1
|
Eto NY, Barrios-Leal DY, Manfrin MH. Introgression and Genetic Diversity Between Two Cactophilic Drosophila (Drosophila repleta group) Species: A Case Study of an Isolated Population from the Sandstone Hills in the Southeast of Brazil. NEOTROPICAL ENTOMOLOGY 2025; 54:64. [PMID: 40327225 DOI: 10.1007/s13744-025-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Introgressive hybridization involves the integration of genetic material from one population into another genetically distinct population. Despite its widespread occurrence in nature, the mechanisms and consequences of introgression remain poorly understood. In this study, we examine the hypothesis that the mitochondrial gene COI from Drosophila antonietae has been introgressed into the gene pool of a specific population of D. gouveai. Additionally, we extended our analysis to include other genes associated with the COX complex, such as mitochondrial (COII) and nuclear genes (CoVa, CG9603, and levy), across various populations of both species from different locations. We estimated indices of genetic diversity, constructed haplotype networks in both mitochondrial and nuclear genes, and performed selection tests to assess the evolutionary dynamics of mitochondrial genes. Our results confirm the hypothesis of a historical secondary contact between D. gouveai and D. antonietae in the region of Analândia, SP, showing asymmetric unidirectional introgression, with signs of positive selection in the mitochondrial genes.
Collapse
Affiliation(s)
- Naomi Yukie Eto
- Depto de Biologia - Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, Brazil
- Pós-Graduação, Depto de Genética - Faculdade de Medicina de Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, Brazil
| | - Dora Yovana Barrios-Leal
- Pós-Graduação, Depto de Genética - Faculdade de Medicina de Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, Brazil.
| | - Maura Helena Manfrin
- Depto de Biologia - Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, Brazil
- Pós-Graduação, Depto de Genética - Faculdade de Medicina de Ribeirão Preto, Univ de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Stefanatos R, Robertson F, Castejon-Vega B, Yu Y, Uribe AH, Myers K, Kataura T, Korolchuk VI, Maddocks ODK, Martins LM, Sanz A. Developmental mitochondrial complex I activity determines lifespan. EMBO Rep 2025; 26:1957-1983. [PMID: 40097814 PMCID: PMC12019323 DOI: 10.1038/s44319-025-00416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Aberrant mitochondrial function has been associated with an increasingly large number of human disease states. Observations from in vivo models where mitochondrial function is altered suggest that maladaptations to mitochondrial dysfunction may underpin disease pathology. We hypothesized that the severity of this maladaptation could be shaped by the plasticity of the system when mitochondrial dysfunction manifests. To investigate this, we have used inducible fly models of mitochondrial complex I (CI) dysfunction to reduce mitochondrial function at two stages of the fly lifecycle, from early development and adult eclosion. Here, we show that in early life (developmental) mitochondrial dysfunction results in severe reductions in survival and stress resistance in adulthood, while flies where mitochondrial function is perturbed from adulthood, are long-lived and stress resistant despite having up to a 75% reduction in CI activity. After excluding developmental defects as a cause, we went on to molecularly characterize these two populations of mitochondrially compromised flies, short- and long-lived. We find that our short-lived flies have unique transcriptomic, proteomic and metabolomic responses, which overlap significantly in discrete models of CI dysfunction. Our data demonstrate that early mitochondrial dysfunction via CI depletion elicits a maladaptive response, which severely reduces survival, while CI depletion from adulthood is insufficient to reduce survival and stress resistance.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK.
