1
|
Zhu Y, Liang Z, Wang P, Ma Q, Zhang Z. An electrochemiluminescence sensor with wide stable potential detection window based on superhydrophilic amino acid polyionic liquid for the detection of miRNA-128 in colorectal cancer. Biosens Bioelectron 2025; 282:117502. [PMID: 40286647 DOI: 10.1016/j.bios.2025.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/03/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
The stable potential detection window (PW) of electrodes in the commonly overlooked issue in electrochemiluminescence (ECL) research. In this study, an amino acid-based polyionic liquid (AAPIL) had been designed and synthesized to solve the problem of narrow potential detection window of the electrode. A biosensor was constructed based on the AAPIL to overcome the limitation and enhance ECL signals. The reduced titanium nanoclusters (R-Ti NCs) were used as luminescent probes with strong ECL signal. Moreover, AAPIL with high ionic conductivity effectively accelerated electron transfer and facilitated the luminescence of titanium nanoclusters. In addition, the superhydrophilicity AAPIL had good antifouling properties. Therefore, the AAPIL-based biosensor was used to quantify miRNA-128 with a linear detection range of 1 fM to 1 nM, while the detection limit was as low as 0.17 fM. Owing to its excellent electrochemical property, this ECL sensor can be successfully applied to the detection of actual colorectal cancer samples.
Collapse
Affiliation(s)
- Yunxue Zhu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Zhiquan Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Yao L, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A mini-review on the research progress and application of nanomaterials in electrochemiluminescent sensors in the detection of water environmental pollutants. Mikrochim Acta 2025; 192:130. [PMID: 39904773 DOI: 10.1007/s00604-025-06973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
With the increasingly serious problem of environmental pollution, the development of new and efficient detection technology has become an urgent need. Electrochemiluminescence (ECL) sensors have attracted wide attention in environmental pollution detection due to their advantages of low cost, fast analysis speed, high sensitivity, and good selectivity. At the same time, with the rapid development of nanotechnology, nanomaterials are widely used to construct ECL sensors. Based on the different roles of nanomaterials in the construction of ECL sensors, they can be summarized as (1) nanomaterials for signal amplification; (2) ECL nanoemitters; (3) Nanomaterials as receptors for ECL resonance energy transfer. In this paper, the construction and luminescence mechanism of ECL sensors are discussed from the above three aspects. Finally, the challenges and prospects of nanomaterials ECL sensors in the field of environmental pollution detection in the future are discussed.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213032, Jiangsu, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Kong Y, Qian X, Mei X, Ma J, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025; 281:126937. [PMID: 39326117 DOI: 10.1016/j.talanta.2024.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S2O82- was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL-1 to 1000 ng mL-1 and a LOD as low as 0.067 pg mL-1. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.
Collapse
Affiliation(s)
- Yue Kong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
4
|
Sun M, Li S, Wang Q, Li Y, Jing H, Li X, Liu Y, Ren W, Xin X. Supramolecular Luminescent Copper-Nanocluster-Based Dough with Excellent Electrical Conductivity Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59327-59335. [PMID: 39422563 DOI: 10.1021/acsami.4c13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In recent years, the rapid advancement of flexible conductive materials has significantly increased the demand for dough materials that offer high flexibility and conductivity for diverse applications. Here, we developed a flexible, stretchable, and self-healing dough utilizing hydrogen-bonding interactions between glutathione-stabilized copper nanoclusters (GSH-Cu NCs) and poly(acrylic acid) (PAA). The dough materials can be kneaded, readily reshaped, and further processed to create bulk materials of arbitrary form factors. The incorporation of PAA not only preserved the vibrant blue emission of GSH-Cu NCs but also enhanced their electrical conductivity and stretchability. The dough can be stretched up to 25 times its initial length and achieves complete self-healing in a short time. Moreover, the dough can automatically repair physical damage and return to its initial conductivity levels after healing. Surprisingly, the electrical conductivity of the dough can reach as high as 2.97 S/m, which is relatively superior compared to that of conventional conductive materials. This study presents a dough that serves as a highly sensitive strain sensor, capable of effectively monitoring human movement across a broad range of strains.
