1
|
Shazib SUA, Ahsan R, Leleu M, McManus GB, Katz LA, Santoferrara LF. Phylogenomic workflow for uncultivable microbial eukaryotes using single-cell RNA sequencing - A case study with planktonic ciliates (Ciliophora, Oligotrichea). Mol Phylogenet Evol 2025; 204:108239. [PMID: 39551225 DOI: 10.1016/j.ympev.2024.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Phylogenetic analyses increasingly rely on genomic and transcriptomic data to produce better supported inferences on the evolutionary relationships among microbial eukaryotes. Such phylogenomic analyses, however, require robust workflows, bioinformatic expertise and computational power. Microbial eukaryotes pose additional challenges given the complexity of their genomes and the presence of non-target sequences (e.g., symbionts, prey) in data obtained from single cells of uncultivable lineages. To address these challenges, we developed a phylogenomic workflow based on single-cell RNA sequencing, integrating all essential steps from cell isolation to data curation and species tree inference. We assessed our workflow by using publicly available and newly generated transcriptomes (11 and 28, respectively) from the Oligotrichea, a diverse group of marine planktonic ciliates. This group's phylogenetic relationships have been relatively well-studied based on ribosomal RNA gene markers, which we reconstructed by read mapping of transcriptome sequences and compared to our phylogenomic inferences. We also compared phylogenomic analyses based on single-copy protein-coding genes (well-curated orthologs) and multi-copy genes (including paralogs) by sequence concatenation and a coalescence approach (Asteroid), respectively. Finally, using subsets of up to 1,014 gene families (GFs), we assessed the influence of missing data in our phylogenomic inferences. All our analyses yielded similar results, and most inferred relationships were consistent and well-supported. Overall, we found that Asteroid provides robust support for species tree inferences, while simplifying curation steps, minimizing the effects of missing data and maximizing the number of GFs represented in the analyses. Our workflow can be adapted for phylogenomic analyses based on single-cell RNA sequencing of other uncultivable microbial eukaryotes.
Collapse
Affiliation(s)
- Shahed U A Shazib
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, MA, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, MA, USA
| | - Marie Leleu
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, MA, USA.
| | | |
Collapse
|
2
|
Han W, Yang K, Tan X, Gao L, Qu S, Zhang G, Fan W, Liu M, Wang E, Li P, Ling F, Wang G, Liu T. Curcumin is an efficacious therapeutic agent against Chilodonella uncinata via interaction with tubulin alpha chain as protein target. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109961. [PMID: 39395598 DOI: 10.1016/j.fsi.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Chilodonella, a parasitic ciliate that infects both cold water and warm water fish, can impede the growth of juvenile fish and cause considerable economic losses globally to freshwater aquaculture. In this study, the parasite was collected from both the gills and zygotes of largemouth bass (Micropterus salmoides). Isolated from diseased fish, the parasites were identified as Chilodonella uncinata based on morphological features and genetical diagnostic characterization using the partial small subunit ribosomal RNA gene. To develop an effective approach to treat chilodonellosis caused by C. uncinata in largemouth bass farming, we first developed an in vivo culture model for propagating C. uncinate and thus could use for morphological characterization, molecular analyses and antiparasitic drug screening. Curcumin was successfully identified as an efficacious anti-C. uncinata agent from 26 phytochemical compounds. When administered at a concentration of 6 mg/L, curcumin not only completely cured infected largemouth bass but also shielded uninfected fish from C. uncinata infections. The 24 h median effective concentration (EC50) of curcumin against C. uncinata was 3.098 mg/L. Remarkably, the 96 h median lethal concentration (LC50) of curcumin against largemouth bass was determined to be 17.143 mg/L, approximately 5.533 times higher than EC50. The mechanism of action of curcumin was investigated by the cellular thermal shift assay, demonstrating that tubulin alpha chain was the binding target for curcumin. Moreover, SEM investigations further provided morphological evidence suggesting that curcumin induces parasite demise by disrupting the parasite's body surface and subsequently infiltrating its interior. These findings collectively emphasize the potential of curcumin as a safe and effective therapeutic agent for controlling C. uncinata in aquaculture.
