1
|
Yang Z, He Y, Li S, Meng J, Li N, Wang J. Isolation and Genomic Characterization of Kadipiro Virus from Mosquitoes in Yunnan, China. Vector Borne Zoonotic Dis 2024; 24:532-539. [PMID: 38683642 DOI: 10.1089/vbz.2023.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
2
|
Yang Z, He Y, Chen Y, Meng J, Li N, Li S, Wang J. Full genome characterization and evolutionary analysis of Banna virus isolated from Culicoides, mosquitoes and ticks in Yunnan, China. Front Cell Infect Microbiol 2023; 13:1283580. [PMID: 38035340 PMCID: PMC10687475 DOI: 10.3389/fcimb.2023.1283580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Banna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia. Methods Culicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing. Results In this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution. Conclusion The data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yiju Chen
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
3
|
Yin Q, Cheng R, Xu X, Xu Z, Wang J, Fu S, Xu H, Zhang S, He Y, Li F, Xu S, Lu X, Wang H, Wang B, Liang G. Isolation and identification of Tete virus group ( Peribunyaviridae: Orthobunyavirus) from Culicoides biting midges collected in Lichuan County, China. Front Cell Infect Microbiol 2023; 13:1193184. [PMID: 38029255 PMCID: PMC10644344 DOI: 10.3389/fcimb.2023.1193184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In July 2018, a virus (JXLC1806-2) was isolated from Culicoides biting midges collected in Lichuan County, Jiangxi Province, China. The virus isolate showed significant cytopathic effects within 48 hours after inoculation with mammalian cells (BHK-21). JXLC1806-2 virus could form plaques in BHK-21 cells, and the virus titer was 1×105.6 pfu/mL. After inoculation with the virus, suckling mice developed disease and died. The nucleotide and amino sequence analysis showed that the JXLC1806-2 virus genome was composed of S, M and L segments. Phylogenetic analysis showed that the S, M and L genes of JXLC1806-2 virus belonged to the Tete serogroup, Orthobunyavirus, but formed an independent evolutionary branch from the other members of the Tete serogroup. The results showed that the JXLC1806-2 virus, which was named as Lichuan virus, is a new member of Tete serogroup, and this is the first time that a Tete serogroup virus has been isolated in China.
Collapse
Affiliation(s)
- Qikai Yin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rui Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Qingdao University, Qingdao, China
- Luoyang City Center for Disease Control and Prevention, Luoyang, China
| | - Xiuyan Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Ziqian Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Xu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Shaozai Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songtao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoqing Lu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Yang X, Qin S, Liu X, Zhang N, Chen J, Jin M, Liu F, Wang Y, Guo J, Shi H, Wang C, Chen Y. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol Spectr 2023; 11:e0268822. [PMID: 36651764 PMCID: PMC9927462 DOI: 10.1128/spectrum.02688-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjun Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Full Genome Sequencing of Three Sedoreoviridae Viruses Isolated from Culicoides spp. (Diptera, Ceratopogonidae) in China. Viruses 2022; 14:v14050971. [PMID: 35632713 PMCID: PMC9145729 DOI: 10.3390/v14050971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Sedoreoviridae is a family of viruses belonging to the order Reovirales and comprises six genera, two of which, Orbivirus and Seadornavirus, contain arboviruses that cause disease in humans and livestock. Areas such as Yunnan Province in southwestern China, have high arboviral activity due in part to warm and wet summers, which support high populations of biting flies such as mosquitoes and Culicoides. Three viral isolates previously obtained from Culicoides collected at cattle farms in Shizong County of Yunnan Province, China, between 2019 and 2020 were completely sequenced and identified as Banna virus (BAV) genotype A of Seadornavirus and serotypes 1 and 7 of epizootic hemorrhagic disease virus (EHDV) of Orbivirus. These results suggest that Culicoidestainanus and C. orientalis are potential vectors of BAV and EHDV, respectively, and represent the first association of a BAV with C. tainanus and of an arbovirus with C. orientalis. Analysis using VP9 generally agreed with the current groupings within this genus based on VP12, although the classification for some strains should be corrected. Furthermore, the placement of Kadipiro virus (KDV) and Liao ning virus (LNV) in Seadornavirus may need confirmation as phylogenetic analysis placed these viruses as sister to other species in the genus.
