1
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Characterization and expression analysis of the B3 gene family during seed development in Akebia trifoliata. BMC Genomics 2024; 25:1060. [PMID: 39516780 PMCID: PMC11549857 DOI: 10.1186/s12864-024-10981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND B3 genes encode transcription factors that play key roles in plant growth and development. However, the specific B3 genes involved in the seed development of Akebia trifoliata remain unexplored. RESULTS A total of 72 AktB3 genes were identified and classified into five subfamilies (ARF, LAV, RAV, HSI, and REM) based on phylogenetic analysis. These 72 AktB3 genes were unevenly distributed across 16 chromosomes. Collinear analysis indicated that segmental duplication has played a significant role in the evolution of AktB3 genes, and underwent purification selection. Expression profiling across seed development stages revealed that seven AktB3 genes, particularly from the LAV subfamily (AktABI3, AktFUS3, AktLEC2), were up-regulated at 70 days after flowering (DAF). Notably, the expression of oleosin exhibited a strong positive correlation with LAV subfamily genes, highlighting their potential roles as hub genes in lipid metabolism and seed development. Yeast two-hybrid (Y2H) and yeast one-hybrid (Y1H) experiments confirmed that AktFUS3-1, AktFUS3-2, and AktLEC2 form protein complexes and individually bind to the AktOLE1 promoter, thereby regulating downstream gene expression. These results provide direct evidence of the cooperative role these transcription factors play in controlling lipid metabolism, particularly related to oleosin proteins. Additionally, miRNA sequencing across three seed developmental stages identified 591 miRNAs and 1,673 target gene pairs. A total of 23 AktB3 genes were predicted to be targets of 20 miRNAs, with 11 miRNAs specifically targeting the ARF subfamily genes. Particularly, miR160-x, miR160-z, and miR167-z were predicted to target ARF subfamily genes, potentially influencing seed development. Moreover, the miRNA-B3 regulatory modules, especially involving ARF genes and miR160/167, require further study to clarify their roles in seed development. CONCLUSIONS These findings contribute valuable resources for future functional studies of the molecular regulatory networks governing seed development in A. trifoliata.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhang WJ, Tang LP, Peng J, Zhai LM, Ma QL, Zhang XS, Su YH. A WRI1-dependent module is essential for the accumulation of auxin and lipid in somatic embryogenesis of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 242:1098-1112. [PMID: 38515249 DOI: 10.1111/nph.19689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.
Collapse
Affiliation(s)
- Wen Jie Zhang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Li Ping Tang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Peng
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Li Ming Zhai
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qiu Li Ma
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xian Sheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ying Hua Su
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
3
|
Yuan Y, Cao X, Zhang H, Liu C, Zhang Y, Song XL, Gai S. Genome-wide identification and analysis of Oleosin gene family in four cotton species and its involvement in oil accumulation and germination. BMC PLANT BIOLOGY 2021; 21:569. [PMID: 34863105 PMCID: PMC8642851 DOI: 10.1186/s12870-021-03358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.
Collapse
Affiliation(s)
- Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
4
|
Liu B, Sun G, Liu C, Liu S. LEAFY COTYLEDON 2: A Regulatory Factor of Plant Growth and Seed Development. Genes (Basel) 2021; 12:genes12121896. [PMID: 34946844 PMCID: PMC8701892 DOI: 10.3390/genes12121896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors are key molecules in the regulation of gene expression in all organisms. The transcription factor LEAFY COTYLEDON 2 (LEC2), which belongs to the DNA-binding protein family, contains a B3 domain. The transcription factor is involved in the regulation of important plant biological processes such as embryogenesis, somatic embryo formation, seed storage protein synthesis, fatty acid metabolism, and other important biological processes. Recent studies have shown that LEC2 regulates the formation of lateral roots and influences the embryonic resetting of the parental vernalization state. The orthologs of LEC2 and their regulatory effects have also been identified in some crops; however, their regulatory mechanism requires further investigation. Here, we summarize the most recent findings concerning the effects of LEC2 on plant growth and seed development. In addition, we discuss the potential molecular mechanisms of the action of the LEC2 gene during plant development.