Collapse
Affiliation(s)
- Mengdi Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shulin Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qingdong Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Ying Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012 P. R China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xin Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Weijia Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
5
|
Li H, Wu Y, Xu Z, Wang Y. Controllable Preparation of a Cu NCs@Zn-MOF Hybrid with Dual Emission Induced by an Ion Exchange Strategy for the Detection of Explosives. ACS Sens 2024; 9:4701-4710. [PMID: 39174875 DOI: 10.1021/acssensors.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The precise synthesis of Cu NCs is a highly desirable and controllable route for the preparation of desired structures and properties, which facilitates the rational design of valuable probes for fluorescence sensing and the understanding of structure-property relationships. Herein, an ion-exchange strategy combined with a bottom-up synthetic approach was utilized in the synthesis process of Cu NCs for the first time, which achieved the controllable synthesis of Cu NCs and in situ anchoring of Cu NCs on the support material HPU-14. The as-prepared Cu NCs@HPU-14-4h not only had a good peroxidase-like property but also exhibited stable dual-emitting fluorescence at 470 and 620 nm. Notably, the peroxidase-like property endowed Cu NCs@HPU-14-4h with the capability of highly sensitive colorimetric detection of H2O2 in a linear concentration from 0.1 to 140 μM (detection limit of 86.7 nM), and a change in the fluorescent color from red to blue could be observed by the naked eye. Furthermore, due to the large overlap between the absorption of 2,4,6-trinitrophenol (TNP) and the excitation band of Cu NCs@HPU-14-4h, TNP could also be detected from 27 types of analogs and common ions with a limit of detection of 68 nM. Finally, a portable hydrogel probe with efficient wipe sampling was fabricated by polyvinyl alcohol (PVA) comprising Cu NCs@HPU-14-4h with the aim of on-site visualization of different explosives. Consequently, the current study not only provides a new idea for the precise synthesis of Cu NCs and their controllable anchoring on support materials but also offers an effective method for predicting H2O2 and TNP.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yingying Wu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China
- Henan Provincial Research Center for Early Warning and Emergency Engineering of Combustion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
6
|
Pourmadadi M, Ghaemi A, Khanizadeh A, Yazdian F, Mollajavadi Y, Arshad R, Rahdar A. Breast cancer detection based on cancer antigen 15-3; emphasis on optical and electrochemical methods: A review. Biosens Bioelectron 2024; 260:116425. [PMID: 38824703 DOI: 10.1016/j.bios.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Cancer antigen 15-3 (CA 15-3) is a crucial marker used in the diagnosis and monitoring of breast cancer (BC). The demand for early and precise cancer detection has grown, making the creation of biosensors that are highly sensitive and specific essential. This review paper provides a thorough examination of the progress made in optical and electrochemical biosensors for detecting the cancer biomarker CA 15-3. We focus on explaining their fundamental principles, sensitivity, specificity, and potential for point-of-care applications. The performance attributes of these biosensors are assessed by considering their limits of detection, reaction times, and operational stability, while also making comparisons to conventional methods of CA 15-3 detection. In addition, we explore the incorporation of nanomaterials and innovative transducer components to improve the performance of biosensors. This paper conducts a thorough examination of recent studies to identify the existing obstacles. It also suggests potential areas for future research in this fast progressing field.The paper provides insights into their advancement and utilization to enhance patient outcomes. Both categories of biosensors provide significant promise for the detection of CA 15-3 and offer distinct advantages compared to conventional analytical approaches.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Amirhossein Ghaemi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Khanizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Yasin Mollajavadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Adjunct Professor at Equator University of Science and Technology, Uganda
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran; Key Laboratory of Modeling and Simulation-based Reliability and Optimization, University of Zabol, Zabol, Iran.
| |
Collapse
|
7
|
Qi R, Song X, Feng R, Ren X, Ma H, Liu X, Li F, Wei Q. Ultrasensitive Electrochemiluminescence Biosensor Based on Efficient Signal Amplification of Copper Nanoclusters Induced by CaMnO 3 for CD44 Trace Detection. Anal Chem 2024; 96:4969-4977. [PMID: 38486396 DOI: 10.1021/acs.analchem.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Metal nanoclusters (Me NCs) have become a research hotspot in the field of electrochemiluminescence (ECL) sensing analysis. This is primarily attributed to their excellent luminescent properties and biocompatibility along with their easy synthesis and labeling characteristics. At present, the application of Me NCs in ECL mainly focuses on precious metals, whose high cost, to some extent, limits their widespread application. In this work, Cu NCs with cathode ECL emissions in persulfate (S2O82-) were prepared as signal probes using glutathione as ligands, which exhibited stable luminescence signals and high ECL efficiency. At the same time, CaMnO3 was introduced as a co-reaction promoter to increase the ECL responses of Cu NCs, thereby further expanding their application potential in biochemical analysis. Specifically, the reversible conversion of Mn3+/Mn4+ greatly promoted the generation of sulfate radicals (SO4•-), providing a guarantee for improving the luminescence signals of Cu NCs. Furthermore, a short peptide (NARKFYKGC) was introduced to enable the fixation of antibodies to specific targets, preventing the occupancy of antigen-binding sites (Fab fragments). Therefore, the sensitivity of the biosensor could be significantly enhanced by releasing additional Fab fragments. Considering the approaches discussed above, the constructed biosensor could achieve sensitive detection of CD44 over a broad range (10 fg/mL-100 ng/mL), with an ultralow detection limit of 3.55 fg/mL (S/N = 3), which had valuable implications for the application of nonprecious Me NCs in biosensing analysis.
Collapse
Affiliation(s)
- Rongjing Qi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xianzhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Faying Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Xie Z, Tan W, Xiong Y, Deng S, Zhang J. Preparation of a hydrophilic nanofiber membrane by electrospinning for application in the detection of NO 2 by chemiluminescence. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5250-5258. [PMID: 37786249 DOI: 10.1039/d3ay00936j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The strong hydrophobicity of the PVDF membrane is prone to contamination that is hard to clean for long-term usage. In this study, hydrophilic and antifouling nanofiber membranes (NMs) were prepared with the hydrophilic polymer PVP and inorganic nanoparticles TiO2NPS. This NM was found to have excellent cleanability and good recyclability. Within 30 minutes, the residual ions could be removed by cleaning with deionized water. In alkaline solutions with the power of hydrogen (PH) ≤10, NM exhibits good alkaline resistance and recycling performance. It was also found, for the first time, that TiO2NPS could enhance the sensitivity of Luminol-NO2 (L-NO2) by 4 times. The detection of NO2 concentration by NM presents an excellent linear relationship with the chemiluminescence reading. This linear relationship would aid quick and convenient detection of NO2 using chemiluminescence.
Collapse
Affiliation(s)
- ZhiJin Xie
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China.
| | - WenYuan Tan
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China.
- Innovation Center for Chenguang High Performance Fluorine Material, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China
| | - YaLin Xiong
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China.
| | - ShaoLin Deng
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China.
| | - Jing Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, China.
