1
|
Kakaei Y, Hussain S, Elmahdy A, Berger E, Shekka Espinosa A, Sevastianova V, Sheybani Z, Al-Awar A, Kalani M, Jha S, Zulfaj E, Nejat A, Jha A, Pylova T, Krasnikova M, Andersson EA, Silva VRR, Omerovic E, Redfors B. Comparison of the proteomic landscape in experimental ischemia reperfusion with versus without ischemic preconditioning. Sci Rep 2025; 15:11836. [PMID: 40195349 PMCID: PMC11976975 DOI: 10.1038/s41598-025-90735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Myocardial ischemic preconditioning (IPC) enhances myocardial resilience to ischemic injury. Myocardial stunning is a transient, reversible dysfunction, while necrosis involves irreversible cell death. The relationship between IPC, stunning, and necrosis is not well understood, requiring further molecular investigation. This study aimed to investigate the proteomic changes associated with IPC, focusing on its relationship with myocardial stunning and necrosis. A novel 13.5-minute ischemia-reperfusion (I/R) rat model was specifically chosen to induce myocardial stunning, providing a unique approach to assess IPC effects in this context. Rats underwent either IPC with two 5-minute ischemia/reperfusion cycles followed by a 13.5-minute ischemic period or the procedure without IPC (no ischemic preconditioning, NIPC). Myocardial samples were collected at early (T1) and 4-hour post-reperfusion (T2) time points for proteomic analysis. Protein levels were quantified by differential labeling using TMTpro reagents, and subsequent liquid chromatography-mass spectrometry. IPC induced upregulation of proteins involved in endocytosis and Fc gamma R-mediated phagocytosis pathways at T1, while downregulating proteins related to tissue remodeling, immune response, and coagulation at T2. Conversely, NIPC exhibited upregulation of proteins associated with tissue damage and inflammation. IPC rats demonstrated enhanced leukocyte migration, complement activation, and immune response between T1 and T2. Consistent proteomic changes were observed between T1 and T2 in IPC vs. NIPC groups, and common alterations between IPC T2 vs. T1 and NIPC T2 vs. T1 comparisons underline shared pathways in cardiac complement and coagulation cascades. Our study reveals distinct proteomic changes induced by IPC in the context of myocardial stunning and necrosis. IPC activates early protective pathways, attenuates tissue damage and inflammation, and preserves myocardial function. These findings underscore IPC's reparative potential and identify myocardial stunning as an important, transient adaptation, which may have implications for supportive clinical management in I/R.
Collapse
Affiliation(s)
- Yalda Kakaei
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmed Elmahdy
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Evelin Berger
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aaron Shekka Espinosa
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentyna Sevastianova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Zahra Sheybani
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mana Kalani
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandeep Jha
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital/S, Gothenburg, Sweden
| | - Ermir Zulfaj
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
| | - Amirali Nejat
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
| | - Abhishek Jha
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tetiana Pylova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maryna Krasnikova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Axel Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Vagner Ramon Rodrigues Silva
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital/S, Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Bruna stråket 16, SU/S, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital/S, Gothenburg, Sweden
| |
Collapse
|
2
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Mahapatra A, Rangamani P. Formation of protein-mediated bilayer tubes is governed by a snapthrough transition. SOFT MATTER 2023; 19:4345-4359. [PMID: 37255421 PMCID: PMC10330560 DOI: 10.1039/d2sm01676a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasma membrane tubes are ubiquitous in cellular membranes and in the membranes of intracellular organelles. They play crucial roles in trafficking, ion transport, and cellular motility. These tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins. Here, we present a mathematical framework to model cylindrical tubular protrusions formed by proteins that induce anisotropic spontaneous curvature. Our analysis revealed that the tube radius depends on an effective tension that includes contributions from the bare membrane tension and the protein-induced curvature. We also found that the length of the tube undergoes an abrupt transition from a short, dome-shaped membrane to a long cylinder and this transition is characteristic of a snapthrough instability. Finally, we show that the snapthrough instability depends on the different parameters including coat area, bending modulus, and extent of protein-induced curvature. Our findings have implications for tube formation due to BAR-domain proteins in processes such as endocytosis, t-tubule formation in myocytes, and cristae formation in mitochondria.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Polycystin-1 Is a Crucial Regulator of BIN1 Expression and T-Tubule Remodeling Associated with the Development of Dilated Cardiomyopathy. Int J Mol Sci 2022; 24:ijms24010667. [PMID: 36614108 PMCID: PMC9820588 DOI: 10.3390/ijms24010667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies. We used a cardiomyocyte-specific PC1-silenced (PC1-KO) mouse model to explore the relevance of cardiomyocyte PC1 in the development of heart failure (HF), considering reduced BIN1 expression induced T-tubule remodeling as a potential mechanism. PC1-KO mice exhibited an impairment of cardiac function, as measured by echocardiography, but no signs of HF until 7-9 months of age. Of the PC1-KO mice, 43% died suddenly at 7 months of age, and 100% died after 9 months with dilated cardiomyopathy. Total BIN1 mRNA, protein levels, and its localization in plasma membrane-enriched fractions decreased in PC1-KO mice. Moreover, the BIN1 + 13 isoform decreased while the BIN1 + 13 + 17 isoform was overexpressed in mice without signs of HF. However, BIN1 + 13 + 17 overexpression was not observed in mice with HF. T-tubule remodeling and BIN1 score measured in plasma samples were associated with decreased PC1-BIN1 expression and HF development. Our results show that decreased PC1 expression in cardiomyocytes induces dilated cardiomyopathy associated with diminished BIN1 expression and T-tubule remodeling. In conclusion, positive modulation of BIN1 expression by PC1 suggests a novel pathway that may be relevant to understanding the pathophysiological mechanisms leading to cardiomyopathy in ADPKD patients.