Collapse
Affiliation(s)
- Wenjia Han
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Kechen Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoping Tan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Longkun Gao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shenye Qu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gengrong Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqi Fan
- College of Chemistry and Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Erlong Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China.
| | - Tianqiang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, 518057, Shenzhen, Guangdong, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhang X, Zhao Y, Zheng W, Nan B, Fu J, Qiao Y, Zufall RA, Gao F, Yan Y. Genome-wide identification of ATP-binding cassette transporter B subfamily, focusing on its structure, evolution and rearrangement in ciliates. Open Biol 2023; 13:230111. [PMID: 37788709 PMCID: PMC10547551 DOI: 10.1098/rsob.230111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
ATP-binding cassette subfamily B (ABCB) has been implicated in various essential functions such as multidrug resistance, auxin transport and heavy metal tolerance in animals and plants. However, the functions, the genomic distribution and the evolutionary history have not been characterized systematically in lower eukaryotes. As a lineage of highly specialized unicellular eukaryotes, ciliates have extremely diverse genomic features including nuclear dimorphism. To further understand the genomic structure and evolutionary history of this gene family, we investigated the ABCB gene subfamily in 11 ciliates. The results demonstrate that there is evidence of substantial gene duplication, which has occurred by different mechanisms in different species. These gene duplicates show consistent purifying selection, suggesting functional constraint, in all but one species, where positive selection may be acting to generate novel function. We also compare the gene structures in the micronuclear and macronuclear genomes and find no gene scrambling during genome rearrangement, despite the abundance of such scrambling in two of our focal species. These results lay the foundation for future analyses of the function of these genes and the mechanisms responsible for their evolution across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, People's Republic of China
| | - Bei Nan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Jinyu Fu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| |
Collapse
|
4
|
New contribution to epigenetic studies: Isolation of micronuclei with high purity and DNA integrity in the model ciliated protist, Tetrahymena thermophila. Eur J Protistol 2021; 80:125804. [PMID: 34062315 DOI: 10.1016/j.ejop.2021.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 10/24/2022]
Abstract
The ciliated protist Tetrahymena thermophila is a well-known model organism with typical nuclear dimorphism containing a somatic macronucleus (MAC) and a germline micronucleus (MIC). The presence in the same cell compartment of two nuclei with distinctly different structural and functional properties provides an ideal model system to explore mechanisms of genome maintenance. Although methods for the isolation of MIC have been available for many years, cross-contamination and DNA degradation remain unresolved. Here, we describe a reliable and quick method to isolate MIC with high purity and DNA integrity in T. thermophila. Different factors are examined to optimize the MIC purification. The MAC contamination ratio in purified MIC is about 0.19% and DNA integrity of purified MIC is maintained. We also establish a more accurate method to detect the contamination rate of nuclei including microscopic observation and PCR detection. This study will facilitate further epigenetic research in Tetrahymena.
Collapse
|
5
|
Zhu C, Bass D, Wang Y, Shen Z, Song W, Yi Z. Environmental Parameters and Substrate Type Drive Microeukaryotic Community Structure During Short-Term Experimental Colonization in Subtropical Eutrophic Freshwaters. Front Microbiol 2020; 11:555795. [PMID: 33072015 PMCID: PMC7541896 DOI: 10.3389/fmicb.2020.555795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microeukaryotes are key components of aquatic ecosystems and play crucial roles in aquatic food webs. However, influencing factors and potential assembly mechanisms for microeukaryotic community on biofilms are rarely studied. Here, those of microeukaryotic biofilms in subtropical eutrophic freshwaters were investigated for the first time based on 2,585 operational taxonomic units (OTUs) from 41 samples, across different environmental conditions and substrate types. Following conclusions were drawn: (1) Environmental parameters were more important than substrate types in structuring microeukaryotic community of biofilms in subtropical eutrophic freshwaters. (2) In the fluctuating river, there was a higher diversity of OTUs and less predictability of community composition than in the stable lake. Sessile species were more likely to be enriched on smooth surfaces of glass slides, while both free-swimming and attached organisms occurred within holes inside PFUs (polyurethane foam units). (3) Both species sorting and neutral process were mechanisms for assembly of microeukaryotic biofilms, but their importance varied depending on different habitats and substrates. (4) The effect of species sorting was slightly higher than the neutral process in river biofilms due to stronger environmental filtering. Species sorting was a stronger force structuring communities on glass slides than PFUs with more niche availability. Our study sheds light on assembly mechanisms for microeukaryotic community on different habitat and substrate types, showing that the resulting communities are determined by both sets of variables, in this case primarily habitat type. The balance of neutral process and species sorting differed between habitats, but the high alpha diversity of microeukaryotes in both led to similar sets of lifecycle traits being selected for in each case.
Collapse
Affiliation(s)
- Changyu Zhu
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Yutao Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.,Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Weibo Song
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Yi
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Li Y, Chen X, Wu K, Pan J, Long H, Yan Y. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics. Microorganisms 2020; 8:microorganisms8050662. [PMID: 32370063 PMCID: PMC7285179 DOI: 10.3390/microorganisms8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/02/2023] Open
Abstract
Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence genome evolution. However, little is known about such important genomic components in ciliated protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore perfect SSRs with motif size 1-100 bp and at least three motif repeats in nine species of two ciliate classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with one-adenine motif repeated three times) being the codons repeated at the highest frequencies in coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements in ciliate genomes.
Collapse
|
7
|
The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1534-1542. [PMID: 32297047 DOI: 10.1007/s11427-020-1689-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023]
Abstract
The ciliate Tetrahymena thermophila has been a powerful model system for molecular and cellular biology. However, some investigations have been limited due to the incomplete closure and sequencing of the macronuclear genome assembly, which for many years has been stalled at 1,158 scaffolds, with large sections of unknown sequences (available in Tetrahymena Genome Database, TGD, http://ciliate.org/ ). Here we completed the first chromosome-level Tetrahymena macronuclear genome assembly, with approximately 300× long Single Molecule, Real-Time reads of the wild-type SB210 cells-the reference strain for the initial macronuclear genome sequencing project. All 181 chromosomes were capped with two telomeres and gaps were entirely closed. The completed genome shows significant improvements over the current assembly (TGD 2014) in both chromosome structure and sequence integrity. The majority of previously identified gene models shown in TGD were retained, with the addition of 36 new genes and 883 genes with modified gene models. The new genome and annotation were incorporated into TGD. This new genome allows for pursuit in some underexplored areas that were far more challenging previously; two of them, genome scrambling and chromosomal copy number, were investigated in this study. We expect that the completed macronuclear genome will facilitate many studies in Tetrahymena biology, as well as multiple lines of research in other eukaryotes.
Collapse
|
8
|
Wang Y, Jiang Y, Liu Y, Li Y, Katz LA, Gao F, Yan Y. Comparative Studies on the Polymorphism and Copy Number Variation of mtSSU rDNA in Ciliates (Protista, Ciliophora): Implications for Phylogenetic, Environmental, and Ecological Research. Microorganisms 2020; 8:E316. [PMID: 32106521 PMCID: PMC7142639 DOI: 10.3390/microorganisms8030316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/21/2023] Open
Abstract
While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly-used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 104 to 8.1 × 105; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies.
Collapse
Affiliation(s)
- Yurui Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yongqiang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yuan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA;
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (Y.J.); (Y.L.); (Y.L.); (F.G.)
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA;
| |
Collapse
|
9
|
Gao Y, Gong R, Jiang Y, Pan B, Li Y, Warren A, Jiang J, Gao F. Morphogenetic characters of the model ciliate Euplotes vannus (Ciliophora, Spirotrichea): Notes on cortical pattern formation during conjugational and postconjugational reorganization. Eur J Protistol 2020; 73:125675. [PMID: 32036251 DOI: 10.1016/j.ejop.2020.125675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
Ciliated protists represent a morphologically and genetically distinct group of single-celled eukaryotes which can reproduce asexually and sexually. Morphogenesis occurs in both asexual and sexual modes of reproduction which is of interest for researchers investigating cell differentiation, regeneration, systematics and evolution. However, studies of morphogenesis have concentrated almost entirely on the asexual mode. Here we use protargol staining to investigate the morphogenetic processes during sexual reproduction in the model species Euplotes vannus (Müller). The major events include: (1) two rounds of morphogenesis occur during sexual reproduction, i.e., conjugational and postconjugational reorganization; (2) in both processes the oral primordium is generated de novo in a pouch beneath the cortex; (3) the frontoventral-transverse cirri anlagen are formed de novo and fragment in a 3:3:3:3:2 pattern; (4) the leftmost cirrus and the paroral membrane do not change during conjugational morphogenesis, but reorganize de novo during postconjugational morphogenesis; (5) marginal cirral anlagen are formed de novo in both morphogenetic processes; (6) two or three caudal cirri are formed at the ends of the rightmost two or three old dorsal kineties; (7) the dorsal kineties are retained entirely. These results can serve as reference to investigate the morphogenetic events in the different stages of sexual reproduction.
Collapse
Affiliation(s)
- Yunyi Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Ruitao Gong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
10
|
Conjugation in Euplotes raikovi (Protista, Ciliophora): New Insights into Nuclear Events and Macronuclear Development from Micronucleate and Amicronucleate Cells. Microorganisms 2020; 8:microorganisms8020162. [PMID: 31979289 PMCID: PMC7074782 DOI: 10.3390/microorganisms8020162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Ciliates form a distinct group of single-celled eukaryotes that host two types of nuclei (micro and macronucleus) in the same cytoplasm and have a special sexual process known as conjugation, which involves mitosis, meiosis, fertilization, nuclear differentiation, and development. Due to their high species diversity, ciliates have evolved different patterns of nuclear events during conjugation. In the present study, we investigate these events in detail in the marine species Euplotes raikovi. Our results indicate that: (i) conjugation lasts for about 50 h, the longest stage being the development of the new macronucleus (ca. 36 h); (ii) there are three prezygotic micronuclear divisions (mitosis and meiosis I and II) and two postzygotic synkaryon divisions; and (iii) a fragment of the parental macronucleus fuses with the new developing macronucleus. In addition, we describe for the first time conjugation in amicronucleate E. raikovi cells. When two amicronucleate cells mate, they separate after about 4 h without evident nuclear changes; when one amicronucleate cell mates with a micronucleate cell, the micronucleus undergoes regular prezygotic divisions to form migratory and stationary pronuclei, but the two pronuclei fuse in the same cell. In the amicronucleate cell, the parental macronucleus breaks into fragments, which are then recovered to form a new functional macronucleus. These results add new information on the process of conjugation in both micronucleate and amicronucleate Euplotes cells.
Collapse
|
11
|
Comparative Transcriptome Analyses during the Vegetative Cell Cycle in the Mono-Cellular Organism Pseudokeronopsis erythrina (Alveolata, Ciliophora). Microorganisms 2020; 8:microorganisms8010108. [PMID: 31940957 PMCID: PMC7022673 DOI: 10.3390/microorganisms8010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/18/2023] Open
Abstract
Studies focusing on molecular mechanisms of cell cycles have been lagging in unicellular eukaryotes compared to other groups. Ciliates, a group of unicellular eukaryotes, have complex cell division cycles characterized by multiple events. During their vegetative cell cycle, ciliates undergo macronuclear amitosis, micronuclear mitosis, stomatogenesis and somatic cortex morphogenesis, and cytokinesis. Herein, we used the hypotrich ciliate Pseudokeronopsis erythrina, whose morphogenesis has been well studied, to examine molecular mechanisms of ciliate vegetative cell cycles. Single-cell transcriptomes of the growth (G) and cell division (D) stages were compared. The results showed that (i) More than 2051 significantly differentially expressed genes (DEGs) were detected, among which 1545 were up-regulated, while 256 were down-regulated at the D stage. Of these, 11 randomly picked DEGs were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR); (ii) Enriched DEGs during the D stage of the vegetative cell cycle of P. erythrina were involved in development, cortex modifications, and several organelle-related biological processes, showing correspondence of molecular evidence to morphogenetic changes for the first time; (iii) Several individual components of molecular mechanisms of ciliate vegetative division, the sexual cell cycle and cellular regeneration overlap; and (iv) The P. erythrina cell cycle and division have the same essential components as other eukaryotes, including cyclin-dependent kinases (CDKs), cyclins, and genes closely related to cell proliferation, indicating the conserved nature of this biological process. Further studies are needed focusing on detailed inventory and gene interactions that regulate specific ciliated cell-phase events.