Collapse
|
6
|
Li J, Guo X, Li Y, Hu N, Sun J, Wu M, Zhou H, Hu Y. Evolutionary analysis of a newly isolated Banna virus strain from Yunnan, China. Arch Virol 2022; 167:1221-1223. [DOI: 10.1007/s00705-022-05403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
|
7
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
8
|
Liu L, Shen Q, Li N, He Y, Han N, Wang X, Meng J, Peng Y, Pan M, Jin Y, Jiang T, Tan W, Wang J, Wu A. Comparative viromes of Culicoides and mosquitoes reveal their consistency and diversity in viral profiles. Brief Bioinform 2020; 22:6032619. [PMID: 33313676 DOI: 10.1093/bib/bbaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
The genus Culicoides includes biting midges, some of which are vectors for viruses that cause diseases in humans and animals. Knowledge of the roles of Culicoides in viral ecology is inadequate. We collected ~300 000 samples of Culicoides and mosquitoes in 15 representative regions within Yunnan, China. Using mosquitoes as reference vectors, we designed a comparative virome strategy to study the viral composition, diversity, hosts and spatiotemporal distribution of Culicoides. A map of viromes in Culicoides and mosquitoes in Yunan province, China, was constructed. At the same locations, Culicoides and mosquitoes usually share a similar viral diversity. At least 10 important pathogenic viruses were detected from Culicoides. Many novel viruses were discovered, including 21 segmented viruses of Flaviviridae, 180 viruses of Monjiviricetes and 130 viruses of Bunyavirales. The findings demonstrate that Culicoides is an important part of viral ecology and should be studied and monitored for potentially emerging viruses.
Collapse
Affiliation(s)
- Lin Liu
- Suzhou Institute of Systems Medicine
| | - Qin Shen
- Suzhou Institute of Systems Medicine
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | - Na Han
- Suzhou Institute of Systems Medicine
| | | | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory,Yunnan Animal Science and Veterinary Institute
| | | | - Mei Pan
- lab masters in the high-throughput sequencing platform of the Suzhou Institute of Systems Medicine
| | - Yuting Jin
- lab masters in the high-throughput sequencing platform of the Suzhou Institute of Systems Medicine
| | | | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC
| | | | - Aiping Wu
- Suzhou Institute of Systems Medicine
| |
Collapse
|
9
|
Supriyono, Kuwata R, Torii S, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Kuroda Y, Tatemoto K, Tran NTB, Takano A, Omatsu T, Mizutani T, Itokawa K, Isawa H, Sawabe K, Takasaki T, Yuliani DM, Abiyoga D, Hadi UK, Setiyono A, Hondo E, Agungpriyono S, Maeda K. Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes. J Vet Med Sci 2020; 82:1030-1041. [PMID: 32448813 PMCID: PMC7399325 DOI: 10.1292/jvms.20-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mosquitoes transmit many kinds of arboviruses (arthropod-borne viruses), and numerous arboviral diseases have become serious problems in Indonesia. In this study, we conducted surveillance of mosquito-borne viruses at several sites in Indonesia during 2016-2018 for risk assessment of arbovirus infection and analysis of virus biodiversity in mosquito populations. We collected 10,015 mosquitoes comprising at least 11 species from 4 genera. Major collected mosquito species were Culex quinquefasciatus, Aedes albopictus, Culex tritaeniorhynchus, Aedes aegypti, and Armigeres subalbatus. The collected mosquitoes were divided into 285 pools and used for virus isolation using two mammalian cell lines, Vero and BHK-21, and one mosquito cell line, C6/36. Seventy-two pools showed clear cytopathic effects only in C6/36 cells. Using RT-PCR and next-generation sequencing approaches, these isolates were identified as insect flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), new permutotetravirus (designed as Bogor virus) (family Permutotetraviridae, genus Alphapermutotetravirus), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus). We believed that this large surveillance of mosquitoes and mosquito-borne viruses provides basic information for the prevention and control of emerging and re-emerging arboviral diseases.
Collapse
Affiliation(s)
- Supriyono
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Shun Torii
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ngo Thuy Bao Tran
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ai Takano
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Dewi Maria Yuliani
- Public Health Office of Tangerang District, Tigaraksa Subdistrict, Banten 15720, Indonesia
| | - Dimas Abiyoga
- Indonesian Research Center for Veterinary Sciences, Sesetan, Denpasar City, Bali 80223, Indonesia
| | - Upik Kesumawati Hadi
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Agus Setiyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Eiichi Hondo
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
10
|
Wu D, Tan Q, Zhang H, Huang P, Zhou H, Zhang X, Sun J, Huang L, Liang G. Genomic and biological features of a novel orbivirus isolated from mosquitoes, in China. Virus Res 2020; 285:197990. [PMID: 32437817 DOI: 10.1016/j.virusres.2020.197990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023]
Abstract
A novel orbivirus had been identified as a member of the Orbivirus genus, which was isolated from pooled Culex fatigans mosquitoes in Guangdong of China, named as the Fengkai virus (FKOV). The cytopathic effects (CPEs) on both Aedes albopictus cells (C6/36) and mammalian cell lines (Vero and BHK-21) emerged in the cell cultures inoculated above virus in. Experimental confirmation as the Orbivirus genus was conducted by the Real-time PCR and based on Ion Torrent Next-Generation in sequencing. The Identities of VP1, VP2 and VP3 in amino acid sequences between the Tibet orbivirus (TIBOV) and this strain were 98.6%, 42.9%, and 99.9%, respectively, which indicated that this strain shares the same genus (VP1, Pol) and species (VP3, T2) with TIBOV but was greatly different in VP2 and VP5 (10.3%) of TIBOV. The VP2 and VP5 diversities of both TIBOV and FKOV strains suggested both serotypes are distinct with each other. As natural evolution and circulation, this strain might expand its host ranges and infect human beings as a potential and severe pathogen.
