1
|
Duan F, Xiao D, Wang J, Li R, Si X, Lu W. In vivo and In vitro Crosstalk Among CBD, Aβ, and endocannabinoid system enzymes and receptors. Eur J Pharmacol 2025; 1000:177720. [PMID: 40350019 DOI: 10.1016/j.ejphar.2025.177720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, has garnered attention as a potential therapeutic agent for various neurodegenerative diseases, including Alzheimer's disease (AD). Despite growing interest, additional research is required to clarify the specific mechanisms by which CBD influences the pathological accumulation of β-amyloid (Aβ) associated with AD. Moreover, the interactions between CBD and the endocannabinoid system (ECS), both in the presence and absence of Aβ expression, remain a subject of active investigation. Elucidating these mechanisms may provide valuable insights for advancing both our understanding and the development of targeted interventions in neurodegenerative disease management. Using a multifaceted approach that integrates pharmacological interventions, immunofluorescence imaging, flow cytometry, and biochemical assays, we examined the effects of CBD on Aβ40 and Aβ42. Additionally, we analyzed the modulation of cannabinoid receptor 1(CB1 receptor) and fatty acid amide hydrolase (FAAH) in the presence or absence of Aβ expression, uncovering the intricate regulatory mechanisms of CBD. Our findings indicate a nuanced response to CBD; while it may produce side effects in non-pathological cells, it demonstrates an ability to induce autophagy and apoptosis in Aβ-expressing cells via the activation of the Microtubule-associated protein 1 light chain 3 B(LC3B) and Caspase-3 pathways. Furthermore, our investigation into faah-1 involvement highlighted its role in alleviating pharyngeal dysfunction and counteracting weight loss in Aβ-expressing Caenorhabditis elegans(C. elegans) strains. These insights advance our understanding of CBD's therapeutic potential in addressing neurodegenerative pathologies.
Collapse
Affiliation(s)
- Fangyuan Duan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450007, PR China
| | - Jiayu Wang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Runze Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xiaoyue Si
- School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
2
|
Tassaneesuwan N, Khongkow M, Jansrinual S, Khongkow P. Discovering the Potential of Cannabidiol for Cosmeceutical Development at the Cellular Level. Pharmaceuticals (Basel) 2025; 18:202. [PMID: 40006016 PMCID: PMC11859159 DOI: 10.3390/ph18020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Backgrounds: Cannabidiol (CBD) has been used for the development of extensive cosmeceutical commercial products. However, the safety and unclear bioactivity of CBD are still concerns and need to be examined to assess the impact of CBD on skin cells through cosmeceutical applications, particularly its impact on anti-aging and wound healing activities. Methods: In our study, the cytotoxicity of CBD was investigated on keratinocytes and fibroblasts in short-term and long-term treatments using a sulforhodamine B (SRB) assay and a clonogenic assay, respectively. Next, the antioxidant, anti-aging, and wound healing bioactivities of CBD were assessed. Then, we investigated the expression of the related genes. Results: Our results show that CBD at low concentrations (0.625-2.5 µg/mL) was not toxic to cells in the short-term treatment and significantly enhanced the growth of keratinocytes and fibroblasts under long-term exposure. Furthermore, CBD exhibited promising cellular bioactivities, including antioxidant and anti-aging activities in keratinocytes and fibroblasts, and it enhanced wound healing in skin cells. Moreover, CBD has affected the expression of skin regenerative genes in fibroblasts via TGF-β, VEGF, and NF-κB expression. In addition, CBD promoted CO1A2 expression, which is related to collagen production. Conclusions: Altogether, our findings confirm the promising potential of CBD, showing that it can be applied in various topical cosmeceutical products. However, further studies, including in vivo studies and clinical trials, should be conducted to confirm the safety and long-term effectiveness of CBD on the skin.