Collapse
|
6
|
Liu L, Zhou K, Liu X, Hua Y, Wang H, Li Y. The interplay between cardiac dyads and mitochondria regulated the calcium handling in cardiomyocytes. Front Physiol 2022; 13:1013817. [PMID: 36531185 PMCID: PMC9755166 DOI: 10.3389/fphys.2022.1013817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/24/2022] [Indexed: 11/15/2023] Open
Abstract
Calcium mishandling and mitochondrial dysfunction have been increasingly recognized as significant factors involved in the progression procedure of cardiomyopathy. Ca2+ mishandling could cause calcium-triggered arrhythmias, which could enhance force development and ATP consumption. Mitochondrial disorganization and dysfunction in cardiomyopathy could disturb the balance of energy catabolic and anabolic procedure. Close spatial localization and arrangement of structural among T-tubule, sarcoplasmic reticulum, mitochondria are important for Ca2+ handling. So that, we illustrate the regulating network between calcium handling and mitochondrial homeostasis, as well as its intracellular mechanisms in this review, which would be worthy to develop novel therapeutic strategy and restore the function of injured cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
8
|
Kerr CM, Richards D, Menick DR, Deleon-Pennell KY, Mei Y. Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium. Int J Mol Sci 2021; 22:8482. [PMID: 34445185 PMCID: PMC8395156 DOI: 10.3390/ijms22168482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for disease modeling and drug cardiotoxicity screening. To this end, we recently developed human cardiac organoids (hCOs) for modeling human myocardium. Here, we perform a transcriptomic analysis of various in vitro hiPSC-CM platforms (2D iPSC-CM, 3D iPSC-CM and hCOs) to deduce the strengths and limitations of these in vitro models. We further compared iPSC-CM models to human myocardium samples. Our data show that the 3D in vitro environment of 3D hiPSC-CMs and hCOs stimulates the expression of genes associated with tissue formation. The hCOs demonstrated diverse physiologically relevant cellular functions compared to the hiPSC-CM only models. Including other cardiac cell types within hCOs led to more transcriptomic similarities to adult myocardium. hCOs lack matured cardiomyocytes and immune cells, which limits a complete replication of human adult myocardium. In conclusion, 3D hCOs are transcriptomically similar to myocardium, and future developments of engineered 3D cardiac models would benefit from diversifying cell populations, especially immune cells.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Dylan Richards
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA 19477, USA;
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. Deleon-Pennell
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 2942, USA
| |
Collapse
|
9
|
Khan MS, Shaw RM. Huntington's disease skeletal muscle has altered T-tubules. J Gen Physiol 2021; 153:e202012843. [PMID: 33978682 PMCID: PMC8126974 DOI: 10.1085/jgp.202012843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Romer et al. explored T-tubules in skeletal muscle.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Muthubharathi BC, Gowripriya T, Balamurugan K. Metabolomics: small molecules that matter more. Mol Omics 2021; 17:210-229. [PMID: 33598670 DOI: 10.1039/d0mo00176g] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolomics, an analytical study with high-throughput profiling, helps to understand interactions within a biological system. Small molecules, called metabolites or metabolomes with the size of <1500 Da, depict the status of a biological system in a different manner. Currently, we are in need to globally analyze the metabolome and the pathways involved in healthy, as well as diseased conditions, for possible therapeutic applications. Metabolome analysis has revealed high-abundance molecules during different conditions such as diet, environmental stress, microbiota, and disease and treatment states. As a result, it is hard to understand the complete and stable network of metabolites of a biological system. This review helps readers know the available techniques to study metabolomics in addition to other major omics such as genomics, transcriptomics, and proteomics. This review also discusses the metabolomics in various pathological conditions and the importance of metabolomics in therapeutic applications.
