1
|
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023; 15:1109. [PMID: 37243195 PMCID: PMC10223759 DOI: 10.3390/v15051109] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Virus-like particles (VLPs) have gained a lot of interest within the past two decades. The use of VLP-based vaccines to protect against three infectious agents-hepatitis B virus, human papillomavirus, and hepatitis E virus-has been approved; they are very efficacious and offer long-lasting immune responses. Besides these, VLPs from other viral infectious agents (that infect humans, animals, plants, and bacteria) are under development. These VLPs, especially those from human and animal viruses, serve as stand-alone vaccines to protect against viruses from which the VLPs were derived. Additionally, VLPs, including those derived from plant and bacterial viruses, serve as platforms upon which to display foreign peptide antigens from other infectious agents or metabolic diseases such as cancer, i.e., they can be used to develop chimeric VLPs. The goal of chimeric VLPs is to enhance the immunogenicity of foreign peptides displayed on VLPs and not necessarily the platforms. This review provides a summary of VLP vaccines for human and veterinary use that have been approved and those that are under development. Furthermore, this review summarizes chimeric VLP vaccines that have been developed and tested in pre-clinical studies. Finally, the review concludes with a snapshot of the advantages of VLP-based vaccines such as hybrid/mosaic VLPs over conventional vaccine approaches such as live-attenuated and inactivated vaccines.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
2
|
Cervera L, Kamen AA. Large-Scale Transient Transfection of Suspension Mammalian Cells for VLP Production. Methods Mol Biol 2018; 1674:117-127. [PMID: 28921433 DOI: 10.1007/978-1-4939-7312-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Large-scale transient transfection of mammalian cell suspension cultures enables the production of biological products in sufficient quantity and under stringent quality attributes to perform accelerated in vitro evaluations and has the potential to support preclinical or even clinical studies. Here we describe the methodology to produce VLPs in a 3L bioreactor, using suspension HEK 293 cells and PEIPro as a transfection reagent. Cells are grown in the bioreactor to 1 × 106 cells/mL and transfected with a plasmid DNA-PEI complex at a ratio of 1:2. Dissolved oxygen and pH are controlled and are online monitored during the production phase and cell growth and viability can be measured off line taking samples from the bioreactor. If the product is labeled with a fluorescent marker, transfection efficiency can be also assessed using flow cytometry analysis. Typically, the production phase lasts between 48 and 96 h until the product is harvested.
Collapse
Affiliation(s)
- Laura Cervera
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3
| | - Amine A Kamen
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
3
|
Fuenmayor J, Cervera L, Gutiérrez-Granados S, Gòdia F. Transient gene expression optimization and expression vector comparison to improve HIV-1 VLP production in HEK293 cell lines. Appl Microbiol Biotechnol 2017; 102:165-174. [PMID: 29103166 DOI: 10.1007/s00253-017-8605-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 01/01/2023]
Abstract
Transient gene expression (TGE) has been used at small and medium scale for the production of biologicals in sufficient quantities to perform pre-clinical and characterization studies. Polyethyleneimine (PEI)-mediated transfection offers a low toxicity and non-expensive method for cell transfection. DNA and PEI concentration for transient gene expression has been extensively optimized in order to increase product titers. However, the possibility to extrapolate the optimal concentrations found for a specific bioprocess when expression vectors or cell lines need to be changed has not been investigated.In this work, the combination of three different HEK293 cell lines with three different vectors was studied for the production of HIV-1 virus-like particles (VLPs). The concentration of DNA and PEI was optimized for the nine combinations. The obtained results were very similar in all cases (DNA = 2.34 ± 0.18 μg/mL and PEI = 5.81 ± 0.18 μg/mL), revealing that transfection efficiency is not dependent on the cell line or vector type, but on DNA and PEI quantities. Furthermore, two of the cell lines tested stably expressed a protein able to recognize specific origins of replication: HEK293T/SV40 and HEK293E/oriP. Origins of replication were included in the vector sequences in order to test their capacity to increase production titers. HEK293T/SV40 resulted in a decrease of cell density and productivity of 2.3-fold compared to a control plasmid. On the other hand, HEK293E/OriP platform enabled a threefold improvement in HIV-1 VLP production keeping the same cell densities and viabilities compared to a control plasmid.
Collapse
Affiliation(s)
- Javier Fuenmayor
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Sonia Gutiérrez-Granados
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol 2017; 39:174-180. [PMID: 28778817 PMCID: PMC7102714 DOI: 10.1016/j.nbt.2017.07.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/23/2023]
Abstract
Virus-like particles (VLPs) are nanostructures that resemble the structures of viruses. They are composed of one or more structural proteins that can be arranged in several layers and can also contain a lipid outer envelope. VLPs trigger a high humoral and cellular immune response due to their repetitive structures. A key factor regarding VLP safety is the lack of viral genomic material, which enhances safety during both manufacture and administration. Contemporary VLP production may take advantage of several systems, including bacterial, yeast, insect and mammalian cells. The choice of production platform depends on several factors, including cost and the need for post-translational modifications (PTMs), which can be essential in generating an optimal immune response. Some VLP-based vaccines designed to prevent several infectious diseases are already approved and on the market, with many others at the clinical trial or research stage. Interest in this technology has recently increased due to its advantages over classical vaccines. This paper reviews the state-of-the-art of VLP production systems and the newest generation of VLP-based vaccines now available.
Collapse
Affiliation(s)
- J Fuenmayor
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - F Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - L Cervera
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, 817 Sherbrooke Street West, Room 270, Macdonald Engineering Building, McGill University, H3A 0C3, Montreal, QC, Canada
| |
Collapse
|
5
|
Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015; 20:386. [PMID: 26185576 PMCID: PMC4499268 DOI: 10.11604/pamj.2015.20.386.4660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| | - Vurayai Ruhanya
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| |
Collapse
|
6
|
Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS One 2014; 9:e96790. [PMID: 24804933 PMCID: PMC4013048 DOI: 10.1371/journal.pone.0096790] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD) between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv) can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.
Collapse
|
7
|
CHANG ZY. Science China Life Sciences in 2011: a Retrospect. PROG BIOCHEM BIOPHYS 2013. [DOI: 10.3724/sp.j.1206.2012.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
|
9
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
10
|
Li G, Miao R, Zhao H. Progression and prospects of translational medicine in China. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1022-5. [PMID: 23124796 DOI: 10.1007/s11427-012-4397-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Guangbing Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
11
|
Immunogenicity of protein aggregates--concerns and realities. Int J Pharm 2012; 431:1-11. [PMID: 22546296 DOI: 10.1016/j.ijpharm.2012.04.040] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/14/2023]
Abstract
Protein aggregation is one of the key challenges in the development of protein biotherapeutics. It is a critical product quality issue as well as a potential safety concern due to the increased immunogenicity potential of these aggregates. The overwhelming safety concern has led to an increased development effort and regulatory scrutiny in recent years. The main purposes of this review are to examine the literature data on the relationship between protein aggregates and immunogenicity, to highlight the linkage and existing inconsistencies/uncertainties, and to propose directions for future investigations/development.
Collapse
|