Collapse
|
5
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
6
|
Qi Z, Zhang Z, Wang Z, Yu J, Qin H, Mao X, Jiang H, Xin D, Yin Z, Zhu R, Liu C, Yu W, Hu Z, Wu X, Liu J, Chen Q. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. PLANT, CELL & ENVIRONMENT 2018; 41:2109-2127. [PMID: 29486529 DOI: 10.1111/pce.13175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.
Collapse
Affiliation(s)
- Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhanguo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhongyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jingyao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hongtao Qin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xinrui Mao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhengong Yin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Rongsheng Zhu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Wei Yu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhenbang Hu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| |
Collapse
|
7
|
Manan S, Ahmad MZ, Zhang G, Chen B, Haq BU, Yang J, Zhao J. Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1604. [PMID: 28979275 PMCID: PMC5611487 DOI: 10.3389/fpls.2017.01604] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/31/2017] [Indexed: 05/04/2023]
Abstract
Soybean is an important oilseed crop and major dietary protein resource, yet the molecular processes and regulatory mechanisms involved in biosynthesis of seed storage substances are not fully understood. The B3 domain transcription factor (TF) LEC2 essentially regulates embryo development and seed maturation in other plants, but is not functionally characterized in soybean. Here, we characterize the function of a soybean LEC2 homolog, GmLEC2a, in regulating carbohydrate catabolism, triacylglycerol (TAG) biosynthesis, and seed development. The experimental analysis showed that GmLEC2a complemented Arabidopsis atlec2 mutant defects in seedling development and TAG accumulation. Over-expression of GmLEC2a in Arabidopsis seeds increased the TAG contents by 34% and the composition of long chain fatty acids by 4% relative to the control seeds. Transcriptome analysis showed that ectopic expression of GmLEC2a in soybean hairy roots up-regulated several sets of downstream TF genes GmLEC1, GmFUS3, GmABI3, GmDof11 and GmWRI1 that regulate the seed development and production of seed storage substances. GmLEC2a regulated the lipid transporter genes and oil body protein gene OLEOSIN (OLE1). The genes involved in carbohydrate biosynthesis and storage, such as sucrose synthesis, and catabolism of TAG, such as lipases in GmLEC2a hairy roots were down-regulated. GmLEC2a targeted metabolic genes for seed protein in soybean.
Collapse
Affiliation(s)
- Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Z. Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Basir U. Haq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jihong Yang
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| |
Collapse
|
8
|
Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng 2017; 39:237-246. [PMID: 27993560 DOI: 10.1016/j.ymben.2016.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Uday K Divi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Anna El Tahchy
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Madeline Mitchell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Matthew C Taylor
- CSIRO Land and Water, PO Box 1700, Canberra, ACT 2601, Australia
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Fiona Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Anna Mechanicos
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Cheryl Blundell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Yao Zhi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Srinivas Belide
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Pushkar Shrestha
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Rosemary G White
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Allan Green
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder P Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - James R Petrie
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Grimault A, Gendrot G, Chaignon S, Gilard F, Tcherkez G, Thévenin J, Dubreucq B, Depège-Fargeix N, Rogowsky PM. Role of B3 domain transcription factors of the AFL family in maize kernel filling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:116-25. [PMID: 26025525 DOI: 10.1016/j.plantsci.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
In the dicot Arabidopsis thaliana, the B3 transcription factors, ABA-INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) are key regulators of seed maturation. This raises the question of the role of ABI3/FUS3/LEC2 (AFL) proteins in cereals, where not only the embryo but also the persistent endosperm accumulates reserve substances. Among the five ZmAFL genes identified in the maize genome, ZmAFL2 and ZmAFL3/ZmVp1 closely resemble FUS3 and ABI3, respectively, in terms of their sequences, domain structure and gene activity profiles. Of the three genes that fall into the LEC2 phylogenetic sub-clade, ZmAFL5 and ZmAFL6 have constitutive gene activity, whereas ZmAFL4, like LEC2, has preferential gene activity in pollen and seed, although its seed gene activity is restricted to the endosperm during reserve accumulation. Knock down of ZmAFL4 gene activity perturbs carbon metabolism and reduces starch content in the developing endosperm at 20 DAP. ZmAFL4 and ZmAFL3/ZmVp1 trans-activate a maize oleosin promoter in a heterologous moss system. In conclusion our results suggest, based on gene activity profiles, that the functions of FUS3 and ABI3 could be conserved between dicot and monocot species. In contrast, LEC2 function may have partially diverged in cereals where our findings provide first evidence of the specialization of ZmAFL4 for roles in the endosperm.
