AD patients, 20 mild cognitive impairment due to AD patients, 21 Parkinson's disease patients, 21 dementia with Lewy bodies patients, and 55 older healthy controls. The methylation rates of the second exon of the CDKN2A gene, known to influence its expression levels, was also examined. RESULTS A significant correlation between CDKN2A mRNA expression levels and age was found (Spearman's rank correlation coefficient: r = 0.407, p = 0.005). CDKN2A mRNA expression levels in blood were significantly decreased in AD patients, although those of healthy controls were significantly increased with age. Further, only in AD patients were CDKN2A mRNA expression levels significantly and positively correlated with methylation rates. CONCLUSION Although further research with a larger sample size is needed to elucidate the relationships between CDKN2A gene expression in blood and the development of other neurodegenerative diseases, CDKN2A mRNA expression in blood may be a biomarker for differentiating AD from normal aging and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Ayumi Tachibana
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hideaki Shimizu
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
29
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
30
|
Yabluchanskiy A, Nyul-Toth A, Csiszar A, Gulej R, Saunders D, Towner R, Turner M, Zhao Y, Abdelkari D, Rypma B, Tarantini S. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology 2021; 58:e13718. [PMID: 33141436 PMCID: PMC9166153 DOI: 10.1111/psyp.13718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The present and future research efforts in cognitive neuroscience and psychophysiology rely on the measurement, understanding, and interpretation of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to effectively investigate brain function. Aging and age-associated pathophysiological processes change the structural and functional integrity of the cerebrovasculature which can significantly alter how the BOLD signal is recorded and interpreted. In order to gain an improved understanding of the benefits, drawbacks, and methodological implications for BOLD fMRI in the context of cognitive neuroscience, it is crucial to understand the cellular and molecular mechanism of age-related vascular pathologies. This review discusses the multifaceted effects of aging and the contributions of age-related pathologies on structural and functional integrity of the cerebral microcirculation as they has been investigated in animal models of aging, including age-related alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage, vascular rarefaction, blood-brain barrier disruption, senescence, humoral deficiencies as they relate to, and potentially introduce confounding factors in the interpretation of BOLD fMRI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Monroe Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkari
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
31
|
Targeting Alternative Splicing for Reversal of Cellular Senescence in the Context of Aesthetic Aging. Plast Reconstr Surg 2021; 147:25S-32S. [PMID: 33347071 DOI: 10.1097/prs.0000000000007618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Cellular senescence is a state of stable cell cycle arrest that has increasingly been linked with cellular, tissue, and organismal aging; targeted removal of senescent cells brings healthspan and lifespan benefits in animal models. Newly emerging approaches to specifically ablate or rejuvenate senescent cells are now the subject of intense study to explore their utility to provide novel treatments for the aesthetic signs and diseases of aging in humans. Here, we discuss different strategies that are being trialed in vitro, and more recently in vivo, for the targeted removal or reversal of senescent cells. Finally, we describe the evidence for a newly emerging molecular mechanism that may underpin senescence; dysregulation of alternative splicing. We will explore the potential of restoring splicing regulation as a novel "senotherapeutic" approach and discuss strategies by which this could be integrated into the established portfolio of skin aging therapeutics.
