1
|
Cai S, Liao X, Xi Y, Chu Y, Liu S, Su H, Dou D, Xu J, Xiao S. Screening and Application of DNA Markers for Novel Quality Consistency Evaluation in Panax ginseng. Int J Mol Sci 2025; 26:2701. [PMID: 40141343 PMCID: PMC11942579 DOI: 10.3390/ijms26062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Quality control remains a challenge in traditional Chinese medicine (TCM). This study introduced a novel genetic-based quality control method for TCM. Genetic variations in ginseng were evaluated across whole-genome, chloroplast genome, and ITS2 DNA barcode dimensions. Significant genetic variations were found in whole-genome comparison, leading to the use of inter-simple sequence repeat markers to assess the genetic diversity of ginseng decoction pieces (PG), garden ginseng (GG), and ginseng under forest (FG). Fingerprints of ginseng samples revealed instability within some batches. These evaluations were transformed into information entropy to calculate the size of Hardy-Weinberg equilibrium population (HWEP). FG had significantly higher genetic and chemical minimum HWEP than GG (p < 0.05). Notably, a significant positive correlation was observed between the minimum HWEP for genetics and for chemistry (r = 0.857, p = 0.014). Genetic polymorphism analysis of ginseng has the potential to evaluate chemical quality consistency, offering a new method to ensure quality consistency in TCM.
Collapse
Affiliation(s)
- Siyuan Cai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Xuejiao Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Yidan Xi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Yang Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuang Liu
- Shanxi Institute of Functional Foods, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China;
| | - Jiang Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| | - Shuiming Xiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (S.C.); (X.L.); (Y.X.); (Y.C.)
| |
Collapse
|
2
|
An C, Li D, Lu L, Liu C, Xu X, Xie S, Wang J, Liu R, Yang C, Qin Y, Zheng P. Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey. PLANTS (BASEL, SWITZERLAND) 2024; 13:3536. [PMID: 39771235 PMCID: PMC11679336 DOI: 10.3390/plants13243536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Jing Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Sardar H, Hadi F, Alam W, Halawani IF, Alzahrani FM, Saleem RA, