1
|
Gao Y, Tang Y. Emerging roles of prohibitins in cancer: an update. Cancer Gene Ther 2025; 32:357-370. [PMID: 40057573 DOI: 10.1038/s41417-025-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The prohibitin (PHB) family, including PHB1 and its homolog PHB2, is ubiquitously located in different cellular compartments and plays roles in fundamental cellular processes such as proliferation, differentiation, and apoptosis. Accumulating evidence has indicated that this family contributes to the development of numerous diseases in particular cancers. Aberrant expressions of PHBs can been observed in diverse types of human cancer. Depending on their cell compartment-specific attributes and interacting proteins, PHBs are tightly linked to almost all aspects of cancer biology and have distinct bidirectional functions of tumor-suppression or tumor-promotion. However, the roles of PHBs in cancer have yet to be fully characterized and understood. This review provides an updated overview of the pleiotropic effects of PHBs and emphasizes their characteristic roles in each cancer respectively, with the great expectation to identify potential targets for therapeutic approaches and promising molecular biomarkers for cancer diagnosis and prognostic monitor.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- Hunan Clinical Research Center of Minimally Invasive Urology, Changsha, China
| | - Yuanyuan Tang
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Shi JJ, Wang YK, Wang MQ, Deng J, Gao N, Li M, Li YP, Zhang X, Jia XL, Liu XT, Dang SS, Wang WJ. Prohibitin 1 inhibits cell proliferation and induces apoptosis via the p53-mediated mitochondrial pathway in vitro. World J Gastrointest Oncol 2024; 16:398-413. [PMID: 38425403 PMCID: PMC10900163 DOI: 10.4251/wjgo.v16.i2.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Prohibitin 1 (PHB1) has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed, and it participates in a variety of essential cellular functions, including apoptosis, cell cycle regulation, proliferation, and survival. Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma (HCC). However, the role of PHB1 in HCC is controversial. AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro. METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria; then, PHB1 levels in the sera and liver tissues of these participates were determined using ELISA, RT-PCR, and immunohistochemistry. Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA (shRNA-PHB1) for 24-72 h. Cell proliferation was analysed with an MTT assay. Cell cycle progression and apoptosis were analysed using flow cytometry (FACS). The mRNA and protein expression levels of the cell cycle-related molecules p21, Cyclin A2, Cyclin E1, and CDK2 and the cell apoptosis-related molecules cytochrome C (Cyt C), p53, Bcl-2, Bax, caspase 3, and caspase 9 were measured by real-time PCR and Western blot, respectively. RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals, and decreased PHB1 was positively correlated with low differentiation, TNM stage III-IV, and alpha-fetoprotein ≥ 400 μg/L. Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner. FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis. The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells. The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41% ± 1.06%, which was significantly greater than that of apoptotic control cells (3.65% ± 0.85%, P < 0.01) and empty vector-transfected cells (4.21% ± 0.52%, P < 0.01). Similar results were obtained with SMMC-7721 cells. Furthermore, the mRNA and protein expression levels of p53, p21, Bax, caspase 3, and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2, Cyclin E1, CDK2, and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells. However, when PHB1 was upregulated in human HCC cells, Cyt C expression levels were increased in the cytosol and decreased in the mitochondria, which indicated that Cyt C had been released into the cytosol. Conversely, these effects were reversed when PHB1 was knocked down. CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Juan-Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yi-Kai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Jiang Deng
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Mei Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiao-Li Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiong-Tao Liu
- Department of Operating Room, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wen-Jun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
3
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
4
|
Cho E, Jung S, Kim J, Ko KS. The Relationship between Prohibitin 1 Expression, Hepatotoxicity Induced by Acetaminophen, and Hepatoprotection by S-Adenosylmethionine in AML12 Cells. J Microbiol Biotechnol 2022; 32:1447-1453. [PMID: 36310362 PMCID: PMC9720076 DOI: 10.4014/jmb.2207.07035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity. In this study, we sought to understand the regulation of mRNA expression in relation to APAP and GSH metabolism by Phb1 in normal mouse AML12 hepatocytes. We used two different Phb1 silencing levels: high-efficiency (HE, >90%) and low-efficiency (LE, 50-60%). In addition, the siRNA-transfected cells were further pretreated with 0.5 mM of S-adenosylmethionine (SAMe) for 24 h before treatment with APAP at different doses (1-2 mM) for 24 h. The expression of APAP metabolism-related and antioxidant genes such as Cyp2e1 and Ugt1a1 were increased during SAMe pretreatment. Moreover, SAMe increased intracellular GSH concentration and it was maintained after APAP treatment. To sum up, Phb1 silencing and APAP treatment impaired the metabolism of APAP in hepatocytes, and SAMe exerted a protective effect against hepatotoxicity by upregulating antioxidant genes.