Collapse
|
32
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
33
|
Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME. The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. Life (Basel) 2021; 11:229. [PMID: 33799628 PMCID: PMC7998276 DOI: 10.3390/life11030229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
In 1960, Rita Levi-Montalcini and Barbara Booker made an observation that transformed neuroscience: as neurons mature, they become apoptosis resistant. The following year Leonard Hayflick and Paul Moorhead described a stable replicative arrest of cells in vitro, termed "senescence". For nearly 60 years, the cell biology fields of neuroscience and senescence ran in parallel, each separately defining phenotypes and uncovering molecular mediators to explain the 1960s observations of their founding mothers and fathers, respectively. During this time neuroscientists have consistently observed the remarkable ability of neurons to survive. Despite residing in environments of chronic inflammation and degeneration, as occurs in numerous neurodegenerative diseases, often times the neurons with highest levels of pathology resist death. Similarly, cellular senescence (hereon referred to simply as "senescence") now is recognized as a complex stress response that culminates with a change in cell fate. Instead of reacting to cellular/DNA damage by proliferation or apoptosis, senescent cells survive in a stable cell cycle arrest. Senescent cells simultaneously contribute to chronic tissue degeneration by secreting deleterious molecules that negatively impact surrounding cells. These fields have finally collided. Neuroscientists have begun applying concepts of senescence to the brain, including post-mitotic cells. This initially presented conceptual challenges to senescence cell biologists. Nonetheless, efforts to understand senescence in the context of brain aging and neurodegenerative disease and injury emerged and are advancing the field. The present review uses pre-defined criteria to evaluate evidence for post-mitotic brain cell senescence. A closer interaction between neuro and senescent cell biologists has potential to advance both disciplines and explain fundamental questions that have plagued their fields for decades.
Collapse
Affiliation(s)
- Eric Sah
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Departments of Biology and Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Gregory J. Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
34
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
35
|
Wang S, Prizment A, Thyagarajan B, Blaes A. Cancer Treatment-Induced Accelerated Aging in Cancer Survivors: Biology and Assessment. Cancers (Basel) 2021; 13:427. [PMID: 33498754 PMCID: PMC7865902 DOI: 10.3390/cancers13030427] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Rapid improvements in cancer survival led to the realization that many modalities used to treat or control cancer may cause accelerated aging in cancer survivors. Clinically, "accelerated aging" phenotypes in cancer survivors include secondary cancers, frailty, chronic organ dysfunction, and cognitive impairment, all of which can impact long-term health and quality of life in cancer survivors. The treatment-induced accelerated aging in cancer survivors could be explained by telomere attrition, cellular senescence, stem cell exhaustion, DNA damage, and epigenetic alterations. Several aging clocks and biomarkers of aging have been proposed to be potentially useful in estimating biological age, which can provide specific information about how old an individual is biologically independent of chronological age. Measuring biological age in cancer survivors may be important for two reasons. First, it can better predict the risk of cancer treatment-related comorbidities than chronological age. Second, biological age may provide additional value in evaluating the effects of treatments and personalizing cancer therapies to maximize efficacy of treatment. A deeper understanding of treatment-induced accelerated aging in individuals with cancer may lead to novel strategies that reduce the accelerated aging and improve the quality of life in cancer survivors.
Collapse
Affiliation(s)
- Shuo Wang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (A.P.); (A.B.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Bharat Thyagarajan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anne Blaes
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (A.P.); (A.B.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
36
|
González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J 2021; 288:56-80. [PMID: 32961620 DOI: 10.1111/febs.15570] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Collapse
Affiliation(s)
- Estela González-Gualda
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Andrew G Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Cohn-Schwartz E, Weinstein G. Early-life food deprivation and cognitive performance among older Europeans. Maturitas 2020; 141:26-32. [PMID: 33036699 DOI: 10.1016/j.maturitas.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early-life adversity, including food deprivation, has been linked with late-life cognitive function. Our aim was to explore the association between the early experience of hunger (the age at which it was experienced and its duration) and cognitive performance and decline among older Europeans. METHODS Our sample comprised dementia-free individuals aged ≥65 years who participated in waves 3 and 4 of the Survey of Health, Ageing and Retirement in Europe (SHARE). Information on periods of hunger during the life course was gathered in wave 3 (2009; SHARELIFE). Cognitive performance was assessed using tests of memory, verbal fluency and numeracy in waves 4 (2011) and 5 (2013). Regression models were used to assess the relationship between the experience of hunger at different ages and its duration and cognitive performance and decline while adjusting for age, sex, education, lifestyle and health factors. RESULTS Among a sample of 2131 individuals (mean age = 76.2 years; 50 % women), the experience of hunger when aged 0-4 years was associated with poorer immediate and delayed recall, fluency and impaired numeracy factors (B±SE=-0.58 ± 0.12; p < 0.001; B±SE=-0.74 ± 0.13; p < 0.001, B±SE=-1.60 ± 0.42; p < 0.001 and OR [95 % CI] = 0.57 [0.42-0.79], respectively). These results attenuated after controlling for duration of the experience of hunger but remained significant for immediate and delayed recall. The experience of hunger at ages 12-18 years was associated with better immediate recall, delayed recall and fluency (B±SE = 0.38 ± 0.15; p = 0.010; B±SE = 0.37 ± 0.17; p = 0.026, B±SE = 1.57 ± 0.53; p = 0.003, respectively). The associations of hunger with cognitive decline were similar but less robust. CONCLUSIONS Our findings suggest that severe nutritional deprivation in early childhood may be associated with poor cognitive function in later life, while food deprivation in later childhood and adolescence may be protective.
