1
|
Trentin G, Lucato V, Sforza E, Bertucco A. Stabilizing autotrophic cyanophycin production in continuous photobioreactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Thapa P, Thapa A, Khadka S, Sapkota S, Panta OP, Sharma S, Karki TB, Poudel P. Screening and characterization of potent poly glutamic acid producing Bacillus sp. isolated from Kinema, water and soil samples. Heliyon 2021; 7:e07715. [PMID: 34401591 PMCID: PMC8358410 DOI: 10.1016/j.heliyon.2021.e07715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
Microbially produced gamma poly glutamic acid (γ-PGA) is a commercially important biopolymer with many applications in foods and various other substances and are abundantly used in different parts of the world. With an aim to study the potent γ-PGA producing Bacillus species, a total of 47 different samples (Kinema, soil, and water) were randomly collected from different locations across the country, and Bacillus sp. were selectively isolated, screened, and characterized by performing physiological, biochemical, morphological, and 16S rRNA gene sequencing. The microbial production of γ-PGA was assayed with the selected isolates on the PGA medium and the metabolite obtained was recovered by ethanol precipitation method and further characterized by thin-layer chromatography (TLC). Thermotolerance (25-60 °C), pH tolerance (4-9), and NaCl tolerance (1-9%) tests were performed to optimize the bacterial growth and γ-PGA production and its viscosity were measured by Ostwald's viscometer. Out of 145 randomly selected colonies, 63 isolates were Gram-positive, rods, and endospore producers and were presumptively confirmed as genus Bacillus. Higher growth of γ-PGA producers were reported in 22 isolates and was found at optimum conditions such as temperature (30-37 °C), pH (6.5-7), incubation time (3 days), and NaCl concentration (3%) and γ-PGA thus produced was further verified by TLC with the retention factor (RF) value 0.27. The potent isolates were closely similar to Bacillus subtilis subsp. stercoris, Bacillus cereus, Bacillus paranthracis, and Bacillus licheniformis etc. Based on the findings of the study, B. licheniformis is the most potent γ-PGA producing Bacillus sp. which can further be used for the commercial production of γ-PGA. To the best of our knowledge, there is yet no published research from Nepal showing the production of the γ-PGA although microbially produced γ-PGA are the major constituents in some popular foods in particular communities of the country.
Collapse
Affiliation(s)
- Punam Thapa
- Department of Microbiology, National College (NIST), Tribhuvan University, P.O. Box: 8659, Khusibu, Naya Bazar, Kathmandu, Nepal
| | - Alina Thapa
- State Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujan Khadka
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanjeep Sapkota
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Om Prakash Panta
- Department of Microbiology, National College (NIST), Tribhuvan University, P.O. Box: 8659, Khusibu, Naya Bazar, Kathmandu, Nepal
| | - Suprina Sharma
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, 44601, Nepal
| | - Tika Bahadur Karki
- Department of Microbiology, National College (NIST), Tribhuvan University, P.O. Box: 8659, Khusibu, Naya Bazar, Kathmandu, Nepal
| | - Pramod Poudel
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, 44618, Nepal
- Research Division, University Grants Commission (UGC), P.O. Box: 10796, Sanothimi, Bhaktapur, Nepal
| |
Collapse
|
3
|
Henao A, Ruiz GN, Steinke N, Cerveny S, Macovez R, Guàrdia E, Busch S, McLain SE, Lorenz CD, Pardo LC. On the microscopic origin of the cryoprotective effect in lysine solutions. Phys Chem Chem Phys 2020; 22:6919-6927. [DOI: 10.1039/c9cp06192d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine cryoprotective properties are due to the tight bonding of the first hydration Shell to the amino acid. However this effect is only possible for concentration up to 5.4 water molecules per lysine.
