1
|
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci 2023; 24:16357. [PMID: 38003548 PMCID: PMC10671630 DOI: 10.3390/ijms242216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Collapse
Affiliation(s)
- Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Inga Łopuszyńska
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland;
| | - Michał Tobiasz
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Krasnystawska 52 Street, 21-010 Łęczna, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, University of Warsaw, Żwirki i Wigury 101 Street, 02-089 Warszawa, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Cheng S, Lv R, Xu J, Hirman AR, Du L. IGF-1-Expressing Placenta-Derived Mesenchymal Stem Cells Promote Scalding Wound Healing. J Surg Res 2021; 265:100-113. [PMID: 33895582 DOI: 10.1016/j.jss.2021.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/01/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stem cell-based regenerative therapy is a novel approach to severe damaged skin. Perinatal tissues such as placenta are considered as promising alternatives. The present study aimed to investigate the effect of insulin-like growth factor-1 (IGF-1)-expressing placenta-derived mesenchymal stem cells (hPMSCs) on healing of burn wounds. MATERIALS AND METHODS hPMSCs were isolated from human placenta, and IGF-1 was transducted into hPMSCs via lentivirus. Flow cytometry and MTT assay were performed to assess cell apoptosis and viability, respectively. Immunostaining of CK19 and ki67 was for evaluating epithelial differentiation ability and cell proliferation. For in vivo studies, we established a mouse model of scalding and performed local administration of IGF-1-expressing hPMSCs via subcutaneous injection. Wound histology was analyzed with H&E staining. The expression of fibrogenic cytokines was detected by western blot. The production of pro-inflammatory factors was measured by ELISA. RESULTS Overexpression of IGF-1 promoted cell proliferation and epithelial differentiation of hPMSCs in vitro and in vivo. Mice with burn injury displayed increased wound contraction and healing rates following treatment with IGF-1-expressing hPMSCs. There was less inflammatory infiltration and reduced collagen disposition in the presence of IGF-1 at the wound site. Administration of IGF-1-expressing hPMSCs suppressed inflammation by decreasing the levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. Besides, IGF-1 increased VEGF expression, and decreased TGF-β1, collagen I and collagen III expressions in vivo. CONCLUSIONS IGF-1-expressing PMSCs promotes cell proliferation and epithelial differentiation, inhibits inflammation and collagen deposition, and thus contributes to wound healing.
Collapse
Affiliation(s)
- Shaohang Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Runxiao Lv
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Xu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Abdul Razaq Hirman
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Fan Z, Xie X, Zhu S, Liao X, Yin Z, Zhang Y, Liu F. Novel pre-vascularized tissue-engineered dermis based on stem cell sheet technique used for dermis-defect healing. Regen Biomater 2020; 7:627-638. [PMID: 33365148 PMCID: PMC7748445 DOI: 10.1093/rb/rbaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Insufficient donor dermis and the shortage of three-dimensional vascular networks are the main limitations in the tissue-engineered dermis (TED). To solve these problems, we initially constructed pre-vascularized bone marrow mesenchymal stem cell sheet (PBMCS) and pre-vascularized fibroblasts cell sheet (PFCS) by cell sheet technology, and then superimposed or folded them together to construct a pre-vascularized TED (PTED), aiming to mimic the real dermis structure. The constructed PTED was implanted in nude mice dorsal dermis-defect wound and the wound-healing effect was quantified at Days 1, 7 and 14 via the methods of histochemistry and immunohistochemistry. The results showed that PTED could rapidly promote the wound closure, especially at Day 14, and the wound-healing rate of three-layer PTED could reach 97.2% (P < 0.01), which was faster than the blank control group (89.1%), PBMCS (92.4%), PFCS (93.8%) and six-layer PTED (92.3%). In addition, the vessel density in the PTED group was higher than the other groups on the 14th day. Taken together, it is proved that the PTED, especially three-layer PTED, is more conducive to the full-thickness dermis-defect repair and the construction of the three-dimensional vascular networks, indicating its potential application in dermis-defect repair.