Collapse
Affiliation(s)
- Ella Cohn-Schwartz
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Galit Weinstein
- School of Public Health, Faculty of Social Welfare & Health Sciences, University of Haifa, Israel
| |
Collapse
|
38
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
39
|
Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation 2020; 28:e12653. [PMID: 32767848 DOI: 10.1111/micc.12653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parenchymal arterioles (PAs) regulate perfusion of the cerebral microcirculation, and impaired PA endothelium-dependent dilation occurs in dementia models mimicking chronic cerebral hypoperfusion (CCH). Epoxyeicosatrienoic acids (EETs) are vasodilators; their actions are potentiated by soluble epoxide hydrolase (sEH) inhibition. We hypothesized that chronic sEH inhibition with trifluoromethoxyphenyl-3 (1-propionylpiperidin-4-yl) urea (TPPU) would prevent cognitive dysfunction and improve PA dilation in a hypertensive CCH model. METHODS Bilateral carotid artery stenosis (BCAS) was used to induce CCH in twenty-week-old male stroke-prone spontaneously hypertensive rats (SHSRP) that were treated with vehicle or TPPU for 8 weeks. Cognitive function was assessed by novel object recognition. PA dilation and structure were assessed by pressure myography, and mRNA expression in brain tissue was assessed by qRT-PCR. RESULTS TPPU did not enhance resting cerebral perfusion, but prevented CCH-induced memory deficits. TPPU improved PA endothelium-dependent dilation but reduced the sensitivity of PAs to a nitric oxide donor. TPPU treatment had no effect on PA structure or biomechanical properties. TPPU treatment increased brain mRNA expression of brain derived neurotrophic factor, doublecortin, tumor necrosis factor-alpha, sEH, and superoxide dismutase 3, CONCLUSIONS: These data suggest that sEH inhibitors may be viable treatments for cognitive impairments associated with hypertension and CCH.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Theresa A Lansdell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bruce D Hammock
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - Jun Yang
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
40
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
41
|
Papadopoulos D, Magliozzi R, Mitsikostas DD, Gorgoulis VG, Nicholas RS. Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Front Cell Neurosci 2020; 14:178. [PMID: 32694983 PMCID: PMC7338849 DOI: 10.3389/fncel.2020.00178] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is one of the most important risk factors for the development of several neurodegenerative diseases including progressive multiple sclerosis (MS). Cellular senescence (CS) is a key biological process underlying aging. Several stressors associated with aging and MS pathology, such as oxidative stress, mitochondrial dysfunction, cytokines and replicative exhaustion are known triggers of cellular senescence. Senescent cells exhibit stereotypical metabolic and functional changes, which include cell-cycle arrest and acquiring a pro-inflammatory phenotype secreting cytokines, growth factors, metalloproteinases and reactive oxygen species. They accumulate with aging and can convert neighboring cells to senescence in a paracrine manner. In MS, accelerated cellular senescence may drive disease progression by promoting chronic non-remitting inflammation, loss or altered immune, glial and neuronal function, failure of remyelination, impaired blood-brain barrier integrity and ultimately neurodegeneration. Here we discuss the evidence linking cellular senescence to the pathogenesis of MS and the putative role of senolytic and senomorphic agents as neuroprotective therapies in tackling disease progression.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Richard S Nicholas