| |
Collapse
|
9
|
Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022; 148:9-25. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed the emergence of innovative analytical methods with high sensitivity and spatiotemporal resolution that allowed qualitative and quantitative analysis to be carried out at single-cell and subcellular levels. Electrochemiluminescence (ECL) is a unique chemiluminescence of high-energy electron transfer triggered by electrical excitation. The ingenious combination of electrochemistry and chemiluminescence results in the distinct advantages of high sensitivity, a wide dynamic range and good reproducibility. Specifically, single-cell ECL (SCECL) analysis with excellent spatiotemporal resolution has emerged as a promising toolbox in bioanalysis for revealing individual cells' heterogeneity and stochastic processes. This review focuses on advances in SCECL analysis and bioimaging. The history and recent advances in ECL probes and strategies for system design are briefly reviewed. Subsequently, the latest advances in representative SCECL analysis techniques for bioassays, bioimaging and therapeutics are also highlighted. Then, the current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Qian Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Beibei Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Li X, Zhao Y, Hao X, Wang X, Luan F, Tian C, Zhang Z, Yu S, Zhuang X. Self-luminescent europium based metal organic frameworks nanorods as a novel electrochemiluminescence chromophore for sensitive ulinastatin detection in biological samples. Talanta 2022; 250:123726. [PMID: 35820336 DOI: 10.1016/j.talanta.2022.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
In this work, we developed a novel electrochemiluminescence (ECL) biosensor for ulinastatin (UTI) detection based on self-luminescent metal-organic framework (L-MOF) nanomaterials. The L-MOFs could be simply prepared by one-pot methods using Eu3+ and 4,4',4″-s-triazine-1,3,5-triyltri-m-aminobenzoic acid (H3TATAB) as the metallic center and organic ligand, respectively. The Eu-TATAB exhibited high efficiency and stable ECL performance when using K2S2O8 as coreactant. For the established biosensor, Eu-TATAB was both used as the ECL chromophore and protein carrier due to its outstanding biocompatibility and large superficial area, which could load sufficient antibodies to link with antigen in the biosensor for subsequent detection. The established sandwich ECL biosensor showed a wide linear range of 0.1 ng mL-1 - 105 ng mL-1 and a low limit of detection of 9.7 pg mL-1 for UTI detection. In addition, the developed ECL biosensor could also be successfully applied to the real UTI sample determination in serum. The reported biosensor strategy could provide a guide for developing more other novel and promising high-performance ECL nanomaterials, and also be used as a potential method for ultrasensitive UTI detection in disease research.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuqing Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhiyang Zhang
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Shunyang Yu
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
11
|
Detection of Pyrophosphate and Alkaline Phosphatase Activity Based on PolyT Single Stranded DNA - Copper Nanoclusters. J Fluoresc 2022; 32:1949-1957. [PMID: 35776261 DOI: 10.1007/s10895-022-02984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
The determination of pyrophosphate and alkaline phosphatase activity plays a significant role in medical diagnosis. In this work, a label-free "ON-OFF-ON" fluorescence strategy is developed for the analysis of pyrophosphate and alkaline phosphatase activity. Using PolyT single strand DNA as templates to synthesize fluorescent copper nanoparticles, the coordination effect of pyrophosphoric acid on Cu2+ inhibited the generation of fluorescence. Afterwards, the addition of alkaline phosphatase into hydrolyze pyrophosphoric acid resulted in the release of Cu2+, whereby the fluorescence intensity could be recovered. Thereupon enhanced-sensitivity for alkaline phosphatase was obtained (0.1 mU/L), much better than previously reported methods. Meanwhile, it could be performed directly in homogeneous solution, which was very close to the actual activity level of alkaline phosphatase under physiological conditions. Likewise, satisfactory results were also obtained in specificity assessment, which demonstrated its potential application in clinical diagnosis. Notably, a new, sensitive, low-cost, short-time, and high-sensitivity platform for alkaline phosphatase detection was constructed, and the design of biosensor using DNA-templated Copper nanoclusters (CuNCs) was instructed in this study.