Collapse
Affiliation(s)
- Natjira Tassaneesuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center (TMRC), Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Siriyakorn Jansrinual
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center (TMRC), Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Candib A, Lee N, Sam N, Cho E, Rojas J, Hastings R, DeAlva K, Khon D, Gonzalez A, Molina B, Torabzadeh G, Vu J, Hasenstab K, Sant K, Phillips JA, Finley K. The Influence of Cannabinoids on Drosophila Behaviors, Longevity, and Traumatic Injury Responses of the Adult Nervous System. Cannabis Cannabinoid Res 2024; 9:e886-e896. [PMID: 37158809 PMCID: PMC11295667 DOI: 10.1089/can.2022.0285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction: The legalization of cannabis products has increased their usage in the United States. Among the ∼500 active compounds, this is especially true for cannabidiol (CBD)-based products, which are being used to treat a range of ailments. Research is ongoing regarding the safety, therapeutic potential, and molecular mechanism of cannabinoids. Drosophila (fruit flies) are widely used to model a range of factors that impact neural aging, stress responses, and longevity. Materials and Methods: Adult wild-type Drosophila melanogaster cohorts (w1118/+) were treated with different Δ9-tetrahydrocannabinol (THC) and CBD dosages and examined for neural protective properties using established neural aging and trauma models. The therapeutic potential of each compound was assessed using circadian and locomotor behavioral assays and longevity profiles. Changes to NF-κB pathway activation were assessed by measuring expression levels of downstream targets using quantitative real-time polymerase chain reaction analysis of neural cDNAs. Results: Flies exposed to different CBD or THC dosages showed minimal effects to sleep and circadian-based behaviors or the age-dependent decline in locomotion. The 2-week CBD (3 μM) treatment did significantly enhance longevity. Flies exposed to different CBD and THC dosages were also examined under stress conditions, using the Drosophila mild traumatic brain injury (mTBI) model (10×). Pretreatment with either compound did not alter baseline expression of key inflammatory markers (NF-κB targets), but did reduce neural mRNA profiles at a key 4-h time point following mTBI exposure. Locomotor responses were also significantly improved 1 and 2 weeks following mTBI. After mTBI (10×) exposure, the 48-h mortality rate improved for CBD (3 μM)-treated flies, as were global average longevity profiles for other CBD doses tested. While not significant, THC (0.1 μM)-treated flies show a net positive impact on acute mortality and longevity profiles following mTBI (10×) exposure. Conclusions: This study shows that the CBD and THC dosages examined had at most a modest impact on basal neural function, while demonstrating that CBD treatments had significant neural protective properties for flies following exposure to traumatic injury.
Collapse
Affiliation(s)
- Alec Candib
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Nicholas Lee
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Natasha Sam
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Eddie Cho
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jesse Rojas
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Reina Hastings
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kyle DeAlva
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Diana Khon
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Andrea Gonzalez
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Brandon Molina
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Gina Torabzadeh
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Josephine Vu
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kyle Hasenstab
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Karylin Sant
- Division of Environmental Health, San Diego State University, San Diego, California, USA
| | - Joy A. Phillips
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kim Finley
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
- Division of Environmental Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Liu Y. Alzheimer's disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging. Mol Biol Rep 2024; 51:121. [PMID: 38227160 DOI: 10.1007/s11033-023-09162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss, neurodegeneration, and cognitive decline. Aging is one of the risk factors for AD. Although the mechanisms underlying aging and the incidence rate of AD are unclear, aging and AD share some hallmarks, such as oxidative stress and chronic inflammation. Cannabidiol (CBD), the major non-psychoactive phytocannabinoid extracted from Cannabis sativa, has recently emerged as a potential candidate for delaying aging and a valuable therapeutic tool for the treatment of aging-related neurodegenerative diseases due to its antioxidant and anti-inflammation properties. This article reviews the relevant literature on AD, CBD treatment for AD, cellular senescence, aging, and CBD treatment for aging in recent years. By analyzing these published data, we attempt to explore the complex correlation between cellular senescence, aging, and Alzheimer's disease, clarify the positive feedback effect between the senescence of neurocytes and Alzheimer's disease, and summarize the role and possible molecular mechanisms of CBD in preventing aging and treating AD. These data may provide new ideas on how to effectively prevent and delay aging, and develop effective treatment strategies for age-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Medicine, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
5
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Ni B, Liu Y, Dai M, Zhao J, Liang Y, Yang X, Han B, Jiang M. The role of cannabidiol in aging. Biomed Pharmacother 2023; 165:115074. [PMID: 37418976 DOI: 10.1016/j.biopha.2023.115074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Aging is usually considered a key risk factor associated with multiple diseases, such as neurodegenerative diseases, cardiovascular diseases and cancer. Furthermore, the burden of age-related diseases has become a global challenge. It is of great significance to search for drugs to extend lifespan and healthspan. Cannabidiol (CBD), a natural nontoxic phytocannabinoid, has been regarded as a potential candidate drug for antiaging. An increasing number of studies have suggested that CBD could benefit healthy longevity. Herein, we summarized the effect of CBD on aging and analyzed the possible mechanism. All these conclusions may provide a perspective for further study of CBD on aging.
Collapse
Affiliation(s)
- Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanying Liu
- Department of Basic Medical, Qingdao Huanghai University, Qingdao 266427, China
| | - Meng Dai
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu Liang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bing Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Lachowicz J, Szopa A, Ignatiuk K, Świąder K, Serefko A. Zebrafish as an Animal Model in Cannabinoid Research. Int J Mol Sci 2023; 24:10455. [PMID: 37445631 DOI: 10.3390/ijms241310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cannabinoids are active substances present in plants of the Cannabis genus. Both the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved several medicinal products containing natural cannabinoids or their synthetic derivatives for the treatment of drug-resistant epilepsy, nausea and vomiting associated with cancer chemotherapy, anorexia in AIDS patients, and the alleviation of symptoms in patients with multiple sclerosis. In fact, cannabinoids constitute a broad group of molecules with a possible therapeutic potential that could be used in the management of much more diseases than mentioned above; therefore, multiple preclinical and clinical studies on cannabinoids have been carried out in recent years. Danio rerio (zebrafish) is an animal model that has gained more attention lately due to its numerous advantages, including easy and fast reproduction, the significant similarity of the zebrafish genome to the human one, simplicity of genetic modifications, and body transparency during the early stages of development. A number of studies have confirmed the usefulness of this model in toxicological research, experiments related to the impact of early life exposure to xenobiotics, modeling various diseases, and screening tests to detect active substances with promising biological activity. The present paper focuses on the current knowledge of the endocannabinoid system in the zebrafish model, and it summarizes the results and observations from studies investigating the pharmacological effects of natural and synthetic cannabinoids that were carried out in Danio rerio. The presented data support the notion that the zebrafish model is a suitable animal model for use in cannabinoid research.