- Department of Neuroinflammation and Neurodegeneration, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Visual Neuroscience, Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
42
|
Han X, Zhang T, Liu H, Mi Y, Gou X. Astrocyte Senescence and Alzheimer's Disease: A Review. Front Aging Neurosci 2020; 12:148. [PMID: 32581763 PMCID: PMC7297132 DOI: 10.3389/fnagi.2020.00148] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the largest group of glial cells in the brain and participate in several essential functions of the central nervous system (CNS). Disruption of their normal physiological function can lead to metabolism disequilibrium and the pathology of CNS. As an important mechanism of aging, cellular senescence has been considered as a primary inducing factor of age-associated neurodegenerative disorders. Senescent astrocytes showed decreased normal physiological function and increased secretion of senescence-associated secretory phenotype (SASP) factors, which contribute to Aβ accumulation, tau hyperphosphorylation, and the deposition of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD). Astrocyte senescence also leads to a number of detrimental effects, including induced glutamate excitotoxicity, impaired synaptic plasticity, neural stem cell loss, and blood–brain barrier (BBB) dysfunction. In this review article, we have summarized the growing findings regarding astrocyte senescence and its putative role in the pathologic progress of AD. Additionally, we also focus on the significance of targeting astrocyte senescence as a novel and feasible therapeutic approach for AD.
Collapse
Affiliation(s)
- Xiaojuan Han
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
43
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|
44
|
Lee BP, Smith M, Buffenstein R, Harries LW. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience 2020; 42:633-651. [PMID: 31927681 PMCID: PMC7205774 DOI: 10.1007/s11357-019-00150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Naked mole-rats (NMRs) have amongst the longest lifespans relative to body size of any known, non-volant mammalian species. They also display an enhanced stress resistance phenotype, negligible senescence and very rarely are they burdened with chronic age-related diseases. Alternative splicing (AS) dysregulation is emerging as a potential driver of senescence and ageing. We hypothesised that the expression of splicing factors, important regulators of patterns of AS, may differ in NMRs when compared to other species with relatively shorter lifespans. We designed assays specific to NMR splicing regulatory factors and also to a panel of pre-selected brain-expressed genes known to demonstrate senescence-related alterations in AS in other species, and measured age-related changes in the transcript expression levels of these using embryonic and neonatal developmental stages through to extreme old age in NMR brain samples. We also compared splicing factor expression in both young mouse and NMR spleen and brain samples. Both NMR tissues showed approximately double the expression levels observed in tissues from similarly sized mice. Furthermore, contrary to observations in other species, following a brief period of labile expression in early life stages, adult NMR splicing factors and patterns of AS for functionally relevant brain genes remained remarkably stable for at least two decades. These findings are consistent with a model whereby the conservation of splicing regulation and stable patterns of AS may contribute to better molecular stress responses and the avoidance of senescence in NMRs, contributing to their exceptional lifespan and prolonged healthspan.
Collapse
Affiliation(s)
- B P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - M Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - R Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA, 94080, USA.