Collapse
|
12
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Stewart S, Scorsone E, Prunier A, Hamel M. Novel ECL Method for the Determination of Skatole in Porcine Adipose Tissue. Anal Chem 2022; 94:6403-6409. [DOI: 10.1021/acs.analchem.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel Stewart
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| | | | | | - Matthieu Hamel
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| |
Collapse
|
14
|
|
15
|
Li JJ, Liu Z, Guan ZJ, Han XS, Shi WQ, Wang QM. A 59-Electron Non-Magic-Number Gold Nanocluster Au 99(C≡CR) 40 Showing Unexpectedly High Stability. J Am Chem Soc 2022; 144:690-694. [PMID: 34994558 DOI: 10.1021/jacs.1c11643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atomically resolved gold nanocluster Au99(C≡CC6H3-2,4-F2)40 (Au99) with an unusual 59 valence electrons has been synthesized. Single-crystal X-ray diffraction reveals that its Au79 kernel is a Au49 Marks decahedron capped by two Au15 units. The surface structure of Au99 consists of 20 linear Au(C≡CR)2 staples. Intercluster interactions are observed between these D5 symmetric clusters. The existence of an unpaired electron is verified by magnetic measurement. Interestingly, this open-shell gold cluster Au99 stays intact in toluene solution at 80 °C for more than a week, and it has good charging-discharging capability under electrochemical conditions. The compact ligand shell protection around the symmetric core accounts for the high stability. This work suggests that geometric factors may play a crucial role in determining the stability of a metal nanocluster, even though the cluster has an open-shell electronic structure.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Zhikun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Xu-Shuang Han
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
16
|
Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, Trozzi I, Guardigli M, Mirasoli M, Michelini E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:4309. [PMID: 34202483 PMCID: PMC8271422 DOI: 10.3390/s21134309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Antonia Lopreside
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Montali
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
17
|
Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9952-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron 2021; 176:112898. [PMID: 33358287 DOI: 10.1016/j.bios.2020.112898] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g., Au, Ag, Cu, Pt and Cd) has attracted extensive attention in biological fields. Up to now, various templates (e.g., dendrimers, polymers, DNAs, proteins and peptides) with different configurations and spaces have been applied to prepare MNCs with the advantages of facile preparation, controllable size, good water-solubility and biocompatibility. Herein, we focus on the recent advances in the template-assisted synthesis of MNCs, including the templates used to synthesize MNCs, and their applications in biosensing, bioimaging, and disease theranostics. Finally, the challenges and future perspectives of template-assisted synthesized MNCs are highlighted. We believe that this review could not only arouse more interest in MNCs but also promote their further development and applications by presenting the recent advances in this area to researchers from various fields, such as chemistry, material science, physiology, biomedicine, and so on.
Collapse
Affiliation(s)
- Zhenjie Qiao
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jian Zhang
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yongcun Yan
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Sai Bi
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
19
|
Shen YM, Tian R, Ma HY, Sun XH. A new fluorescence method for detection of famotidine based on polyethyleneimine-templated Ag nanoclusters. LUMINESCENCE 2020; 36:705-710. [PMID: 33300191 DOI: 10.1002/bio.3992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/03/2023]
Abstract
A rapid, simple, inexpensive fluorescence analysis method for determination of famotidine based on polyethyleneimine (PEI)-capped Ag nanoclusters (PEI-Ag NCs) was developed. The study showed that addition of famotidine could cause efficient quenching of PEI-Ag NC fluorescence, as the presence of famotidine could cause aggregation of Ag NCs and quench its fluorescence. The sensitivity and selectivity of the method were investigated and experimental conditions such as buffer type, pH, temperature, and reaction time were optimized. Under optimized conditions, the results showed a linear profile from 3.7 × 10-8 to 3.7 × 10-5 mol/L, and had a detection limit of 1.6 × 10-9 mol/L (S/N = 3).
Collapse
Affiliation(s)
- Yu-Mang Shen
- Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an, China
| | - Rui Tian
- Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an, China
| | - Hong-Yan Ma
- Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an, China
| | - Xue-Hua Sun
- Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an, China
| |
Collapse
|
20
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|
21
|
Song Q, Yan X, Cui H, Ma M. Efficient Cascade Resonance Energy Transfer in Dynamic Nanoassembly for Intensive and Long-Lasting Multicolor Chemiluminescence. ACS NANO 2020; 14:3696-3702. [PMID: 32150394 DOI: 10.1021/acsnano.0c00847] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light emission induced by chemical reactions, known as chemiluminescence (CL), has been widely used for bioassays, biosensors, imaging, and illumination applications. Most known CL systems exhibit flash-type single-color light emissions, which limit their applications. Long-lasting multicolor CL in aqueous solutions is highly desirable, especially for biological applications, but remains a challenge. Herein, we report a simple strategy of achieving highly efficient cascade Förster resonance energy transfer (FRET) in the dynamic nanoassembly of β-cyclodextrin (β-CD), CL reagents, and fluorophores in aqueous solution, which emits intensive multicolor CL with adjustable wavelength within 410-610 nm. β-CD can bind CL reagents and fluorophores to form a dynamic nanoassembly. These nanoassemblies can bring the included luminescent intermediate and fluorophores into close proximity and proper alignment, which should greatly enhance the FRET efficiency between luminescent intermediate and fluorophores. Indeed, the cascade FRET efficiency in this supramolecular nanoassembly reaches up to 92%, which is comparable with the cascade FRET systems based on covalently linked donors and acceptors. By using hydroxypropyl methylcellulose as the thickener to slow the diffusion (to elongate the CL emission), and using Ca(OH)2 solid (a low solubility strong base) as buffer to maintain the pH in the optimal range for the CL reaction, this nanoassembly system has been further developed to achieve slow-diffusion-controlled catalytic CL reactions, which enables long-lasting multicolor CL in aqueous solution that is visible to naked eyes and lasts for more than 20 h. The multicolor CL systems can be used to prepare transformable two-dimensional multicolor codes for encryption application.
Collapse
Affiliation(s)
- Qun Song
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiunan Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
22
|
Xiao Q, Xu C. Research progress on chemiluminescence immunoassay combined with novel technologies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115780] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Hu L, Wu Y, Xu M, Gu W, Zhu C. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem Commun (Camb) 2020; 56:10989-10999. [DOI: 10.1039/d0cc04371k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In electrochemiluminescence sensing platforms, co-reaction accelerators are specific materials used to catalyze the dissociation of co-reactants into active radicals, which can significantly boost the ECL emission of luminophores.
Collapse
Affiliation(s)
- Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Miao Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
24
|
Shah SNA, Khan M, Rehman ZU. A prolegomena of periodate and peroxide chemiluminescence. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Han S, Chen X. Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:315-320. [PMID: 30472594 DOI: 10.1016/j.saa.2018.11.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The reaction between diperiodatoargentate(III) (DPA) and folic acid (FA) produced weak chemiluminescence (CL) in acid medium, which was greatly enhanced in the presence of copper nanoclusters (CuNCs). The CL intensity of CuNCs-DPA-FA system increased with the concentration of FA ranging from 0.1 to 10.0 μM. The proposed CL system was applied for the detection of FA in pharmaceutical formulation and human urine samples. Further, the CL signal of CuNCs-DPA-FA system was inhibited by nitrite, and the inhibited CL intensity was proportional to the nitrite concentration in the range of 1.0-80.0 μM. The method was successfully applied to determine nitrite in water, pickled vegetable and sausage samples. A possible CL mechanism was briefly discussed.