Collapse
Affiliation(s)
- Eunhye Cho
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soohan Jung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Jina Kim
- Department of Human Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-6859 E-mail:
| |
Collapse
|
5
|
Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. J Virol 2021; 95:JVI.01413-20. [PMID: 33177205 DOI: 10.1128/jvi.01413-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Viral cell-to-cell spread, a method employed by several viral families for entrance via cell junctions, is highly relevant to the pathogenesis of various viral infections. Cell-to-cell spread of herpes simplex virus 1 (HSV-1) is known to depend greatly on envelope glycoprotein E (gE). However, the molecular mechanism by which gE acts in HSV-1 cell-to-cell spread and the mechanisms of cell-to-cell spread by other herpesviruses remain poorly understood. Here, we describe our identification of prohibitin-1 as a novel gE-interacting host cell protein. Ectopic expression of prohibitin-1 increased gE-dependent HSV-1 cell-to-cell spread. As observed with the gE-null mutation, decreased expression or pharmacological inhibition of prohibitin-1 reduced HSV-1 cell-to-cell spread without affecting the yield of virus progeny. Similar effects were produced by pharmacological inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, wherein prohibitin-1 acts as a protein scaffold and is required for induction of this pathway. Furthermore, artificial activation of the MAPK/ERK pathway restored HSV-1 cell-to-cell spread impaired by the gE-null mutation. Notably, pharmacological inhibition of prohibitins or the MAPK/ERK pathway reduced viral cell-to-cell spread of representative members in all herpesvirus subfamilies. Our results suggest that prohibitin-1 contributes to gE-dependent HSV-1 cell-to-cell spread via the MAPK/ERK pathway and that this mechanism is conserved throughout the Herpesviridae, whereas gE is conserved only in the Alphaherpesvirinae subfamily.IMPORTANCE Herpesviruses are ubiquitous pathogens of various animals, including humans. These viruses primarily pass through cell junctions to spread to uninfected cells. This method of cell-to-cell spread is an important pathogenic characteristic of these viruses. Here, we show that the host cell protein prohibitin-1 contributes to HSV-1 cell-to-cell spread via a downstream intracellular signaling cascade, the MAPK/ERK pathway. We also demonstrate that the role of the prohibitin-1-mediated MAPK/ERK pathway in viral cell-to-cell spread is conserved in representative members of every herpesvirus subfamily. This study has revealed a common molecular mechanism of the cell-to-cell spread of herpesviruses.
Collapse
|
6
|
Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases. Cells 2019; 8:cells8010071. [PMID: 30669391 PMCID: PMC6356732 DOI: 10.3390/cells8010071] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed. The molecular mechanisms by which prohibitins regulate mitochondrial function and their role in pathology are reviewed and discussed herein.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Giuseppe Sgaramella
- Water Research Institute (IRSA), National Research Council (CNR), Viale F. De Blasio, 5, 70132 Bari, Italy.
| | - Francesco Bellomo
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149 Rome, Italy.