Collapse
Affiliation(s)
- Zengjie Fan
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xuzhuzi Xie
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Shengqian Zhu
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xiaozhu Liao
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Zhengrong Yin
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Yujue Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
6
|
Kaleka CC, Zucconi E, Vieira TDS, Secco M, Ferretti M, Cohen M. Evaluation of different commercial hyaluronic acids as a vehicle for injection of human adipose-derived mesenchymal stem cells. Rev Bras Ortop 2018; 53:557-563. [PMID: 30245994 PMCID: PMC6147760 DOI: 10.1016/j.rboe.2018.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/19/2017] [Indexed: 12/05/2022] Open
Abstract
Objective The main purpose of this study is to evaluate, in vitro, the cytotoxicity of different commercial brands of hyaluronic acids to be used as a vehicle for injection of human adipose-derived mesenchymal stem cells (AD-MSCs). Methods AD-MSCs were divided into seven groups: one control group where AD-MSCs were cultivated with phosphate-buffered saline (PBS) and six other groups where AD-MSCs were cultivated with different commercial brands of hyaluronic acid. AD-MSC viability analysis was performed after 4, 24, and 48 h in contact with each treatment, using the trypan staining method on a Countess automated cell counter (Thermo Fisher Scientific). Results The results clearly demonstrated a significant difference in cell viability when AD-MSCs were exposed to different hyaluronic acids when compared with the control group. Conclusion These data suggest that hyaluronic acid can be used as a vehicle for injection of human AD-MSCs, but caution is needed to choose the best product, aiming at its future therapeutic application.
Collapse
Affiliation(s)
- Camila Cohen Kaleka
- Instituto Cohen Ortopedia, Reabilitação e Medicina do Esporte, São Paulo, SP, Brazil.,Programa do Aparelho Locomotor, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eder Zucconi
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório StemCorp de Tecnologia em Células-Tronco, São Paulo, SP, Brazil
| | | | - Mariane Secco
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório StemCorp de Tecnologia em Células-Tronco, São Paulo, SP, Brazil
| | - Mário Ferretti
- Programa do Aparelho Locomotor, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Moisés Cohen
- Instituto Cohen Ortopedia, Reabilitação e Medicina do Esporte, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Kaleka CC, Zucconi E, Vieira TDS, Secco M, Ferretti M, Cohen M. Avaliação de diferentes ácidos hialurônicos comerciais como veículo de injeção para células mesenquimais humanas derivadas do tecido adiposo. Rev Bras Ortop 2018. [DOI: 10.1016/j.rbo.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Adv Healthc Mater 2016; 5:2459-2480. [PMID: 27548388 DOI: 10.1002/adhm.201600439] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/30/2016] [Indexed: 12/19/2022]
Abstract
In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes.
Collapse
Affiliation(s)
- Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Vahid Beydaghi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Farshid Moradi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Parya Jafari
- Department of Electrical Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Mohsen Janmaleki
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| | - Karolina Papera Valente
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| |
Collapse
|
9
|
Biazar E, Keshel SH. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Scaffolds as Potential Candidate for Skin Regeneration. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.879447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Lu W, Zhang YJ, Jin Y. Potential of stem cells for skin regeneration following burns. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Yan Y, Liu Y, Liu D, He L, Guan L, Wang Y, Nan X, Pei X. Differentiation of adipose-derived adult stem cells into epithelial-like stem cells. Ann Anat 2013; 195:212-8. [DOI: 10.1016/j.aanat.2012.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 10/06/2012] [Accepted: 10/10/2012] [Indexed: 12/28/2022]
|
12
|
Alexaki VI, Simantiraki D, Panayiotopoulou M, Rasouli O, Venihaki M, Castana O, Alexakis D, Kampa M, Stathopoulos EN, Castanas E. Adipose Tissue-Derived Mesenchymal Cells Support Skin Reepithelialization through Secretion of KGF-1 and PDGF-BB: Comparison with Dermal Fibroblasts. Cell Transplant 2012; 21:2441-54. [DOI: 10.3727/096368912x637064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Epidermal organization and homeostasis are regulated by mesenchymal influences through paracrine actions. Until today, dermal fibroblasts (DFs) are used in the “dermal” layer to support keratinocyte growth in vitro in dermal and skin substitutes. In the present work, we used human adipose tissue-derived mesenchymal cells (ADMCs) as a support of keratinocyte growth in vitro (in monolayer culture and in 3D skin cell culture models) and in vivo (mouse wound healing models) and compared our findings with those obtained using dermal fibroblasts. ADMCs induce reepithelialization during wound healing more efficiently than DFs, by enhancing keratinocyte proliferation through cell cycle progression, and migration. This effect is mediated (at least partially) by a paracrine action of KGF-1 and PDGF-BB, which are more prominently expressed in ADMCs than in DFs. Furthermore, replacement of DFs by ADMCs in the dermal compartment of organotypic skin cultures leads to an artificial epidermis resembling to that of normal skin, concerning the general histology, although with a higher expression of cytokeratins 5 and 19. In Rag1 knockout mice, ADMCs induced a more rapid reepithelialization and a more effective wound healing, compared to dermal fibroblasts. In conclusion, we provide evidence that ADMCs can serve as supportive cells for primary keratinocyte cultures. In addition, because of their abundance and the great cell yield achieved during ADMC isolation, they represent an interesting cell source, with potential aspects for clinical use.