Collapse
Affiliation(s)
- Joanna Lachowicz
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Scientific Circle, Department of Clincal Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Swenson K. Cannabis for morning sickness: areas for intervention to decrease cannabis consumption during pregnancy. J Cannabis Res 2023; 5:22. [PMID: 37330589 DOI: 10.1186/s42238-023-00184-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/30/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Cannabis use during pregnancy is increasing, with 19-22% of patients testing positive at delivery in Colorado and California. Patients report using cannabis to alleviate their nausea and vomiting, anxiety, and pain. However, preclinical and clinical data highlight harmful effects to offspring physiology and behavior following fetal cannabis exposure. This narrative review identifies potential areas for intervention to decrease cannabis consumption during pregnancy. METHODS A combination of keywords, including "cannabis", "cannabis", "weed", "pregnancy", "morning sickness", "child protective services", and "budtender" were searched in databases such as PubMed and Google Scholar, as well as in social media forums, governmental webpages, and other publicly available sources. RESULTS The literature search identified several areas for intervention to reduce cannabis use during pregnancy, including physician and pharmacist training, engagement with pregnant patients, regulation of dispensary workers, and the role of child protective services. DISCUSSION This comprehensive review identifies multiple areas for improvement to benefit pregnant patients. Recommendations are independent and can be implemented simultaneously by the identified groups. Limitations of this research includes the relatively limited availability of data focused specifically on cannabis consumption during pregnancy and the complexity of the sociopolitical field of substance use during pregnancy. CONCLUSIONS Cannabis consumption during pregnancy is increasing and causes harm to the developing fetus. To educate pregnant patients about these risks, we must address the gaps in education from multiple contact points.
Collapse
Affiliation(s)
- Karli Swenson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1 North MS 8313, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Pandelides Z, Sturgis MC, Thornton C, Aluru N, Willett KL. Benzo[a]pyrene-induced multigenerational changes in gene expression, behavior, and DNA methylation are primarily influenced by paternal exposure. Toxicol Appl Pharmacol 2023; 469:116545. [PMID: 37146889 PMCID: PMC11589888 DOI: 10.1016/j.taap.2023.116545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is implicated in many developmental and behavioral adverse outcomes in offspring of exposed parents. The objective of this study was to investigate sex-dependent multigenerational effects of preconceptional effects of BaP exposure. Adult wild-type (5D) zebrafish were fed 708 μg BaP/g diet (measured) at a rate of 1% body weight twice/day (14 μg BaP/g fish/day) for 21 days. Fish were spawned using a crossover design, and parental (F0) behavior and reproductive indexes were measured. In offspring, behavioral effects were measured at 96 h post fertilization (hpf) in F1 & F2 larvae, and again when F1s were adults. Compared to controls, there was no significant effect on F0 adult behavior immediately following exposure, but locomotor activity was significantly increased in F1 adults of both sexes. Larval behavior (96 hpf, photomotor response assay) was significantly altered in both the F1 and F2 generations. To assess molecular changes associated with BaP exposure, we conducted transcriptome and DNA methylation profiling in F0 gametes (sperm and eggs) and F1 embryos (10 hpf) from all four crosses. Embryos resulting from the BaP male and control female cross had the most differentially expressed genes (DEGs) and differentially methylated regions (DMRs). Some DMRs were associated with genes encoding chromatin modifying enzymes suggesting regulation of chromatin conformation by DNA methylation. Overall, these results suggest that parental dietary BaP exposure significantly contributes to the multigenerational adverse outcomes.