Collapse
Affiliation(s)
- De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qiqi Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huan Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ping Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; School of Public Health, Southern Medical University, China.
| | - Huiqiong Zhou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Institute of Public Health, Guangzhou, China
| | - Liming Huang
- School of Public Health, Southern Medical University, China
| | - Guodong Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
12
|
Hameed M, Liu K, Anwar MN, Wahaab A, Li C, Di D, Wang X, Khan S, Xu J, Li B, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound Emerg Dis 2019; 67:328-343. [PMID: 31512812 DOI: 10.1111/tbed.13355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Mosquitoes harbour a diversity of viruses and are responsible for several mosquito-borne viral diseases of humans and animals, thereby leading to major public health concerns, and significant economic losses across the globe. Viral metagenomics offers a great opportunity for bulk analysis of viral genomes retrieved directly from environmental samples. In this study, we performed a viral metagenomic analysis of five pools of mosquitoes belonging to Aedes, Anopheles and Culex species, collected from different pig farms in the vicinity of Shanghai, China, to explore the viral community carried by mosquitoes. The resulting metagenomic data revealed that viral community in the mosquitoes was highly diverse and varied in abundance among pig farms, which comprised of more than 48 viral taxonomic families, specific to vertebrates, invertebrates, plants, fungi, bacteria and protozoa. In addition, a considerable number of viral reads were related to viruses that are not classified by host. The read sequences related to animal viruses included parvoviruses, anelloviruses, circoviruses, flavivirus, rhabdovirus and seadornaviruses, which might be taken up by mosquitoes from viremic animal hosts during blood feeding. Notably, sample G1 contained the most abundant sequence related to Banna virus, which is of public health interest because it causes encephalitis in humans. Furthermore, non-classified viruses also shared considerable virus sequences in all the samples, presumably belonging to unexplored virus category. Overall, the present study provides a comprehensive knowledge of diverse viral populations carried by mosquitoes at pig farms, which is a potential source of diseases for mammals including humans and animals. These viral metagenomic data are valuable for assessment of emerging and re-emerging viral epidemics.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
13
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
14
|
Xia H, Liu H, Zhao L, Atoni E, Wang Y, Yuan Z. First Isolation and Characterization of a Group C Banna Virus (BAV) from Anopheles sinensis Mosquitoes in Hubei, China. Viruses 2018; 10:v10100555. [PMID: 30314338 PMCID: PMC6213526 DOI: 10.3390/v10100555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022] Open
Abstract
Banna virus (BAV) is considered to be an emerging human pathogen that is transmitted by blood-sucking insects. BAV was isolated from various species of mosquitoes, midges, and livestock. It is widely distributed geographically, since it was identified in China, Vietnam, and Indonesia. Previously reported evolution studies of BAV indicated that BAV can be divided into two groups, including isolates from China and Vietnam clustered in group A, and Indonesian isolates in group B. In this study, we report the isolation of a new strain of BAV named HB14-71-01 from Anopheles sinensis mosquitoes from Hubei, China. An in vitro comparison study of the HB14-71-01 isolate and the group A BAV revealed differences based on observed cytopathic effect, plaque size, and viral growth rates. Additionally, the phylogenetic analysis indicated that the Hubei isolate belongs to a novel genotype of BAV and emerged nearly 105 years ago (95% highest posterior density (HPD): 35–434), unlike the two previously reported genotypes A and B. Our findings extend the knowledge about the genomic diversity and potential vectors/hosts of BAVs and will improve understanding of the relationships between genetic variation and pathogenicity.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Hong Liu
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Yujuan Wang
- Henan Province OriginBio Biotechnology Co., Ltd., Zhengzhou 450000, China.
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
15
|
Liu WJ, Liu D. The triphibious warfare against viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1295-1298. [PMID: 29285714 PMCID: PMC7089299 DOI: 10.1007/s11427-017-9252-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 12/29/2022]
Affiliation(s)
- William J Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Di Liu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Computational Virology Group, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|