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
45
|
Yabluchanskiy A, Tarantini S, Balasubramanian P, Kiss T, Csipo T, Fülöp GA, Lipecz A, Ahire C, DelFavero J, Nyul-Toth A, Sonntag WE, Schwartzman ML, Campisi J, Csiszar A, Ungvari Z. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. GeroScience 2020; 42:409-428. [PMID: 31960269 PMCID: PMC7205933 DOI: 10.1007/s11357-020-00154-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Whole brain irradiation (WBI, also known as whole brain radiation therapy or WBRT) is a mainstream therapy for patients with identifiable brain metastases and as a prophylaxis for microscopic malignancies. WBI accelerates brain aging, causing progressive cognitive dysfunction in ~ 50% of surviving patients, thus compromising quality of life. The mechanisms responsible for this WBI side effect remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that WBI induces astrocyte senescence, which contributes to impaired astrocytic neurovascular coupling (NVC) responses and the genesis of cognitive decline. To achieve this goal, we used transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells. We subjected these mice to a clinically relevant protocol of fractionated WBI (5 Gy twice weekly for 4 weeks). WBI-treated and control mice were tested for spatial memory performance (radial arm water maze), astrocyte-dependent NVC responses (whisker-stimulation-induced increases in cerebral blood flow, assessed by laser speckle contrast imaging), NVC-related gene expression, astrocytic release of eicosanoid gliotransmitters and the presence of senescent astrocytes (by flow cytometry, immunohistochemistry and gene expression profiling) at 6 months post-irradiation. WBI induced senescence in astrocytes, which associated with NVC dysfunction and impaired performance on cognitive tasks. To establish a causal relationship between WBI-induced senescence and NVC dysfunction, senescent cells were depleted from WBI-treated animals (at 3 months post-WBI) by genetic (ganciclovir treatment) or pharmacological (treatment with the BCL-2/BCL-xL inhibitor ABT263/Navitoclax, a known senolytic drug) means. In WBI-treated mice, both treatments effectively eliminated senescent astrocytes, rescued NVC responses, and improved cognitive performance. Our findings suggest that the use of senolytic drugs can be a promising strategy for preventing the cognitive impairment associated with WBI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor A Fülöp
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | | | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- Buck Institute for Research on Aging, Novato, CA, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
46
|
Pomilio C, Gorojod RM, Riudavets M, Vinuesa A, Presa J, Gregosa A, Bentivegna M, Alaimo A, Alcon SP, Sevlever G, Kotler ML, Beauquis J, Saravia F. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer's disease patients. GeroScience 2020; 42:613-632. [PMID: 31975051 DOI: 10.1007/s11357-020-00161-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of misfolded proteins, amyloid-β (Aβ) aggregates, and neuroinflammation in the brain. Microglial cells are key players in the context of AD, being capable of releasing cytokines in response to Aβ and degrading aggregated proteins by mechanisms involving the ubiquitin-proteasome system and autophagy. Here, we present in vivo and in vitro evidence showing that microglial autophagy is affected during AD progression. PDAPPJ20 mice-murine model of AD-exhibited an accumulation of the autophagy receptor p62 and ubiquitin+ aggregates in Iba1+ microglial cells close to amyloid deposits in the hippocampus. Moreover, cultured microglial BV-2 cells showed an enhanced autophagic flux during a 2-h exposure to fibrillar Aβ, which was decreased if the exposure was prolonged to 24 h, a condition analogous to the chronic exposure to Aβ in the human pathology. The autophagic impairment was also associated with lysosomal damage, depicted by membrane permeabilization as shown by the presence of the acid hydrolase cathepsin-D in cytoplasm and altered LysoTracker staining. These results are compatible with microglial exhaustion caused by pro-inflammatory conditions and persistent exposure to aggregated Aβ peptides. In addition, we found LC3-positive autophagic vesicles accumulated in phagocytic CD68+ microglia in human AD brain samples, suggesting defective autophagy in microglia of AD brain. Our results indicate that the capacity of microglia to degrade Aβ and potentially other proteins through autophagy may be negatively affected as the disease progresses. Preserving autophagy in microglia thus emerges as a promising approach for treating AD. Graphical abstract.