Collapse
Affiliation(s)
- Z Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - M C Sturgis
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - C Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - N Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, United States of America
| | - K L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
10
|
Li L, Fan B, Kong Z, Zhang Y, Zhao M, Simal-Gandara J, Wang F, Li M. Short-term exposure of Cannabidiol on Zebrafish (Danio Rerio): Reproductive Toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27792-7. [PMID: 37222891 DOI: 10.1007/s11356-023-27792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Cannabidiol (CBD), a medically active component of hemp, is a popular ingredient in healthcare and personal-care products. The increasing demand for CBD and the legalization of hemp growth may promote chronic exposure of non-target organisms to CBD. In this study, the reproductive toxicity of CBD was investigated on adult zebrafish. With CBD treatment, female zebrafish spawned less with higher natural mortality and malformation rates. Both female and male zebrafish showed a decreased gonadosomatic index with an increased percentage of pre-mature oocytes and sperm and had an increased hepatosomatic index with decreased content of vitellogenin. The value of estrogen/testosterone (E2/T) decreased in female zebrafish and increased in male zebrafish. Sex hormone synthesis genes were downregulated in ovaries and upregulated in testicles, except for cyp11a, in contrast to the other genes. Apoptosis-related genes were upregulated in the zebrafish brain, gonad, and liver. These results show that CBD might damage the reproductive function by inducing an apoptotic response, further inhibiting zebrafish reproductive ability.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yifan Zhang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Mengying Zhao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
12
|
Cannabidiol improves Nile tilapia cichlid fish welfare. Sci Rep 2022; 12:17650. [PMID: 36271101 PMCID: PMC9586945 DOI: 10.1038/s41598-022-21759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cannabidiol (CBD) is a substance derived from Cannabis sativa, widely studied in medicine for controlling neural diseases in humans. Besides the positive effects on humans, it also presents anxiolytic proprieties and decreases aggressiveness and stress in mammals. Therefore, CBD has the potential to increase welfare in reared animals, as it seems to reduce negative states commonly experienced in artificial environments. Here, we tested the effect of different CBD doses (0, 1, 10 and 20 mg/kg) on aggressiveness, stress and reproductive development of the Nile tilapia (Oreochromis niloticus) a fish reared worldwide for farming and research purposes. CBD mixed with fish food was offered to isolated fish for 5 weeks. The 10 mg/kg dose decreased fish's aggressiveness over time, whereas 20 mg/kg attenuated non-social stress. Both doses decreased the baseline cortisol level of fish and increased the gonadosomatic index. However, CBD 1 and 10 mg/kg doses decreased the spermatozoa number. No CBD dose affected feeding ingestion and growth variables, showing that it is not harmful to meat production amount. Despite the effect on spermatozoa, CBD supplementation exhibits high potential to benefit animals' lives in artificial environments. Therefore, we showed for the first time that CBD could be used as a tool to increase non-mammal welfare, presenting a great potential to be explored in other husbandry and captivity species.
Collapse
|
13
|
Wang Z, Zheng P, Chen X, Xie Y, Weston-Green K, Solowij N, Chew YL, Huang XF. Cannabidiol induces autophagy and improves neuronal health associated with SIRT1 mediated longevity. GeroScience 2022; 44:1505-1524. [PMID: 35445360 PMCID: PMC9213613 DOI: 10.1007/s11357-022-00559-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is a catabolic process to eliminate defective cellular molecules via lysosome-mediated degradation. Dysfunctional autophagy is associated with accelerated aging, whereas stimulation of autophagy could have potent anti-aging effects. We report that cannabidiol (CBD), a natural compound from Cannabis sativa, extends lifespan and rescues age-associated physiological declines in C. elegans. CBD promoted autophagic flux in nerve-ring neurons visualized by a tandem-tagged LGG-1 reporter during aging in C. elegans. Similarly, CBD activated autophagic flux in hippocampal and SH-SY5Y neurons. Furthermore, CBD-mediated lifespan extension was dependent on autophagy genes (bec-1, vps-34, and sqst-1) confirmed by RNAi knockdown experiments. C. elegans neurons have previously been shown to accumulate aberrant morphologies, such as beading and blebbing, with increasing age. Interestingly, CBD treatment slowed the development of these features in anterior and posterior touch receptor neurons (TRN) during aging. RNAi knockdown experiments indicated that CBD-mediated age-associated morphological changes in TRNs require bec-1 and sqst-1, not vps-34. Further investigation demonstrated that CBD-induced lifespan extension and increased neuronal health require sir-2.1/SIRT1. These findings collectively indicate the anti-aging benefits of CBD treatment, in both in vitro and in vivo models, and its potential to improve neuronal health and longevity.
Collapse
Affiliation(s)
- Zhizhen Wang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Katrina Weston-Green
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nadia Solowij
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Xu-Feng Huang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia. .,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
14
|
Khara LS, Amin MR, Ali DW. Inhibiting the endocannabinoid degrading enzymes FAAH and MAGL during zebrafish embryogenesis alters sensorimotor function. J Exp Biol 2022; 225:275080. [PMID: 35438163 DOI: 10.1242/jeb.244146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (eCS) plays a critical role in a variety of homeostatic and developmental processes. Although the eCS is known to be involved in motor and sensory function, the role of endocannabinoid (eCB) signaling in sensorimotor development remains to be fully understood. In this study, the catabolic enzymes fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MAGL) were inhibited either simultaneously, or individually during the first ∼24 hours of zebrafish embryogenesis, and the properties of contractile events and escape responses were studied in animals ranging in age from 1 day post fertilization (dpf) to 10 weeks. This perturbation of the eCS resulted in alterations to contractile activity at 1 dpf. Inhibition of MAGL using JZL 184 and dual inhibition of FAAH/MAGL using JZL 195 decreased escape swimming activity at 2 dpf. Treatment with JZL 195 also produced alterations in the properties of the 2 dpf short latency C-start escape response. Animals treated with JZL 195 exhibited deficits in escape responses elicited by auditory/vibrational (A/V) stimuli at 5 and 6 dpf. These deficits were also present during the juvenile developmental stage (8-10-week-old fish), demonstrating a prolonged impact to sensory systems. These findings demonstrate that eCS perturbation affects sensorimotor function, and underscores the importance of eCB signaling in the development of motor and sensory processes.