Collapse
Affiliation(s)
- Aurélie Grimault
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Sandrine Chaignon
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Françoise Gilard
- CNRS, UMR 9213, Institute of Plant Sciences Paris-Saclay, F-91405 Orsay, France
| | - Guillaume Tcherkez
- CNRS, UMR 9213, Institute of Plant Sciences Paris-Saclay, F-91405 Orsay, France
| | - Johanne Thévenin
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Bertrand Dubreucq
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Nathalie Depège-Fargeix
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Peter M Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France.
| |
Collapse
|
10
|
Roscoe TT, Guilleminot J, Bessoule JJ, Berger F, Devic M. Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1215-28. [PMID: 25840088 DOI: 10.1093/pcp/pcv049] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 05/20/2023]
Abstract
ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2), collectively the AFL, are master regulators of seed maturation processes. This study examined the role of AFL in the production of seed reserves in Arabidopsis. Quantification of seed reserves and cytological observations of afl mutant embryos show that protein and lipid but not starch reserves are spatially regulated by AFL. Although AFL contribute to a common regulation of reserves, ABI3 exerts a quantitatively greater control over storage protein content whereas FUS3 controls lipid content to a greater extent. Although ABI3 controls the reserve content throughout the embryo, LEC2 and FUS3 regulate reserves in distinct embryonic territories. By analyzing the ability of an individual ectopically expressed AFL to suppress afl phenotypes genetically, we show that conserved domains common to each component of the AFL are sufficient for the initiation of storage product synthesis and the establishment of embryo morphology. This confirms redundancy among the AFL and indicates a threshold necessary for function within the AFL pool. Since no individual AFL was able to suppress the tolerance to desiccation, mid- and late-maturation programs were uncoupled.
Collapse
Affiliation(s)
- Thomas T Roscoe
- Régulations Epignetiques et Développement de la Graine, ERL 3500 CNRS-IRD, UMR DIADE, IRD centre de Montpellier, 911 avenue Agropolis, BP64501, 34394 Montpellier, France
| | - Jocelyne Guilleminot
- Laboratoire Genome et Développement des Plantes, UMR 5096 CNRS-UPVD, 58 Avenue P. Alduy, 66860 Perpignan, France
| | - Jean-Jacques Bessoule
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, Bâtiment A3-INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux CS 20032, 33140 Villenave d'Ornon, France CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Bâtiment A3-INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux CS 20032, 33140 Villenave d'Ornon, France
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr. Bohr-Gasse, 31030 Vienna, Austria
| | - Martine Devic
- Régulations Epignetiques et Développement de la Graine, ERL 3500 CNRS-IRD, UMR DIADE, IRD centre de Montpellier, 911 avenue Agropolis, BP64501, 34394 Montpellier, France
| |
Collapse
|
11
|
Kim HU, Jung SJ, Lee KR, Kim EH, Lee SM, Roh KH, Kim JB. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Bio 2013; 4:25-32. [PMID: 24363987 PMCID: PMC3863707 DOI: 10.1016/j.fob.2013.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/27/2022] Open
Abstract
The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. Castor bean LEC2 is single copy and shows seed-specific expression. Over-expression of castor LEC2 induces genes involved in seed maturation in leaves. Castor LEC2 induces the accumulation of triacylglycerols and 20:1 fatty acids in leaves. Ectopic expression of castor LEC2 in Arabidopsis affects plant growth.