Collapse
Affiliation(s)
- Suqin Han
- Department of Chemistry, Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, Shanxi, PR China; School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, PR China.
| | - Xiaoxia Chen
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, PR China
| |
Collapse
|
27
|
A chemiluminescence biosensor for lysozyme detection based on aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod carbon fiber composite. Talanta 2019; 200:57-66. [PMID: 31036225 DOI: 10.1016/j.talanta.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/16/2023]
Abstract
In our work, aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod graphene quantum dots @ graphene oxide @ carbon fiber composite (DNAzyme/L-Apt/GQDs@GO@CF) was successfully prepared for sensitive and selective chemiluminescence (CL) detection of lysozyme (LZM). Initially, GQDs@GO@CF was successfully prepared and characterized. Lysozyme aptamers (L-Apt) as a recognition element and hemin/G-quadruplex DNAzyme (DNAzyme) as a catalyst of luminal - H2O2 were modified on the surface of GQDs@GO@CF, sequentially. The immobilization properties of GQDs@GO@CF to L-Apt and the adsorption properties of L-Apt/GQDs@GO@CF to DNAzyme were also researched, respectively. Then, the modified sandwich-rod carbon fiber composite was applied to the construction of CL biosensor for LZM detection. When LZM existed, DNAzyme would be released from the surface of L-Apt/GQDs@GO@CF and catalyzed the reaction of luminal - H2O2. Under optimized conditions, the CL biosensor for LZM detection showed wide linear range of 2.64 × 10-10 to 6.6 × 10-8 g/L and low detection limit of 1.25 × 10-11 g/L (3δ). Finally, the CL biosensor was successfully used for LZM detection in human urine samples and illustrated the potential application in pratical samples.
Collapse
|
28
|
Yousefzadeh A, Abolhasani J, Hassanzadeh J, Somi MH. Ultrasensitive chemiluminescence assay for cimetidine detection based on the synergistic improving effect of Au nanoclusters and graphene quantum dots. LUMINESCENCE 2019; 34:261-271. [PMID: 30724006 DOI: 10.1002/bio.3604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023]
Abstract
A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4 -based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB-KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano-assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4 -RhoB-Au NCs/GQDs was verified for CM concentrations in the range 0.8-200 ng ml-1 . The limit of detection (3Sb /m) was 0.3 ng ml-1 . Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.
Collapse
Affiliation(s)
- Ashraf Yousefzadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Jafar Abolhasani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Tang Y, Xu J, Xiong C, Xiao Y, Zhang X, Wang S. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Analyst 2019; 144:2643-2648. [DOI: 10.1039/c9an00032a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel electrochemiluminescence (ECL) sensor based on enhanced ECL of gold nanoclusters is designed for the ultrasensitive detection of dopamine.
Collapse
Affiliation(s)
- Yao Tang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Juntao Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Chengyi Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Yan Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| |
Collapse
|
30
|
Li HL, Qiu F, Ge QM, Liu M, Tao Z, Cong H. Electrochemiluminescence response of a benzouril-constructed electrode to bipyridyl herbicides. NEW J CHEM 2019. [DOI: 10.1039/c8nj06512h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence sensor with modification of macrocyclic benzo[6]uril on the surface of a glass carbon electrode was achieved, which has been applied for the quantitative analysis of paraquat and diquat.
Collapse
Affiliation(s)
- Hai-Ling Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Fei Qiu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Mao Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
31
|
Zhang P, Zhai J, Gao X, Zhao H, Su W, Zhao L. Targeted peptide-Au cluster binds to epidermal growth factor receptor (EGFR) in both active and inactive states: a clue for cancer inhibition through dual pathways. Sci Bull (Beijing) 2018; 63:349-355. [PMID: 36658871 DOI: 10.1016/j.scib.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/21/2023]
Abstract
The epidermal growth factor receptor (EGFR) has become an important target protein in anticancer drug development. Meanwhile, peptide-Au cluster has been proposed as potential targeted nano-drug assembled by targeting peptide. Here, we designed and synthesized a novel peptide-Au cluster as Au10Peptide5 to target to EGFR. We found Au10Peptide5 could target to the natural binding sites of all EGFRs at membrane in both active and inactive states by molecular simulations. Its targeted ability was further verified by the co-localization and blocking experiments. We also study the configuration modifications of both active and inactive EGFRs after binding by Au10Peptide5. For active EGFR, the absorbed Au10Peptide5 might replace the natural ligand in EGFR endocytosis process. Then, the peptide-Au cluster in endochylema could inhibit the cancer relating enzyme activity including thioredoxin reductase1 (TrxR1) and induce the oxidative stress mediated apoptosis in tumor cells. For inactive EGFR, it was retained in inactive state by Au10Peptide5 binding to inhibit dimerization of EGFR for anticancer. Both pathways might be applied in anticancer drug development based on the theoretical and experimental study here.