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| | - Fiona Robertson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Beatriz Castejon-Vega
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - Kevin Myers
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Tetsushi Kataura
- Department of Neurology, Institute of Medicine, University of Tsukuba, 305-8575, Ibaraki, Japan
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK
| | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
3
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
4
|
Guzman RM, Savolainen NG, Hayden OM, Lee M, Osbron CA, Liu Z, Yang H, Shaw DK, Omsland A, Goodman AG. Drosophila melanogaster Sting mediates Coxiella burnetii infection by reducing accumulation of reactive oxygen species. Infect Immun 2024; 92:e0056022. [PMID: 38363133 PMCID: PMC10929449 DOI: 10.1128/iai.00560-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The Gram-negative bacterium Coxiella burnetii is the causative agent of query fever in humans and coxiellosis in livestock. C. burnetii infects a variety of cell types, tissues, and animal species including mammals and arthropods, but there is much left to be understood about the molecular mechanisms at play during infection in distinct species. Human stimulator of interferon genes (STING) induces an innate immune response through the induction of type I interferons (IFNs), and IFN promotes or suppresses C. burnetii replication, depending on tissue type. Drosophila melanogaster contains a functional STING ortholog (Sting) which activates NF-κB signaling and autophagy. Here, we sought to address the role of D. melanogaster Sting during C. burnetii infection to uncover how Sting regulates C. burnetii infection in flies. We show that Sting-null flies exhibit higher mortality and reduced induction of antimicrobial peptides following C. burnetii infection compared to control flies. Additionally, Sting-null flies induce lower levels of oxidative stress genes during infection, but the provision of N-acetyl-cysteine (NAC) in food rescues Sting-null host survival. Lastly, we find that reactive oxygen species levels during C. burnetii infection are higher in Drosophila S2 cells knocked down for Sting compared to control cells. Our results show that at the host level, NAC provides protection against C. burnetii infection in the absence of Sting, thus establishing a role for Sting in protection against oxidative stress during C. burnetii infection.
Collapse
Affiliation(s)
- Rosa M. Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nathan G. Savolainen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Olivia M. Hayden
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hong Yang
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
7
|
Sun X, Ping Y, Li X, Mao Y, Chen Y, Shi L, Hong X, Chen L, Chen S, Cao Z, Chen P, Song Z, Wismeijer D, Wu G, Ji Y, Huang S. Activation of PGC-1α-dependent mitochondrial biogenesis supports therapeutic effects of silibinin against type I diabetic periodontitis. J Clin Periodontol 2023; 50:964-979. [PMID: 36940707 DOI: 10.1111/jcpe.13811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
AIM To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yifan Ping
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xumin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lixi Shi
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xinhua Hong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Daniel Wismeijer
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yinhui Ji
- Department of Stomatology, Dong Yang People's Hospital, Jinhua, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
9
|
Vitale M, Sanz A, Scialò F. Mitochondrial redox signaling: a key player in aging and disease. Aging (Albany NY) 2023; 15:2817-2818. [PMID: 37052982 PMCID: PMC10188336 DOI: 10.18632/aging.204659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Maria Vitale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE, Biotecnologie Avanzate, Naples, 80131, Italy
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Filippo Scialò
- CEINGE, Biotecnologie Avanzate, Naples, 80131, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
10
|
Castejon-Vega B, Cordero MD, Sanz A. How the Disruption of Mitochondrial Redox Signalling Contributes to Ageing. Antioxidants (Basel) 2023; 12:831. [PMID: 37107206 PMCID: PMC10135186 DOI: 10.3390/antiox12040831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the past, mitochondrial reactive oxygen species (mtROS) were considered a byproduct of cellular metabolism. Due to the capacity of mtROS to cause oxidative damage, they were proposed as the main drivers of ageing and age-related diseases. Today, we know that mtROS are cellular messengers instrumental in maintaining cellular homeostasis. As cellular messengers, they are produced in specific places at specific times, and the intensity and duration of the ROS signal determine the downstream effects of mitochondrial redox signalling. We do not know yet all the processes for which mtROS are important, but we have learnt that they are essential in decisions that affect cellular differentiation, proliferation and survival. On top of causing damage due to their capacity to oxidize cellular components, mtROS contribute to the onset of degenerative diseases when redox signalling becomes dysregulated. Here, we review the best-characterized signalling pathways in which mtROS participate and those pathological processes in which they are involved. We focus on how mtROS signalling is altered during ageing and discuss whether the accumulation of damaged mitochondria without signalling capacity is a cause or a consequence of ageing.
Collapse
Affiliation(s)
- Beatriz Castejon-Vega
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mario D. Cordero
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
12
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|