Collapse
Affiliation(s)
- Lakhan S Khara
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Md Ruhul Amin
- Pharmacology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Physiology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Neuroscience and Mental Health Institute. CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
15
|
Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022; 38:5. [PMID: 35193700 PMCID: PMC8862295 DOI: 10.1186/s42826-022-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
Collapse
|
16
|
Talamantes M, Schneeberg SR, Pinto A, Perron GG. Passive exposure to cannabidiol oil does not cause microbiome dysbiosis in larval zebrafish. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100045. [PMID: 34841336 PMCID: PMC8610293 DOI: 10.1016/j.crmicr.2021.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The use of cannabidiol oil derived products has dramatically increased in popularity and is predicted to grow steadily over the next decade. Given its relative stability, cannabidiol is likely to accumulate in the environment and affect aquatic animals and their host-associated microbiomes. Here, using zebrafish larvae, a model system in environmental toxicology, we show that passive exposure to a concentration as high as 200 µg/L cannabidiol oil did not affect larvae survival and had limited effects on their host-associated microbial communities. We found that the changes in community structure were limited to a decrease in two sequence variants identified as Methylobacterium-Methylorubrum sp. and one ASV identified as Staphylococcus sp., as well as the increase of one sequence variant identified as Chryseobacterium sp., a bacterium commensal to zebrafish. More importantly, we found that cannabidiol oil did not affect the overall richness and diversity of the exposed fish microbiomes. These results suggest that passive exposure to cannabidiol oil is unlikely to impact aquatic organisms in significant ways.
Collapse
Affiliation(s)
- Maracela Talamantes
- Department of Biology, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY, USA
| | - Stella Rose Schneeberg
- Department of Chemistry, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY, USA
| | - Atahualpa Pinto
- Department of Chemistry, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY, USA
| | - Gabriel G. Perron
- Department of Biology, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY, USA
- Bard Food Lab, Center for Experimental Humanities, Bard College, Annandale-On-Hudson, NY, USA
| |
Collapse
|
17
|
Baban B, Khodadadi H, Salles ÉL, Costigliola V, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Yu JC. Inflammaging and Cannabinoids. Ageing Res Rev 2021; 72:101487. [PMID: 34662745 PMCID: PMC8662707 DOI: 10.1016/j.arr.2021.101487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Aging is a complex phenomenon associated with a wide spectrum of physical and physiological changes affecting every part of all metazoans, if they escape death prior to reaching maturity. Critical to survival, the immune system evolved as the principal component of response to injury and defense against pathogen invasions. Because how significantly immune system affects and is affected by aging, several neologisms now appear to encapsulate these reciprocal relationships, such as Immunosenescence. The central part of Immunosenescence is Inflammaging -a sustained, low-grade, sterile inflammation occurring after reaching reproductive prime. Once initiated, the impact of Inflammaging and its adverse effects determine the direction and magnitudes of further Inflammaging. In this article, we review the nature of this vicious cycle, we will propose that phytocannabinoids as immune regulators may possess the potential as effective adjunctive therapies to slow and, in certain cases, reverse the pathologic senescence to permit a more healthy aging.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA; Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta, Augusta University, Augusta, GA, USA
| | | | - John C Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
18
|
Thakkar K, Ruan CH, Ruan KH. Recent advances of cannabidiol studies in medicinal chemistry, pharmacology and therapeutics. Future Med Chem 2021; 13:1935-1937. [PMID: 34583522 DOI: 10.4155/fmc-2021-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Karishma Thakkar
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| | - Cheng-Huai Ruan
- Texas Center of Lifestyle Medicine, Ruan Medical Group, Houston, TX 77040, USA
| | - Ke-He Ruan
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
19
|
