1
|
Imbs AB, Dembitsky VM. Coral Lipids. Mar Drugs 2023; 21:539. [PMID: 37888474 PMCID: PMC10608786 DOI: 10.3390/md21100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Reef-building corals, recognized as cornerstone species in marine ecosystems, captivate with their unique duality as both symbiotic partners and autotrophic entities. Beyond their ecological prominence, these corals produce a diverse array of secondary metabolites, many of which are poised to revolutionize the domains of pharmacology and medicine. This exhaustive review delves deeply into the multifaceted world of coral-derived lipids, highlighting both ubiquitous and rare forms. Within this spectrum, we navigate through a myriad of fatty acids and their acyl derivatives, encompassing waxes, sterol esters, triacylglycerols, mono-akyl-diacylglycerols, and an array of polar lipids such as betaine lipids, glycolipids, sphingolipids, phospholipids, and phosphonolipids. We offer a comprehensive exploration of the intricate biochemical variety of these lipids, related fatty acids, prostaglandins, and both cyclic and acyclic oxilipins. Additionally, the review provides insights into the chemotaxonomy of these compounds, illuminating the fatty acid synthesis routes inherent in corals. Of particular interest is the symbiotic bond many coral species nurture with dinoflagellates from the Symbiodinium group; their lipid and fatty acid profiles are also detailed in this discourse. This exploration accentuates the vast potential and intricacy of coral lipids and underscores their profound relevance in scientific endeavors.
Collapse
Affiliation(s)
- Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia
| | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
2
|
Mayfield AB. Proteomic Signatures of Corals from Thermodynamic Reefs. Microorganisms 2020; 8:microorganisms8081171. [PMID: 32752238 PMCID: PMC7465421 DOI: 10.3390/microorganisms8081171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
Unlike most parts of the world, coral reefs of Taiwan’s deep south have generally been spared from climate change-induced degradation. This has been linked to the oceanographically unique nature of Nanwan Bay, where intense upwelling occurs. Specifically, large-amplitude internal waves cause shifts in temperature of 6–9 °C over the course of several hours, and the resident corals not only thrive under such conditions, but they have also been shown to withstand multi-month laboratory incubations at experimentally elevated temperatures. To gain insight into the sub-cellular basis of acclimation to upwelling, proteins isolated from reef corals (Seriatopora hystrix) featured in laboratory-based reciprocal transplant studies in which corals from upwelling and non-upwelling control reefs (<20 km away) were exposed to stable or variable temperature regimes were analyzed via label-based proteomics (iTRAQ). Corals exposed to their “native” temperature conditions for seven days (1) demonstrated highest growth rates and (2) were most distinct from one another with respect to their protein signatures. The latter observation was driven by the fact that two Symbiodiniaceae lipid trafficking proteins, sec1a and sec34, were marginally up-regulated in corals exposed to their native temperature conditions. Alongside the marked degree of proteomic “site fidelity” documented, this dataset sheds light on the molecular mechanisms underlying acclimatization to thermodynamically extreme conditions in situ.
Collapse
Affiliation(s)
- Anderson B. Mayfield
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, 4301 Rickenbacker Causeway, Miami, FL 33149, USA; or ; Tel.: +1-337-501-1976
- Cooperative Institutes for Marine and Atmospheric Studies, University of Miami, 4300 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
3
|
Chiu HY, Lin LY, Chen Y, Liu ER, Li HH. A New Method for Collecting Large Amounts of Symbiotic Gastrodermal Cells from Octocorals. Int J Mol Sci 2020; 21:ijms21113911. [PMID: 32486176 PMCID: PMC7313047 DOI: 10.3390/ijms21113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022] Open
Abstract
The study of cnidarian-dinoflagellate endosymbiosis in octocorals is becoming increasingly important. As symbiotic gastrodermal cells (SGCs) are the key cells in a symbiotic relationship, obtaining SGCs and studying their functions represent an urgent need. The majority of the cells dissociated from octocoral tissues consist of host cells and algal cells, and very few intact SGCs can be observed. To solve this problem, we developed a new method to collect large amounts of SGCs from octocorals. We incubated the tissue of Sinularia flexibilis in high-salinity (60‰) filtered seawater for 6 h and were able to collect more than 18 times the number of SGCs from the control group. To test the quality of the dissociated cells, we performed three assays to evaluate their cell viability. All three assays demonstrated that cell viability was good after incubating in a high-salinity solution. We also used two other octocorals, Paralemnalia thyrsoides and Sinularia compressa, to perform the same experiment, and the results were similar to those for Sinularia flexibilis. Therefore, a high-salinity-induced increase in the SGC ratio is a common phenomenon among octocorals. This method allows researchers to collect large amounts of SGCs from octocorals and helps us to better understand the complex molecular interactions in cnidarian-dinoflagellate endosymbiosis.
Collapse
Affiliation(s)
- Hsiang-Yi Chiu
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; (H.-Y.C.); (L.-Y.L.)
| | - Li-Yi Lin
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; (H.-Y.C.); (L.-Y.L.)
| | - Ying Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan;
| | - En-Ru Liu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81143, Taiwan;
| | - Hsing-Hui Li
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; (H.-Y.C.); (L.-Y.L.)