Collapse
|
12
|
Liu W, Zhang K, Chen C, Li J, Tan Y, Warren A, Lin X, Song W. Overview of the biodiversity and geographic distribution of aloricate oligotrich ciliates (Protozoa, Ciliophora, Spirotrichea) in coastal waters of southern China. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1691081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Weiwei Liu
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kexin Zhang
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Changzhi Chen
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jiqiu Li
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW75BD, UK
| | - Xiaofeng Lin
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Weibo Song
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
13
|
Pan B, Chen X, Hou L, Zhang Q, Qu Z, Warren A, Miao M. Comparative Genomics Analysis of Ciliates Provides Insights on the Evolutionary History Within "Nassophorea-Synhymenia-Phyllopharyngea" Assemblage. Front Microbiol 2019; 10:2819. [PMID: 31921016 PMCID: PMC6920121 DOI: 10.3389/fmicb.2019.02819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Ciliated protists (ciliates) are widely used for investigating evolution, mostly due to their successful radiation after their early evolutionary branching. In this study, we employed high-throughput sequencing technology to reveal the phylogenetic position of Synhymenia, as well as two classes Nassophorea and Phyllopharyngea, which have been a long-standing puzzle in the field of ciliate systematics and evolution. We obtained genomic and transcriptomic data from single cells of one synhymenian (Chilodontopsis depressa) and six other species of phyllopharyngeans (Chilodochona sp., Dysteria derouxi, Hartmannula sinica, Trithigmostoma cucullulus, Trochilia petrani, and Trochilia sp.). Phylogenomic analysis based on 157 orthologous genes comprising 173,835 amino acid residues revealed the affiliation of C. depressa within the class Phyllopharyngea, and the monophyly of Nassophorea, which strongly support the assignment of Synhymenia as a subclass within the class Phyllopharyngea. Comparative genomic analyses further revealed that C. depressa shares more orthologous genes with the class Nassophorea than with Phyllopharyngea, and the stop codon usage in C. depressa resembles that of Phyllopharyngea. Functional enrichment analysis demonstrated that biological pathways in C. depressa are more similar to Phyllopharyngea than Nassophorea. These results suggest that genomic and transcriptomic data can be used to provide insights into the evolutionary relationships within the "Nassophorea-Synhymenia-Phyllopharyngea" assemblage.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States
| | - Lina Hou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhishuai Qu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Ecology Group, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Dong J, Li L, Fan X, Ma H, Warren A. Two Urosoma species (Ciliophora, Hypotrichia): A multidisciplinary approach provides new insights into their ultrastructure and systematics. Eur J Protistol 2019; 72:125661. [PMID: 31841799 DOI: 10.1016/j.ejop.2019.125661] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022]
Abstract
The general morphology and ultrastructure of two soil hypotrichous ciliates, Urosoma emarginata and U. salmastra, were investigated using light microscopy, scanning electron microscopy and transmission electron microscopy. Phylogenetic analyses, based on the newly sequenced small subunit ribosomal (SSU) rRNA genes, were conducted on three U. emarginata populations and one U. salmastra population. Our findings support for the validity of Perilemmaphora Berger, 2008, a rankless taxon comprising spirotrich ciliates having a perilemma. The cortical granules of both species are extrusomes representing a new type of mucocyst in U. emarginata and possibly a new type of pigmentocyst in U. salmastra. Additionally, the lithosomes were revealed as subglobose structures composed of a low electron-dense, homogeneous inner part and an electron-dense outer part. The ultrastructural features of the cortical granules, together with ontogenetic and molecular phylogenetic data, suggest that the genus Urosoma might need to be divided. It is posited that ultrastructural features of hypotrichous ciliates in general may have important taxonomic value warranting further investigation.