Xu Z, Peng B, Liang Q, Chen X, Cai Y, Zeng S, Gao K, Wang X, Yi Q, Gong Z, Yan Y. Construction of a Ferroptosis-Related Nine-lncRNA Signature for Predicting Prognosis and Immune Response in Hepatocellular Carcinoma. Front Immunol 2021; 12:719175. [PMID: 34603293 PMCID: PMC8484522 DOI: 10.3389/fimmu.2021.719175] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death process that plays important regulatory roles in the occurrence and development of cancers, including hepatocellular carcinoma (HCC). Moreover, the molecular events surrounding aberrantly expressed long non-coding RNAs (lncRNAs) that drive HCC initiation and progression have attracted increasing attention. However, research on ferroptosis-related lncRNA prognostic signature in patients with HCC is still lacking. In this study, the association between differentially expressed lncRNAs and ferroptosis-related genes, in 374 HCC and 50 normal hepatic samples obtained from The Cancer Genome Atlas (TCGA), was evaluated using Pearson's test, thereby identifying 24 ferroptosis-related differentially expressed lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression model were used to construct and validate a prognostic risk score model from both TCGA training dataset and GEO testing dataset (GSE40144). A nine-lncRNA-based signature (CTD-2033A16.3, CTD-2116N20.1, CTD-2510F5.4, DDX11-AS1, LINC00942, LINC01224, LINC01231, LINC01508, and ZFPM2-AS1) was identified as the ferroptosis-related prognostic model for HCC, independent of multiple clinicopathological parameters. In addition, the HCC patients were divided into high-risk and low-risk groups according to the nine-lncRNA prognostic signature. The gene set enrichment analysis enrichment analysis revealed that the lncRNA-based signature might regulate the HCC immune microenvironment by interfering with tumor necrosis factor α/nuclear factor kappa-B, interleukin 2/signal transducers and activators of transcription 5, and cytokine/cytokine receptor signaling pathways. The infiltrating immune cell subtypes, such as resting memory CD4(+) T cells, follicular helper T cells, regulatory T cells, and M0 macrophages, were all significantly different between the high-risk group and the low-risk group as indicated in Spearman's correlation analysis. Moreover, a substantial increase in the expression of B7H3 immune checkpoint molecule was found in the high-risk group. Our findings provided a promising insight into ferroptosis-related lncRNAs in HCC and a personalized prediction tool for prognosis and immune responses in patients.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- Computational Biology/methods
- Databases, Nucleic Acid
- Disease Susceptibility
- Ferroptosis/genetics
- Gene Expression Profiling
- Humans
- Immunity/genetics
- Lipid Peroxidation/genetics
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Prognosis
- Proportional Hazards Models
- RNA, Long Noncoding
- ROC Curve
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kewa Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Yan Y, Liang Q, Xu Z, Yi Q. Integrative bioinformatics and experimental analysis revealed down-regulated CDC42EP3 as a novel prognostic target for ovarian cancer and its roles in immune infiltration. PeerJ 2021; 9:e12171. [PMID: 34616622 PMCID: PMC8449529 DOI: 10.7717/peerj.12171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a significant clinical challenge as no effective treatments are available to enhance patient survival. Recently, N6-methyladenosine (m6A) RNA modification has been demonstrated to play a pivotal role in tumorigenesis and progression. However, the roles of m6A target genes in ovarian cancer haven't been clearly illustrated. In this study, we presented a comprehensive bioinformatics and in vitro analysis to evaluate the roles of m6A target genes. Cell division cycle 42 effector protein 3 (CDC42EP3), one probable m6A target gene, was identified to be down-regulated in ovarian cancer tissues and cells. Meanwhile, quantitative PCR (qPCR) and western blot were used to confirm the down-regulated CDC42EP3 in ovarian cancer cells A2780 and TOV112D. The biological function of CDC42EP3 in ovarian cancer was further validated with several algorithms, such as PrognoScan, K-M plotter, LinkedOmics and TISIDB. These findings indicated that lower expression of CDC42EP3 was correlated with poor prognosis in patients with ovarian cancer. In addition, CDC42EP3 expression was significantly associated with a diverse range of tumor-infiltrating immune cells, including natural killer cells (NK), T central memory cells (Tcm), T gamma delta cells (Tgd), etc. Taken together, this study uncovered the potential roles of m6A target gene CDC42EP3 in the regulation of immune microenvironment in the ovarian cancer, and identified CDC42EP3 as a novel prognostic target.