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan
- Correspondence: ; Tel.: +886-8-8824632
| |
Collapse
|
4
|
Maor‐Landaw K, van Oppen MJH, McFadden GI. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 2020; 10:451-466. [PMID: 31993121 PMCID: PMC6972872 DOI: 10.1002/ece3.5910] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
Collapse
Affiliation(s)
- Keren Maor‐Landaw
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | | |
Collapse
|
5
|
Gordon BR, Martin DE, Bambery KR, Motti CA. Chemical imaging of a Symbiodinium sp. cell using synchrotron infrared microspectroscopy: a feasibility study. J Microsc 2017; 270:83-91. [PMID: 29064560 DOI: 10.1111/jmi.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/22/2017] [Indexed: 11/27/2022]
Abstract
The symbiotic relationship between corals and Symbiodinium spp. is the key to the success and survival of coral reef ecosystems the world over. Nutrient exchange and chemical communication between the two partners provides the foundation of this key relationship, yet we are far from a complete understanding of these processes. This is due, in part, to the difficulties associated with studying an intracellular symbiosis at the small spatial scales required to elucidate metabolic interactions between the two partners. This feasibility study, which accompanied a more extensive investigation of fixed Symbiodinium cells (data unpublished), examines the potential of using synchrotron radiation infrared microspectroscopy (SR-IRM) for exploring metabolite localisation within a single Symbiodinium cell. In doing so, three chemically distinct subcellular regions of a single Symbiodinium cell were established and correlated to cellular function based on assignment of diagnostic chemical classes.
Collapse
Affiliation(s)
- B R Gordon
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Queensland, Australia
| | - D E Martin
- Australian Synchrotron, Clayton, Victoria, Australia
| | - K R Bambery
- Australian Synchrotron, Clayton, Victoria, Australia
| | - C A Motti
- The Australian Institute of Marine Science, Cape Cleveland, Queensland, Australia
| |
Collapse
|
6
|
Huang KJ, Huang ZY, Lin CY, Wang LH, Chou PH, Chen CS, Li HH. Generation of clade- and symbiont-specific antibodies to characterize marker molecules during Cnidaria-Symbiodinium endosymbiosis. Sci Rep 2017; 7:5488. [PMID: 28710419 PMCID: PMC5511166 DOI: 10.1038/s41598-017-05945-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/06/2017] [Indexed: 01/24/2023] Open
Abstract
The endosymbiosis between cnidarians and dinoflagellates is responsible for the formation of coral reefs. Changes in molecules have been identified during the process of cnidaria-Symbiodinium endosymbiosis. However, the complexity of the molecular interaction has prevented the establishment of a mechanistic explanation of cellular regulation in this mutualistic symbiosis. To date, no marker molecules have been identified to specifically represent the symbiotic status. Because the endosymbiotic association occurs in the symbiotic gastrodermal cells (SGCs), whole cells of isolated SGCs were used as an antigen to generate monoclonal antibodies (mAb) to screen possible molecular candidates of symbiotic markers. The results showed that one of the generated monoclonal antibodies, 2–6F, specifically recognized clade C symbiotic Symbiodinium but not its free-living counterpart or other Symbiodinium clades. The expression levels of 2–6F mAb-recognized proteins are highly correlated with the symbiotic status, and these proteins were characterized as N-linked glycoproteins via treatment with peptide N-glycosidase F. Furthermore, their glycan moieties were markedly different from those of free-living Symbiodinium, potentially suggesting host regulation of post-translational modification. Consequently, the 2–6F mAb can be used to detect the symbiotic state of corals and investigate the complex molecular interactions in cnidaria-Symbiodinium endosymbiosis.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, 22180, Taiwan
| | - Zi-Yu Huang
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan
| | - Ching-Yen Lin
- Department of Life Science, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Li-Hsueh Wang
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan.,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
| | - Pin-Hsiang Chou
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
| | - Chii-Shiarng Chen
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan. .,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan. .,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Hsing-Hui Li
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan. .,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan.
| |
Collapse
|
7
|
Harmata KL, Somova EL, Parrin AP, Bross LS, Glockling SL, Blackstone NW. Structure and signaling at hydroid polyp-stolon junctions, revisited. Biol Open 2015; 4:1087-93. [PMID: 26231625 PMCID: PMC4582120 DOI: 10.1242/bio.012187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The gastrovascular system of colonial hydroids is central to homeostasis, yet its functional biology remains poorly understood. A probe (2′,7′-dichlorodihydrofluorescein diacetate) for reactive oxygen species (ROS) identified fluorescent objects at polyp-stolon junctions that emit high levels of ROS. A nuclear probe (Hoechst 33342) does not co-localize with these objects, while a mitochondrial probe (rhodamine 123) does. We interpret these objects as mitochondrion-rich cells. Confocal microscopy showed that this fluorescence is situated in large columnar cells. Treatment with an uncoupler (2,4-dinitrophenol) diminished the ROS levels of these cells relative to background fluorescence, as did removing the stolons connecting to a polyp-stolon junction. These observations support the hypothesis that the ROS emanate from mitochondrion-rich cells, which function by pulling open a valve at the base of the polyp. The open valve allows gastrovascular fluid from the polyp to enter the stolons and vice versa. The uncoupler shifts the mitochondrial redox state in the direction of oxidation, lowering ROS levels. By removing the stolons, the valve is not pulled open, metabolic demand is lowered, and the mitochondrion-rich cells slowly regress. Transmission electron microscopy identified mitochondrion-rich cells adjacent to a thick layer of mesoglea at polyp-stolon junctions. The myonemes of these myoepithelial cells extend from the thickened mesoglea to the rigid perisarc on the outside of the colony. The perisarc thus anchors the myoepithelial cells and allows them to pull against the mesoglea and open the lumen of the polyp-stolon junction, while relaxation of these cells closes the lumen.