Collapse
Affiliation(s)
- Jingyi Dong
- Institute of Evolution and Marine Biodiversity and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lifang Li
- Marine College, Shandong University, Weihai 264209, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Honggang Ma
- Institute of Evolution and Marine Biodiversity and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
15
|
Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 2019; 19:1292-1308. [PMID: 30985983 PMCID: PMC6764898 DOI: 10.1111/1755-0998.13023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), "gene-sized" chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete "gene-sized" nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5'-TA-3' is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Weibo Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Timothy J. Krock
- Department of Computer Science and Information Systems, Bradley University, Peoria, IL 61625, USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
16
|
Wang C, Yan Y, Chen X, Al‐Farraj SA, El‐Serehy HA, Gao F. Further analyses on the evolutionary “key‐protist”
Halteria
(Protista, Ciliophora) based on transcriptomic data. ZOOL SCR 2019. [DOI: 10.1111/zsc.12380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chundi Wang
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - Xiao Chen
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
- Department of Genetics and Development Columbia University Medical Center New York NY USA
| | - Saleh A. Al‐Farraj
- Zoology Department, College of Science King Saud University Riyadh Saudi Arabia
| | - Hamed A. El‐Serehy
- Zoology Department, College of Science King Saud University Riyadh Saudi Arabia
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| |
Collapse
|
17
|
Zhang T, Fan X, Gao F, Al-Farraj SA, El-Serehy HA, Song W. Further analyses on the phylogeny of the subclass Scuticociliatia (Protozoa, Ciliophora) based on both nuclear and mitochondrial data. Mol Phylogenet Evol 2019; 139:106565. [PMID: 31326515 DOI: 10.1016/j.ympev.2019.106565] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
Abstract
So far, the phylogenetic studies on ciliated protists have mainly based on single locus, the nuclear ribosomal DNA (rDNA). In order to avoid the limitations of single gene/genome trees and to add more data to systematic analyses, information from mitochondrial DNA sequence has been increasingly used in different lineages of ciliates. The systematic relationships in the subclass Scuticociliatia are extremely confused and largely unresolved based on nuclear genes. In the present study, we have characterized 72 new sequences, including 40 mitochondrial cytochrome oxidase c subunit I (COI) sequences, 29 mitochondrial small subunit ribosomal DNA (mtSSU-rDNA) sequences and three nuclear small subunit ribosomal DNA (nSSU-rDNA) sequences from 47 isolates of 44 morphospecies. Phylogenetic analyses based on single gene as well as concatenated data were performed and revealed: (1) compared to mtSSU-rDNA, COI gene reveals more consistent relationships with those of nSSU-rDNA; (2) the secondary structures of mtSSU-rRNA V4 region are predicted and compared in scuticociliates, which can contribute to discrimination of closely related species; (3) neither nuclear nor mitochondrial data support the monophyly of the order Loxocephalida, which may represent some divergent and intermediate lineages between the subclass Scuticociliatia and Hymenostomatia; (4) the assignments of thigmotrichids to the order Pleuronematida and the confused taxon Sulcigera comosa to the genus Histiobalantium are confirmed by mitochondrial genes; (5) both nuclear and mitochondrial data reveal that the species in the family Peniculistomatidae always group in the genus Pleuronema, suggesting that peniculistomatids are more likely evolved from Pleuronema-like ancestors; (6) mitochondrial genes support the monophyly of the order Philasterida, but the relationships among families of the order Philasterida remain controversial due to the discrepancies between their morphological and molecular data.
Collapse
Affiliation(s)
- Tengteng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241 China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
18
|
Liu Y, Nan B, Duan L, Cheng T, Bourland WA, Liu M, Zhao Y. A Simple and Rapid Cryopreservation Technique for Ciliates: A Long‐Term Storage Procedure Used for Marine Scuticociliates. J Eukaryot Microbiol 2019; 66:836-848. [DOI: 10.1111/jeu.12730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yongqiang Liu
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Bei Nan
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Lili Duan
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Ting Cheng
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - William A. Bourland
- Department of Biological Sciences Boise State University Boise Idaho 83725‐1515 USA
| | - Mingjian Liu
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
| | - Yan Zhao
- Research Centre for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| |
Collapse
|
19
|
Jiang Y, Zhang T, Vallesi A, Yang X, Gao F. Time-course analysis of nuclear events during conjugation in the marine ciliate Euplotes vannus and comparison with other ciliates (Protozoa, Ciliophora). Cell Cycle 2019; 18:288-298. [PMID: 30563432 DOI: 10.1080/15384101.2018.1558871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called "mating type systems". Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.
Collapse
Affiliation(s)
- Yaohan Jiang
- a Institute of Evolution and Marine Biodiversity , Ocean University of China , Qingdao , China.,b Ministry of Education , Key Laboratory of Mariculture (Ocean University of China) , Qingdao , China
| | - Tengteng Zhang
- a Institute of Evolution and Marine Biodiversity , Ocean University of China , Qingdao , China.,b Ministry of Education , Key Laboratory of Mariculture (Ocean University of China) , Qingdao , China
| | - Adriana Vallesi
- c Laboratory of Eukaryotic Microbiology and Animal Biology , University of Camerino , Camerino , Italy
| | - Xianyu Yang
- d College of Animal Science and Technology , Zhejiang A&F University , Hangzhou , China
| | - Feng Gao
- a Institute of Evolution and Marine Biodiversity , Ocean University of China , Qingdao , China.,b Ministry of Education , Key Laboratory of Mariculture (Ocean University of China) , Qingdao , China
| |
Collapse
|