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Peng B, Yan Y, Xu Z. The bioinformatics and experimental analysis of AlkB family for prognosis and immune cell infiltration in hepatocellular carcinoma. PeerJ 2021; 9:e12123. [PMID: 34557360 PMCID: PMC8418211 DOI: 10.7717/peerj.12123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Serving as N6-methyladenosine demethylases, the AlkB family is involved in the tumorigenesis of hepatocellular carcinoma (HCC). However, the molecular profiles and clinical values of the AlkB family in HCC are not well known. METHODS Several bioinformatics tools and in vitro experiments were used to identify the immune-related profiles and prognostic values of AlkB family in HCC. RESULTS In this study expression levels of ALKBH1/2/3/4/7 were all remarkably increased in HCC tissues when compared with normal tissues. Quantitative PCR (qPCR) and immunohistochemistry were used to validate the expression of AlkB family members in HCC tissues and normal liver tissues. In addition, high expression levels of ALKBH4 were negatively correlated with overall survival (OS) and disease-free survival (DFS) in patients with HCC. Increased ALKBH4 was also associated with pathological stage in HCC patients. The molecular profiles of AlkB family in HCC were mainly associated with peptidyl-serine modification, peptidyl-tyrosine modification, regulation of metal ion transport, etc. Furthermore, tumor-infiltrating immune cell analysis indicated that ALKBH1/2/3/4/5/6/7/8 and FTO were related to the infiltration of different immune cell, such as CD8+ T cells, macrophages, neutrophils, dendritic cells and CD4+ T cells. We also discovered that the methylation levels of ALKBH1/2/4/5/6/8 and FTO were remarkably reduced in HCC tissues. CONCLUSIONS Collectively, our findings may deepen the understanding of specific molecular profiles of the AlkB family in HCC pathology. In particular, ALKBH4 could serve as a promising prognostic candidate for treating HCC, and these results might potentiate the development of more reliable therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Wang J, Lei M, Xu Z. Aberrant expression of PROS1 correlates with human papillary thyroid cancer progression. PeerJ 2021; 9:e11813. [PMID: 34414029 PMCID: PMC8344691 DOI: 10.7717/peerj.11813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC). Considering the important association between cellular immunity and PTC progression, it is worth exploring the biological significance of immune-related signaling in PTC. METHODS Several bioinformatics tools, such as R software, WEB-based Gene SeT AnaLysis Toolkit (WebGestalt), Database for Annotation, Visualization and Integrated Discovery (DAVID), Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape were used to identify the immune-related hub genes in PTC. Furthermore, in vitro experiments were adopted to identify the proliferation and migration ability of PROS1 knockdown groups and control groups in PTC cells. RESULTS The differentially expressed genes (DEGs) of five datasets from Gene Expression Omnibus (GEO) contained 154 upregulated genes and 193 downregulated genes, with Protein S (PROS1) being the only immune-related hub gene. Quantitative real-time polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) have been conducted to prove the high expression of PROS1 in PTC. Moreover, PROS1 expression was significantly correlated with lymph nodes classification. Furthermore, knockdown of PROS1 by shRNAs inhibited the cell proliferation and cell migration in PTC cells. CONCLUSIONS The findings unveiled the clinical relevance and significance of PROS1 in PTC and provided potential immune-related biomarkers for PTC development and prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Minxiang Lei
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Wang Z, Zheng P, Xie Y, Chen X, Solowij N, Green K, Chew YL, Huang XF. Cannabidiol regulates CB1-pSTAT3 signaling for neurite outgrowth, prolongs lifespan, and improves health span in Caenorhabditis elegans of Aβ pathology models. FASEB J 2021; 35:e21537. [PMID: 33817834 DOI: 10.1096/fj.202002724r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
Cannabidiol (CBD), a phytocannabinoid from the Cannabis sativa plant, exhibits a broad spectrum of potential therapeutic properties for neurodegenerative diseases. An accumulation of amyloid-β (Aβ) protein is one of the most important neuropathology in neurodegenerative diseases like Alzheimer's disease (AD). Data on the effect of CBD on the amelioration of Aβ-induced neurite degeneration and its consequences of life and health spans is sparse. This study aimed to investigate the effects of CBD on neurite outgrowth in cells and lifespan and health span in Caenorhabditis elegans (C. elegans). In human SH-SY5Y neuronal cells, CBD prevented neurite lesion induced by Aβ1-42 and increased the expression of fatty acid amide hydrolase (FAAH) and cannabinoid receptor 1 (CB1R). Furthermore, CBD both protected the reduction of dendritic spine density and rescued the activity of synaptic Ca2+ /calmodulin-dependent protein kinase II (CaMKII) from Aβ1-42 toxicity in primary hippocampal neurons. In C. elegans, we used the transgenic CL2355 strain of C. elegans, which expresses the human Aβ peptide throughout the nervous system and found that CBD treatment extended lifespan and improved health span. The neuroprotective effect of CBD was further explored by observing the dopaminergic neurons using transgenic dat-1: GFP strains using the confocal microscope. This study shows that CBD prevents the neurite degeneration induced by Aβ, by a mechanism involving CB1R activation, and extends lifespan and improves health span in Aβ-overexpressing worms. Our findings support the potential therapeutic approach of CBD for the treatment of AD patients.