Collapse
Key Words
- ABI3-VP1, abscisic acid-insensitive 3-viviparous 1
- CaMV, cauliflower mosaic virus
- Castor bean
- DHA, docosahexaenoic acid
- DIG, digoxigenin
- Eicosenoic acid
- FAE1, fatty acid elongase 1
- GC, gas chromatography
- LEAFY COTYLEDON2
- ORF, open reading frame
- RT-PCR, reverse transcription polymerase chain reaction
- SSC, sodium chloride-sodium citrate
- Seed maturation
- TAG, triacylglycerol
- TF, transcription factor
- TLC, thin-layer chromatography
- Transcription factor
- Triacylglycerol
- cDNA, complementary DNA
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Su-Jin Jung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Eun Ha Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sang-Min Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jong-Bum Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| |
Collapse
|
12
|
Chen MX, Yang YN, Zheng SX, Xu C, Wang Y, Liu JS, Yang WD, Chye ML, Li HY. A Vigna radiata 8S globulin α' promoter drives efficient expression of GUS in Arabidopsis cotyledonary embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6423-6429. [PMID: 23763701 DOI: 10.1021/jf401537q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are proven effective bioreactors for the production of heterologous proteins including those desired by the biopharmaceutical industry. However, the potential of plants as bioreactors is limited by the availability of characterized plant promoters that can drive target gene expression in relatively distant plant species. Seeds are ideal for protein storage because seed proteins can be kept stably for several months. Hence, a strong promoter that can direct the expression and accumulation of target proteins within seeds represents a powerful tool in plant biotechnology. Toward this end, an effort was made to identify such a promoter from Vigna radiata (mung bean) to drive expression in dicot seeds. A 784-bp 5'-flanking sequence of the gene encoding the 8S globulin α' subunit (8SGα') of the V. radiata seed storage protein was isolated by genome walking. When the 5'-flanking region was analyzed with bioinformatics tools, numerous putative cis-elements were identified. The Green Fluorescent Protein (GFP) regulated by this promoter was observed to be transiently expressed in protoplasts derived from V. radiata cotyledons. Finally, transgenic Arabidopsis plants expressing the β-glucuronidase (GUS) reporter gene driven from the 8S globulin α' promoter showed strong GUS expression in transgenic embryos in both histochemical and quantitative GUS assays, confirming high expression within seeds. Therefore, the V. radiata 8S α' promoter has shown potential in directing expression in seeds for bioreactor applications.
Collapse
Affiliation(s)
- Mo-Xian Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-82. [DOI: 10.1007/s11033-012-1448-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
14
|
Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. PLANT & CELL PHYSIOLOGY 2010; 51:2031-46. [PMID: 21045071 DOI: 10.1093/pcp/pcq162] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The FUSCA3 (FUS3) transcription factor is considered a master regulator of seed maturation because a wide range of seed maturation events are impaired in its defective mutant. To identify comprehensively genes under the control of FUS3, two types of microarray experiments were performed. First, transgenic plants in which FUS3 expression could be induced by the application of estrogen (ESTR) were used to identify any genes up-regulated in young seedlings of Arabidopsis in response to the ectopic expression of FUS3. Secondly, the transcriptomes of the fus3 mutant and wild-type developing seeds were compared. The combined results of these experiments identified genes under the relatively immediate and robust control of FUS3 during seed development. The analysis has extended the range of identified gene types under the control of FUS3. The genes positively controlled by FUS3 are not confined to previously known seed maturation-related genes and include those involved in the production of secondary metabolites, such as glucosinolates, phenylpropanoids and flavonoids, and those involved in primary metabolism, such as photosynthesis and fatty acid biosynthesis. Furthermore, several different patterns were identified in the manner of ectopic activation by FUS3 with respect to the induction kinetics and ABA requirement of downstream gene induction depending on the nature of developmental regulation, suggesting mechanistic diversity of gene regulation by FUS3.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|