| | - Domenico De Rasmo
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
7
|
Kim DM, Jang H, Shin MG, Kim JH, Shin SM, Min SH, Kim IC. β-catenin induces expression of prohibitin gene in acute leukemic cells. Oncol Rep 2017; 37:3201-3208. [PMID: 28440457 PMCID: PMC5442404 DOI: 10.3892/or.2017.5599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Prohibitin (PHB) is a multifunctional protein conserved in eukaryotic systems and shows various expression levels in tumor cells. However, regulation of PHB is not clearly understood. Here, we focused on the regulation of PHB expression by Wnt signaling, one of dominant regulatory signals in various leukemic cells. High mRNA levels of PHB were found in half of clinical leukemia samples. PHB expression was increased by inhibition of the MAPK pathway and decreased by activation of EGF signal. Although cell proliferating signals downregulated the transcription of PHB, treatment with lithium chloride, an analog of the Wnt signal, induced PHB level in various cell types. We identified the TCF-4/LEF-1 binding motif, CATCTG, in the promoter region of PHB by site-directed mutagenesis and ChIP assay. This β-catenin-mediated activation of PHB expression was independent of c‑MYC activation, a product of Wnt signaling. These data indicate that PHB is a direct target of β-catenin and the increased level of PHB in leukemia can be regulated by Wnt signaling.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejon 305-719, Republic of Korea
| | - Hanbit Jang
- Medical Proteomics Research Center, KRIBB, Daejon 305-806, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 519-763, Republic of Korea
| | - Jeong-Hoon Kim
- Medical Proteomics Research Center, KRIBB, Daejon 305-806, Republic of Korea
| | - Sang Mo Shin
- Center for Applied Life Science, Hanbat National University, Daejon 305-719, Republic of Korea
| | - Sang-Hyun Min
- New Drug Development Center, DGMIF, Daegu 701-310, Republic of Korea
| | - Il-Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
8
|
Talarico C, D'Antona L, Scumaci D, Barone A, Gigliotti F, Fiumara CV, Dattilo V, Gallo E, Visca P, Ortuso F, Abbruzzese C, Botta L, Schenone S, Cuda G, Alcaro S, Bianco C, Lavia P, Paggi MG, Perrotti N, Amato R. Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression in vitro and in vivo and synergizes with radiotherapy. Oncotarget 2016; 6:37511-25. [PMID: 26462020 PMCID: PMC4741945 DOI: 10.18632/oncotarget.5527] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
The SGK1 kinase is pivotal in signal transduction pathways operating in cell transformation and tumor progression. Here, we characterize in depth a novel potent and selective pyrazolo[3,4-d]pyrimidine-based SGK1 inhibitor. This compound, named SI113, active in vitro in the sub-micromolar range, inhibits SGK1-dependent signaling in cell lines in a dose- and time-dependent manner. We recently showed that SI113 slows down tumor growth and induces cell death in colon carcinoma cells, when used in monotherapy or in combination with paclitaxel. We now demonstrate for the first time that SI113 inhibits tumour growth in hepatocarcinoma models in vitro and in vivo. SI113-dependent tumor inhibition is dose- and time-dependent. In vitro and in vivo SI113-dependent SGK1 inhibition determined a dramatic increase in apoptosis/necrosis, inhibited cell proliferation and altered the cell cycle profile of treated cells. Proteome-wide biochemical studies confirmed that SI113 down-regulates the abundance of proteins downstream of SGK1 with established roles in neoplastic transformation, e.g. MDM2, NDRG1 and RAN network members. Consistent with knock-down and over-expressing cellular models for SGK1, SI113 potentiated and synergized with radiotherapy in tumor killing. No short-term toxicity was observed in treated animals during in vivo SI113 administration. These data show that direct SGK1 inhibition can be effective in hepatic cancer therapy, either alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Cristina Talarico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Agnese Barone
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Francesco Gigliotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Enzo Gallo
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Paolo Visca
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Francesco Ortuso
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Abbruzzese
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Lorenzo Botta
- Department of Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy
| | | | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Stefano Alcaro
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Cataldo Bianco
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), c/o University "La Sapienza", Rome, Italy
| | - Marco G Paggi
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| |
Collapse
|
9
|
Sabol M, Trnski D, Uzarevic Z, Ozretic P, Musani V, Rafaj M, Cindric M, Levanat S. Combination of cyclopamine and tamoxifen promotes survival and migration of mcf-7 breast cancer cells--interaction of hedgehog-gli and estrogen receptor signaling pathways. PLoS One 2014; 9:e114510. [PMID: 25503972 PMCID: PMC4264763 DOI: 10.1371/journal.pone.0114510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen.