Collapse
|
11
|
Li J, Agvanian S, Zhou K, Shaw RM, Hong T. Exogenous Cardiac Bridging Integrator 1 Benefits Mouse Hearts With Pre-existing Pressure Overload-Induced Heart Failure. Front Physiol 2020; 11:708. [PMID: 32670093 PMCID: PMC7327113 DOI: 10.3389/fphys.2020.00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Cardiac bridging integrator 1 (cBIN1) organizes transverse tubule (t-tubule) membrane calcium handling microdomains required for normal beat-to-beat contractility. cBIN1 is transcriptionally reduced in heart failure (HF). We recently found that cBIN1 pretreatment can limit HF development in stressed mice. Here, we aim to explore whether cBIN1 replacement therapy can improve myocardial function in continuously stressed hearts with pre-existing HF. Methods: Adult male mice were subjected to sham or transverse aortic constriction (TAC) surgery at the age of 8-10 weeks old. Adeno-associated virus 9 (AAV9) transducing cBIN1-V5 or GFP-V5 (3 × 1010 vg) was administered through retro-orbital injection at 5 weeks post-TAC. Mice were followed by echocardiography to monitor cardiac function until 20 weeks after TAC. Overall survival, heart and lung weight (LW), and HF incidence were determined. In a second set of animals in which AAV9-cBIN1 pretreatment prevents HF, we recorded cardiac pressure-volume (PV) loops and obtained myocardial immunofluorescence imaging. Results: The overall Kaplan-Meir survival of AAV9-cBIN1 mice was 77.8%, indicating a significant partial rescue between AAV9-GFP (58.8%) and sham (100%) treated mice. In mice with ejection fraction (EF) ≥30% prior to AAV9 injection at 5 weeks post-TAC, AAV9-cBIN1 significantly increased survival to 93.3%, compared to 62.5% survival for AAV9-GFP treated mice. The effect of exogenous cBIN1 was to attenuate TAC-induced left ventricular (LV) dilation and prevent further HF development. Recovery of EF also occurs in AAV9-cBIN1-treated mice. We found that EF increases to a peak at 6-8 weeks post-viral injection. Furthermore, PV loop analysis identified that AAV9-cBIN1 increases both systolic and diastolic function of the post-TAC hearts. At the myocyte level, AAV9-cBIN1 normalizes cBIN1 expression, t-tubule membrane intensity, and intracellular distribution of Cav1.2 and ryanodine receptors (RyRs). Conclusions: In mice with pre-existing HF, exogenous cBIN1 can normalize t-tubule calcium handling microdomains, limit HF progression, rescue cardiac function, and improve survival.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sosse Agvanian
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kang Zhou
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - TingTing Hong
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Li Y, Yuan H, Chen C, Chen C, Ma J, Chen Y, Li Y, Jian Y, Liu D, Ou Z, Ou J. Concentration of circulating microparticles: a new biomarker of acute heart failure after cardiac surgery with cardiopulmonary bypass. SCIENCE CHINA-LIFE SCIENCES 2020; 64:107-116. [PMID: 32548691 DOI: 10.1007/s11427-020-1708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Acute heart failure (AHF) is a severe complication after cardiac surgery with cardiopulmonary bypass (CPB). Although some AHF biomarkers have been used in clinic, they have limitations when applied in the prediction and diagnosis of AHF after cardiac surgery with CPB, and there are still no effective and specific biomarkers. We and other researchers have shown that circulating microparticles (MPs) increased in a variety of cardiovascular diseases. However, whether the concentration of circulating MPs could be a new biomarker for AHF after cardiac surgery remains unknown. Here, 90 patients undergoing cardiac surgery with CPB and 45 healthy subjects were enrolled. Patients were assigned into AHF (n=14) or non-AHF (n=76) group according to the diagnosis criteria of AHF. The concentrations of circulating MPs were determined before, as well as 12 h and 3 days after operation with nanoparticle tracking analysis technique. MPs concentrations in patients before surgery were significantly higher than those of healthy subjects. Plasma levels of MPs were significantly elevated at 12 h after surgery in patients with AHF, but not in those without AHF, and the circulating MPs concentrations at 12 h after surgery were higher in AHF group compared with non-AHF group. Logistic regression analysis indicated that MPs concentration at postoperative 12 h was an independent risk factor for AHF. The area under receiver operating characteristic curve for MPs concentration at postoperative 12 h was 0.81 and the best cut-off value is 5.20×108 particles mL-1 with a sensitivity of 93% and a specificity of 10%. These data suggested that the concentration of circulating MPs might be a new biomarker for the occurrence of AHF after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Yuquan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Haoxiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Caiyun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yating Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yupeng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Donghong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhijun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Jiang X, Zhu Y, Liu H, Chen S, Zhang D. Effect of BIN1 on cardiac dysfunction and malignant arrhythmias. Acta Physiol (Oxf) 2020; 228:e13429. [PMID: 31837094 DOI: 10.1111/apha.13429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the end-stage syndrome for most cardiac diseases, and the 5-year morbidity and mortality of HF remain high. Malignant arrhythmia is the main cause of sudden death in the progression of HF. Recently, bridging integrator 1 (BIN1) was discovered as a regulator of transverse tubule function and calcium signalling in cardiomyocytes. BIN1 downregulation is linked to abnormal cardiac contraction, and it increases the possibility of malignant arrhythmias preceding HF. Because of the detectability of cardiac BIN1 in peripheral blood, BIN1 may serve as a predictor of HF and may be useful in therapy development. However, the mechanism of BIN1 downregulation in HF and how BIN1 regulates normal cardiac function under physiological conditions remain unclear. In this review, recent progress in the biological studies of BIN1-related cardiomyocytes and the effect of cardiac dysfunction and malignant arrhythmia will be discussed.