Collapse
Affiliation(s)
- Zhizhen Wang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Nadia Solowij
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Green
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
24
|
Pandelides Z, Aluru N, Thornton C, Watts HE, Willett KL. Transcriptomic Changes and the Roles of Cannabinoid Receptors and PPARγ in Developmental Toxicities Following Exposure to Δ9-Tetrahydrocannabinol and Cannabidiol. Toxicol Sci 2021; 182:44-59. [PMID: 33892503 PMCID: PMC8285010 DOI: 10.1093/toxsci/kfab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human consumption of cannabinoid-containing products during early life or pregnancy is rising. However, information about the molecular mechanisms involved in early life stage Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) toxicities is critically lacking. Here, larval zebrafish (Danio rerio) were used to measure THC- and CBD-mediated changes on transcriptome and the roles of cannabinoid receptors (Cnr) 1 and 2 and peroxisome proliferator activator receptor γ (PPARγ) in developmental toxicities. Transcriptomic profiling of 96-h postfertilization (hpf) cnr+/+ embryos exposed (6 - 96 hpf) to 4 μM THC or 0.5 μM CBD showed differential expression of 904 and 1095 genes for THC and CBD, respectively, with 360 in common. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the THC and CBD datasets included those related to drug, retinol, and steroid metabolism and PPAR signaling. The THC exposure caused increased mortality and deformities (pericardial and yolk sac edemas, reduction in length) in cnr1-/- and cnr2-/- fish compared with cnr+/+ suggesting Cnr receptors are involved in protective pathways. Conversely, the cnr1-/- larvae were more resistant to CBD-induced malformations, mortality, and behavioral alteration implicating Cnr1 in CBD-mediated toxicity. Behavior (decreased distance travelled) was the most sensitive endpoint to THC and CBD exposure. Coexposure to the PPARγ inhibitor GW9662 and CBD in cnr+/+ and cnr2-/- strains caused more adverse outcomes compared with CBD alone, but not in the cnr1-/- fish, suggesting that PPARγ plays a role in CBD metabolism downstream of Cnr1. Collectively, PPARγ, Cnr1, and Cnr2 play important roles in the developmental toxicity of cannabinoids with Cnr1 being the most critical.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Haley E Watts
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
25
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
26
|
Abstract
Aging is an inevitable biological phenomenon displayed by single cells and organs to entire organismal systems. Aging as a biological process is characterized as a progressive decline in intrinsic biological function. Understanding the causative mechanisms of aging has always captured the imagination of researchers since time immemorial. Although both biological and chronological aging are well defined and studied in terms of genetic, epigenetic, and lifestyle predispositions, the hallmarks of aging in terms of small molecules (i.e., endogenous metabolites to chemical exposures) are limited to obscure. On top of the endogenous metabolites leading to the onset and progression of healthy aging, human beings are constantly exposed to a natural and anthropogenic "chemical" environment round the clock, from conception till death, affecting one's physiology, health and well-being, and disease predisposition. The research community has started gaining sizeable insights into deciphering the aging factors such as immunosenescence, nutrition, frailty, inflamm-aging, and diseases till date, without much input from their interaction with exogenous chemical exposures. The "exposome" around us, mostly, accelerates the process of aging by affecting the internal biological pathways and signaling mechanisms that result in the deterioration of human health. However, the entirety of exposome on human aging is far from established. This review intends to catalog the known and established associations of the exposome from past studies focusing on aging in humans and other model organisms. Further discussed are the current technologies and informatics tools that enable the study of aging exposotypes, and thus, provide a window of opportunities and challenges to study the "aging exposome" in granular details.
Collapse
|
27
|
Pandelides Z, Thornton C, Lovitt KG, Faruque AS, Whitehead AP, Willett KL, Ashpole NM. Developmental exposure to Δ 9-tetrahydrocannabinol (THC) causes biphasic effects on longevity, inflammation, and reproduction in aged zebrafish (Danio rerio). GeroScience 2020; 42:923-936. [PMID: 32227279 PMCID: PMC7286997 DOI: 10.1007/s11357-020-00175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Increased availability of cannabis and cannabinoid-containing products necessitates the need for an understanding of how these substances influence aging. In this study, zebrafish (Danio rerio) were exposed to different concentrations of THC (0.08, 0.4, 2 μM) during embryonic-larval development and the effects on aging were measured 30 months later and in the offspring of the exposed fish (F1 generation). Exposure to 0.08 μM THC resulted in increased male survival at 30 months of age. As the concentration of THC increased, this protective effect was lost. Treatment with the lowest concentration of THC also significantly increased egg production, while higher concentrations resulted in impaired fecundity. Treatment with the lowest dose of THC significantly reduced wet weight, the incidence of kyphosis, and the expression of several senescence and inflammatory markers (p16ink4ab, tnfα, il-1β, il-6, pparα and pparγ) in the liver, but not at higher doses indicating a biphasic or hormetic effect. Exposure to THC did not affect the age-related reductions in locomotor behavior. Within the F1 generation, many of these changes were not observed. However, the reduction in fecundity due to THC exposure was worse in the F1 generation because offspring whose parents received high dose of THC were completely unable to reproduce. Together, our results demonstrate that a developmental exposure to THC can cause significant effects on longevity and healthspan of zebrafish in a biphasic manner.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Kayla G Lovitt
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Anika S Faruque
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Alyssa P Whitehead
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University, Oxford, MS, 38677, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA.
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University, Oxford, MS, 38677, USA.
| |
Collapse
|