Collapse
Affiliation(s)
- Katherine L Harmata
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Emily L Somova
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Austin P Parrin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Lori S Bross
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Sally L Glockling
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
8
|
Cellular membrane accommodation to thermal oscillations in the coral Seriatopora caliendrum. PLoS One 2014; 9:e105345. [PMID: 25140803 PMCID: PMC4139334 DOI: 10.1371/journal.pone.0105345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method. The coral inhabiting the upwelling region shows a definite shift in the ratio of lipid molecular species, covering several subclasses. Mainly, the coral possesses a higher percentage of saturated, monounsaturated and polyunsaturated plasmanylcholines and a lower percentage of polyunsaturated phosphatidylcholines. Higher levels of lyso-plasmanylcholines containing saturated or monounsaturated fatty acid chains were also revealed in coral tissue at the distal portion of the branch. Based on the physicochemical properties of these lipids, we proposed mechanisms for handling cellular membrane perturbations, such as tension, induced by thermal oscillation to determine how coral cells are able to spontaneously maintain their physiological functions, in both molecular and physical terms. Interestingly, the biochemical and biophysical properties of these lipids also have beneficial effects on the resistance, maintenance, and growth of the corals. The results of this study suggest that lipid metabolic adjustment is a major factor in the adaption of S. caliendrum in upwelling regions.
Collapse
|
9
|
Tang CH, Lin CY, Lee SH, Wang WH. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:1-8. [PMID: 24440454 DOI: 10.1016/j.aquatox.2013.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso-phosphatidylcholines were shown to facilitate membrane fusion. Based on the biochemical and biophysical properties of these lipids, the chronic effects of copper, such as coral resistance and growth, can be logically interpreted to result from long-term perturbations in cellular membrane-related functions. In conclusion, the cells of S. caliendrum alter their lipid metabolism and sacrifice fitness to allow the membrane to accommodate copper-induced oxidative situations.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC; National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC.
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC
| | - Shu-Hui Lee
- Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC; Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
10
|
Li HH, Huang ZY, Ye SP, Lu CY, Cheng PC, Chen SH, Chen CS. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis. PLoS One 2014; 9:e85119. [PMID: 24409319 PMCID: PMC3883709 DOI: 10.1371/journal.pone.0085119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs) may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19) proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.
Collapse
Affiliation(s)
- Hsing-Hui Li
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Zi-Yu Huang
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Shih-Png Ye
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pai-Chiao Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chii-Shiarng Chen
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Netherton SE, Scheer DM, Morrison PR, Parrin AP, Blackstone N. Physiological correlates of symbiont migration during bleaching of two octocoral species. J Exp Biol 2014; 217:1469-77. [DOI: 10.1242/jeb.095414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Perturbed colonies of Phenganax parrini and Sarcothelia sp. exhibit migration of symbionts of Symbiodinium spp. into the stolons. Densitometry and visual inspection indicated that polyps bleached, while stolons did not. When migration was triggered by temperature, light, and confinement, colonies of Sarcothelia sp. decreased rates of oxygen formation in the light (due to the effects of perturbation on photosynthesis and respiration) and increased rates of oxygen uptake in the dark (due to the effects of perturbation on respiration alone). Colonies of P. parrini, by contrast, showed no significant changes in either aspect of oxygen metabolism. When migration was triggered by light and confinement, colonies of Sarcothelia sp. showed decreased rates of oxygen formation in the light and increased rates of oxygen uptake in the dark, while colonies of P. parrini maintained the former and increased the latter. During symbiont migration into their stolons, colonies of both species showed dramatic increases in reactive oxygen species (ROS), as visualized with a fluorescent probe, with stolons of Sarcothelia sp. exhibiting a nearly immediate increase of ROS. Differences in symbiont type may explain the greater sensitivity of colonies of Sarcothelia sp. Using fluorescent probes, direct measurements of migrating symbionts in the stolons of Sarcothelia sp. showed higher levels of reactive nitrogen species and lower levels of ROS than the surrounding host tissue. As measured by native fluorescence, levels of NAD(P)H in the stolons were unaffected by perturbation. Symbiont migration thus correlates with dramatic physiological changes and may serve as a marker for coral condition.
Collapse
|