Collapse
Affiliation(s)
- Maja Sabol
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Diana Trnski
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Zvonimir Uzarevic
- Faculty of Education, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Petar Ozretic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Maja Rafaj
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Mario Cindric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Sonja Levanat
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Xu T, Fan X, Tan Y, Yue Y, Chen W, Gu X. Expression of PHB2 in rat brain cortex following traumatic brain injury. Int J Mol Sci 2014; 15:3299-318. [PMID: 24566151 PMCID: PMC3958913 DOI: 10.3390/ijms15023299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022] Open
Abstract
Prohibitin2 (PHB2) is a ubiquitous, evolutionarily strongly conserved protein. It is one of the components of the prohibitin complex, which comprises two highly homologous subunits, PHB1 and PHB2. PHB2 is present in various cellular compartments including the nucleus and mitochondria. Recent studies have identified PHB2 as a multifunctional protein that controls cell proliferation, apoptosis, cristae morphogenesis and the functional integrity of mitochondria. However its distribution and function in the central nervous system (CNS) are not well understood. In this study, we examined PHB2 expression and cellular localization in rats after acute traumatic brain injury (TBI). Western Blot analysis showed PHB2 level was significantly enhanced at five days after injury compared to control, and then declined during the following days. The protein expression of PHB2 was further analyzed by immunohistochemistry. In comparison to contralateral cerebral cortex, we observed a highly significant accumulation of PHB2 at the ipsilateral brain. Immunofluorescence double-labeling showed that PHB2 was co-expressed with NeuN, GFAP. Besides, PHB2 also colocalized with activated caspase-3 and PCNA. To further investigate the function of PHB2, primary cultured astrocytes and the neuronal cell line PC12 were employed to establish a proliferation model and an apoptosis model, respectively, to simulate the cell activity after TBI to a certain degree. Knocking down PHB2 by siRNA partly increased the apoptosis level of PC12 stimulated by H2O2. While the PHB2 was interrupted by siRNA, the proliferation level of primary cultured astrocytes was inhibited notably than that in the control group. Together with our data, we hypothesized that PHB2 might play an important role in CNS pathophysiology after TBI.
Collapse
Affiliation(s)
- Ting Xu
- The Center Laboratory of Huai'an First People's Hospital Nanjing Medical University, Huai'an 223300, China.
| | - Xinjuan Fan
- Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Yuanyuan Tan
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Ying Yue
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Weijie Chen
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Xingxing Gu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Tian Y, Zhang H. Characterization of disease-associated N-linked glycoproteins. Proteomics 2013; 13:504-11. [PMID: 23255236 DOI: 10.1002/pmic.201200333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/13/2012] [Indexed: 12/14/2022]
Abstract
N-linked glycoproteins play important roles in biological processes, including cell-to-cell recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein changes are associated with disease progression and identification of these N-linked glycoproteins has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review, we summarize common strategies for N-linked glycoprotein characterization and applications of these strategies to identification of glycoprotein changes associated with disease states. We also review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is needed to translate these glycoproteins to clinical biomarkers.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Wang D, Lv YQ, Liu YF, Du XJ, Li B. Differential protein analysis of lymphocytes between children with acute lymphoblastic leukemia and healthy children. Leuk Lymphoma 2013; 54:381-6. [PMID: 22812402 DOI: 10.3109/10428194.2012.713104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We identified differential proteins in lymphocytes between patients with childhood acute lymphoblastic leukemia (c-ALL) and healthy children. Samples of bone marrow lymphocytes from children with c-ALL and peripheral blood lymphocytes from healthy children were collected, and total proteins were extracted and separated from these samples followed by two-dimensional gel electrophoresis for comparative analysis. The differential protein spots in c-ALL cells were digested in situ, and then analyzed with matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF-MS) followed by identification using the relevant database. Fifteen differential expression proteins were obtained by comparative proteomics analysis. Of the 15 differential proteins, eight were identified. Of the eight proteins, two had high expression and six low expression in c-ALL cells. The eight differential proteins are expected to become new diagnostic markers and drug targets for c-ALL.
Collapse
Affiliation(s)
- Dao Wang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
13
|
Kapoor S. Prohibitin and its rapidly emerging role as a biomarker of systemic malignancies. Hum Pathol 2013; 44:678-9. [PMID: 23506707 DOI: 10.1016/j.humpath.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/14/2012] [Indexed: 01/27/2023]
|
14
|
Abstract
Prohibitin (PHB), appearing to be a negative regulator of cell proliferation and to be a tumor suppressor, has been connected to diverse cellular functions including cell cycle control, senescence, apoptosis and the regulation of mitochondrial activities. It is a growth regulatory gene that has pleiotropic functions in the nucleus, mitochondria and cytoplasmic compartments. However, in different tissues/cells, the expression of PHB was different, such as that it was increased in most of the cancers, but its expression was reduced in kidney diseases. Signaling pathways might be very important in the pathogenesis of diseases. This review was performed to provide a relatively complete signaling pathways flowchart for PHB to the investigators who were interested in the roles of PHB in the pathogenesis of diseases. Here, we review the signal transduction pathways of PHB and its role in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | |
Collapse
|
15
|
CHANG ZY. Science China Life Sciences in 2011: a Retrospect. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|