Collapse
Affiliation(s)
- Peng Zhang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Zhai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongkang Zhao
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyong Su
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Wang X, Xu Y, Ma X, Tian H. Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xi Wang
- Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, School of Chemistry and Molecular
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Xu
- Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, School of Chemistry and Molecular
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, School of Chemistry and Molecular
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, School of Chemistry and Molecular
Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
33
|
Rizwan M, Mohd-Naim NF, Ahmed MU. Trends and Advances in Electrochemiluminescence Nanobiosensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E166. [PMID: 29315277 PMCID: PMC5795924 DOI: 10.3390/s18010166] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
The rapid and increasing use of the nanomaterials (NMs), nanostructured materials (NSMs), metal nanoclusters (MNCs) or nanocomposites (NCs) in the development of electrochemiluminescence (ECL) nanobiosensors is a significant area of study for its massive potential in the practical application of nanobiosensor fabrication. Recently, NMs or NSMs (such as AuNPs, AgNPs, Fe₃O₄, CdS QDs, OMCs, graphene, CNTs and fullerenes) or MNCs (such as Au, Ag, and Pt) or NCs of both metallic and non-metallic origin are being employed for various purposes in the construction of biosensors. In this review, we have selected recently published articles (from 2014-2017) on the current development and prospects of label-free or direct ECL nanobiosensors that incorporate NCs, NMs, NSMs or MNCs.
Collapse
Affiliation(s)
- Mohammad Rizwan
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| | - Noor Faizah Mohd-Naim
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
- Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| | - Minhaz Uddin Ahmed
- Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| |
Collapse
|
34
|
JIANG H, WANG XM. Progress of Metal Nanoclusters-based Electrochemiluminescent Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Dong H, Liao L, Zhuang S, Yao C, Chen J, Tian S, Zhu M, Liu X, Li L, Wu Z. A novel double-helical-kernel evolution pattern of gold nanoclusters: alternate single-stranded growth at both ends. NANOSCALE 2017; 9:3742-3746. [PMID: 28134388 DOI: 10.1039/c6nr09724c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studying the kernel evolution pattern of gold nanoclusters is intriguing but challenging due to the difficulty of precise size control and structure resolution. Herein, we successfully synthesized two novel gold nanoclusters, Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 (S-c-C6H11: cyclohexanethiolate), and resolved their structures. Interestingly, it was found that the kernel evolves from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 in a novel fashion: alternate single-stranded evolution at both ends, which is remarkably different from the reported double-stranded growth at the bottom for the 4-tert-butylbenzenethiolate (TBBT)-protected nanocluster series. This work illustrates the variety of kernel evolution patterns and the directionality of the ligands with respect to the evolution of the kernel. In addition, differential pulse voltammetry (DPV) revealed that the electrochemical gap between the first oxidation and the first reduction potential decreases as the size increases from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26.
Collapse
Affiliation(s)
- Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanhao Yao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Jishi Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shubo Tian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Min Zhu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Xu Liu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
36
|
Wei GF, Liu ZP. Subnano Pt Particles from a First-Principles Stochastic Surface Walking Global Search. J Chem Theory Comput 2016; 12:4698-706. [DOI: 10.1021/acs.jctc.6b00556] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang-Feng Wei
- Shanghai
Key Laboratory of Chemical Assessment and Sustainability, Department
of Chemistry, Tongji University, Shanghai 200092, China
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science (Ministry of Education), Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science (Ministry of Education), Department
of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|