Collapse
Affiliation(s)
- Carlos Pomilio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Roxana M Gorojod
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Miguel Riudavets
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - Angeles Vinuesa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Jessica Presa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Amal Gregosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Soledad Porte Alcon
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Gustavo Sevlever
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - Monica L Kotler
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Juan Beauquis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Zhong SJ, Wang L, Gu RZ, Zhang WH, Lan R, Qin XY. Ginsenoside Rg1 ameliorates the cognitive deficits in D-galactose and AlCl 3-induced aging mice by restoring FGF2-Akt and BDNF-TrkB signaling axis to inhibit apoptosis. Int J Med Sci 2020; 17:1048-1055. [PMID: 32410834 PMCID: PMC7211162 DOI: 10.7150/ijms.43979] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenoside Rg1 is the main active ingredient of Panax ginseng with the activity of neuroprotective, antioxidant and strengthening the immune system. Therefore, we hypothesized that Rg1 may afford anti-aging effects although the mechanism remains to be elucidated. In this study, chemically induced aging mice were established by consecutive administration of D-galactose and AlCl3. We found that Rg1 effectively ameliorates spatial learning and memory deficits in aging mice demonstrated by their improved performance in step down avoidance tests and Morris water maze experiments. Rg1 restored aging-induced decline of FGF2 and BDNF, reactivated TrkB/Akt signaling pathways in the hippocampus and prefrontal cortex to inhibit apoptosis, for the expression of anti-apoptotic protein Bcl-2 and apoptosis promoting enzyme cleaved-Caspase3 were antagonistically restored. Therefore, these results established the anti-aging effects of Rg1, and FGF2, BDNF and associated signaling pathways might be promising targets. Our data may provide a new avenue to the pharmacological research and diet therapeutic role of ethnic products such as Rg1 in anti-aging and aging associated diseases.
Collapse
Affiliation(s)
- Si-Jia Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.,College of Economics and management, North China Electric Power University, Beijing 102206, China
| | - Lin Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Run-Ze Gu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Hao Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
48
|
Haque S, Ames RM, Moore K, Pilling LC, Peters LL, Bandinelli S, Ferrucci L, Harries LW. circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan. GeroScience 2019; 42:183-199. [PMID: 31811527 PMCID: PMC7031184 DOI: 10.1007/s11357-019-00120-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of non-coding RNA molecules that are thought to regulate gene expression and human disease. Despite the observation that circRNAs are known to accumulate in older organisms and have been reported in cellular senescence, their role in aging remains relatively unexplored. Here, we have assessed circRNA expression in aging human blood and followed up age-associated circRNA in relation to human aging phenotypes, mammalian longevity as measured by mouse median strain lifespan and cellular senescence in four different primary human cell types. We found that circRNAs circDEF6, circEP300, circFOXO3 and circFNDC3B demonstrate associations with parental longevity or hand grip strength in 306 subjects from the InCHIANTI study of aging, and furthermore, circFOXO3 and circEP300 also demonstrate differential expression in one or more human senescent cell types. Finally, four circRNAs tested showed evidence of conservation in mouse. Expression levels of one of these, circPlekhm1, was nominally associated with lifespan. These data suggest that circRNA may represent a novel class of regulatory RNA involved in the determination of aging phenotypes, which may show future promise as both biomarkers and future therapeutic targets for age-related disease.
Collapse
Affiliation(s)
- Shahnaz Haque
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, RILD South, Barrack Road, Exeter, EX2 5DW, UK
| | - Ryan M Ames
- Biosciences, University of Exeter, Exeter, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Luanne L Peters
- The Jackson Laboratory Nathan Shock Centre of Excellence in the Basic Biology of Aging, Bar Harbor, ME, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD, 21225, USA
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, RILD South, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
49
|
Astrocyte senescence contributes to cognitive decline. GeroScience 2019; 42:51-55. [PMID: 31773453 DOI: 10.1007/s11357-019-00140-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
|