Collapse
Affiliation(s)
- Andrés Henao
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Guadalupe N. Ruiz
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Nicola Steinke
- Center for Marine Environmental Sciences (MARUM)
- University of Bremen
- 28359 Bremen
- Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC)
- Donostia International Physics Center (DIPC)
- 20018 San Sebastián
- Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Elvira Guàrdia
- Grup de Simulació per Ordinador en Matèria Condensada
- Departament de Física
- Universitat Politècnica de Catalunya
- E-08034 Barcelona
- Spain
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Sylvia E. McLain
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton
- UK
| | | | - Luis Carlos Pardo
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| |
Collapse
|
4
|
Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation. Int J Mol Sci 2017; 18:E2644. [PMID: 29215550 PMCID: PMC5751247 DOI: 10.3390/ijms18122644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu city 300, Taiwan.
| | - Sikhumbuzo Charles Kunene
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| |
Collapse
|
5
|
Wang J, Guleria S, Koffas MA, Yan Y. Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 2015; 37:97-104. [PMID: 26716360 DOI: 10.1016/j.copbio.2015.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches.
Collapse
Affiliation(s)
- Jian Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sanjay Guleria
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Main Campus Chatha-180009, Jammu, India
| | - Mattheos Ag Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, United States; Department of Biology, Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, United States.
| | - Yajun Yan
- BioChemical Engineering Program, College of Engineering, University of Georgia, Athens, Georgia 30602, United States.
| |
Collapse
|
6
|
Zhang H, Zhu J, Zhu X, Cai J, Zhang A, Hong Y, Huang J, Huang L, Xu Z. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. BIORESOURCE TECHNOLOGY 2012; 116:241-6. [PMID: 22522018 DOI: 10.1016/j.biortech.2011.11.085] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 05/08/2023]
Abstract
A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one.
Collapse
Affiliation(s)
- Huili Zhang
- Department of Chemical and Biological Engineering, Institute of Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang N, Yang G, Che C, Liu Y. Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of Bacillus licheniformis WBL-3. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811040193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Organic chemicals from bioprocesses in China. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 122:43-71. [PMID: 20549466 DOI: 10.1007/10_2010_75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the last 20 years, China has successfully established a modern biotechnology industry from almost nothing. Presently, China is a major producer of a vast array of products involving bioprocesses, for some China is even the world's top producer. The ever-increasing list of products includes organic acids, amino acids, antibiotics, solvents, chiral chemicals, biopesticides, and biopolymers. Herein, the research and development of bioprocesses in China will be reviewed briefly. We will concentrate on three categories of products: small molecules produced via fermentation, biopolymers produced via fermentation and small chemicals produced by enzyme-catalyzed reactions. In comparison with the traditional chemical process, in which, nonrenewable mineral resources are generally used, products in the first and second categories noted above can use renewable bioresources as raw materials. The bioprocesses are generally energy saving and environmentally benign. For products developed via the third category, although the raw materials still need to be obtained from mineral resources, the biocatalysts are more effective with higher selectivity and productivity, and the bioprocesses occur under ambient temperature and pressure, therefore, these are "green processes." Most of the products such as citric acid, xanthan and acrylamide etc., discussed in this paper have been in large-scale commercial production in China. Also introduced herein are three scientists, Prof. Shen Yinchu, Prof. Ouyang Pingkai and Prof. Chen Guoqiang, and six enterprises, Anhui Fengyuan Biochemical Co. Ltd., Shandong Hiland Biotechnology Co. Ltd., Shandong Fufeng Fermentation Co. Ltd., Shandong Bausch & Lomb-Freda Pharmaceutical Co. Ltd., Zhejiang Hangzhou Xinfu Pharmaceutical Co. Ltd., and Changzhou Changmao Biochemical Engineering Co. Ltd.; they have all contributed a great deal to research and development in the commercialization of bioprocesses.
Collapse
|
9
|
Effects of Cultivation Conditions on the Production of γ-PGA with Bacillus subtilis ZJU-7. Appl Biochem Biotechnol 2008; 160:370-7. [DOI: 10.1007/s12010-008-8307-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|