Collapse
Affiliation(s)
- Vassilia-Ismini Alexaki
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Despoina Simantiraki
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marianna Panayiotopoulou
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Olga Rasouli
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Ourania Castana
- Plastic and Reconstructive Surgery Department, Evaggelismos General Hospital, Athens, Greece
| | - Dimitrios Alexakis
- Plastic and Reconstructive Surgery Department, Evaggelismos General Hospital, Athens, Greece
| | - Marilena Kampa
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Elias Castanas
- Department of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
13
|
Michael S, Sorg H, Peck CT, Reimers K, Vogt PM. The mouse dorsal skin fold chamber as a means for the analysis of tissue engineered skin. Burns 2012; 39:82-8. [PMID: 22717134 DOI: 10.1016/j.burns.2012.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/20/2012] [Indexed: 01/21/2023]
Abstract
The therapy of extensive and deep burn wounds is still a challenging task for reconstructive plastic surgery. The outcome is generally not satisfactory, neither from the functional nor from the aesthetic aspect. Several available skin substitutes are used but there is need for optimization of new skin substitutes which have to be tested in vitro as well as in vivo. Here, we show that the dorsal skin fold chamber preparation of mice is well suited for the testing of skin substitutes in vivo. Dermal skin constructs consisting of matriderm(®) covered with a collagen type I gel were inserted into full thickness skin wounds in the skin fold chambers. The skin substitutes integrated well into the adjacent skin and got epithelialized from the wound edges within 11 days. The epithelialization by keratinocytes is the prerequisite that also cell-free dermal substitutes might be used in the case of the lack of sufficient areas to gain split thickness skin grafts. Further advantage of the chambers is the lack of wound contraction, which is common but undesired in rodent wound healing. Furthermore, this model allows a sophisticated histological as well as immunohistochemical analysis. As such, we conclude that this model is well suited for the analysis of tissue engineered skin constructs. Besides epithelialization the mode and extend of neovascularization and contraction of artificial grafts may be studied under standardized conditions.
Collapse
Affiliation(s)
- Stefanie Michael
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
14
|
Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, Stöckle U, Nussler A. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg 2009; 394:985-997. [PMID: 19644703 DOI: 10.1007/s00423-009-0546-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 02/06/2023]
Abstract
Stem cells are one of the most fascinating areas in regenerative medicine today. They play a crucial role in the development and regeneration of human life and are defined as cells that continuously reproduce themselves while maintaining the ability to differentiate into various cell types. Stem cells are found at all developmental stages, from embryonic stem cells that differentiate into all cell types found in the human body to adult stem cells that are responsible for tissue regeneration. The general opinion postulates that clinical therapies based on the properties of stem cells may have the potential to change the treatment of degenerative diseases or important traumatic injuries in the "near" future. We here briefly review the literature in particularly for the liver, heart, kidney, cartilage, and bone regeneration.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Department of Traumatology, TU Munich, Klinikum rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Okabe K, Yamada Y, Ito K, Kohgo T, Yoshimi R, Ueda M. Injectable soft-tissue augmentation by tissue engineering and regenerative medicine with human mesenchymal stromal cells, platelet-rich plasma and hyaluronic acid scaffolds. Cytotherapy 2009; 11:307-16. [DOI: 10.1080/14653240902824773] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Liao S, Chan CK, Ramakrishna S. Stem cells and biomimetic materials strategies for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2008.08.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Abstract
Stem cells are defined by their capacity of self-renewal and multilineage differentiation, which make them uniquely situated to treat a broad spectrum of human diseases. Based on a series of remarkable studies in several fields of regenerative medicine, their application is not too far from the clinical practice. Full-thickness burns and severe traumas can injure skin and its appendages, which protect animals from water loss, temperature change, radiation, trauma and infection. In adults, the normal outcome of repair of massive full-thickness burns is fibrosis and scarring without any appendages, such as hair follicles, sweat and sebaceous glands. Perfect skin regeneration has been considered impossible due to the limited regenerative capacity of epidermal keratinocytes, which are generally thought to be the key source of the epidermis and skin appendages. Currently, researches on stem cells, such as epidermal stem cells, dermal stem cells, mesenchymal stem cells from bone marrow, and embryonic stem cells, bring promise to functional repair of skin after severe burn injury, namely, complete regeneration of skin and its appendages. In this study, we present an overview of the most recent advances in skin repair and regeneration by using stem cells.
Collapse
|