Collapse
Affiliation(s)
- Xiao‐Xin Jiang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Yan‐Rong Zhu
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Hong‐Ming Liu
- Department of Geriatric Cardiology The First Affiliated Hospital of Kunming Medical University Kunming Yunnan P. R. China
| | - Shao‐Liang Chen
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Dai‐Min Zhang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| |
Collapse
|
14
|
Zhang JJ, Wang LP, Li RC, Wang M, Huang ZH, Zhu M, Wang JX, Wang XJ, Wang SQ, Xu M. Abnormal expression of miR-331 leads to impaired heart function. Sci Bull (Beijing) 2019; 64:1011-1017. [PMID: 36659800 DOI: 10.1016/j.scib.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play important roles in maintaining normal heart function. Abnormal expression of miR-331 has been observed in the hearts of patients with atrial fibrillation and Marfan syndrome. However, whether miR-331 regulates cardiac function under physiological and pathological conditions still remains unknown. In the present study, we investigated the function and underlying mechanisms of miR-331 in a pressure overload-induced heart failure model and miR-331 transgenic rat model. First, we found that the expression of miR-331-3p exhibited a 1.7-fold increase in hypertrophy compared with that in the sham group (P < 0.01), yet the expression of miR-331-5p remained unchanged. Furthermore, overexpression of miR-331 in cardiomyocytes and defective excitation-contraction (E-C) coupling efficiency were observed. Luciferase assays showed that miR-331-3p suppressed JPH2 expression by binding to the coding region of JPH2 mRNA. Finally, in the miR-331 transgenic rat model, JPH2 expression was suppressed at both the mRNA and protein levels in vivo, which resulted in impairment of both the E-C coupling efficiency of cardiomyocytes and systolic function of the heart. This finding mechanistically linked miR-331 to JPH2 downregulation and suggested an important role for the abnormal expression of miR-331 leading to the dysfunction of E-C coupling in heart failure.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rong-Chang Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeng-Hui Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jia-Xing Wang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Zhang X, Liu H, Gao J, Zhu M, Wang Y, Jiang C, Xu M. Metabolic disorder in the progression of heart failure. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1153-1167. [DOI: 10.1007/s11427-019-9548-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
|
16
|
Yang HQ, Wang LP, Gong YY, Fan XX, Zhu SY, Wang XT, Wang YP, Li LL, Xing X, Liu XX, Ji GS, Hou T, Zhang Y, Xiao RP, Wang SQ. β
2
-Adrenergic Stimulation Compartmentalizes β
1
Signaling Into Nanoscale Local Domains by Targeting the C-Terminus of β
1
-Adrenoceptors. Circ Res 2019; 124:1350-1359. [DOI: 10.1161/circresaha.118.314322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hua-Qian Yang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Li-Peng Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yun-Yun Gong
- Beijing Advanced Innovation Center for Biomedical Engineering, and School of Biological Science and Medical Engineering, Beihang University, Beijing, China (Y.-Y.G)
| | - Xue-Xin Fan
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Si-Yu Zhu
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xiao-Ting Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yu-Pu Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Lin-Lin Li
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xin Xing
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xiao-Xiao Liu
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Guang-Shen Ji
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - TingTing Hou
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yan Zhang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Rui-Ping Xiao
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Shi-Qiang Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| |
Collapse
|
17
|
Mwacharo JM, Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky BA, Rothschild MF. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Sci Rep 2017; 7:17647. [PMID: 29247174 PMCID: PMC5732286 DOI: 10.1038/s41598-017-17775-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.
Collapse
Affiliation(s)
- Joram M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia.
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| | - Ahmed R Elbeltagy
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Adel M Aboul-Naga
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Barbara A Rischkowsky
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| |
Collapse
|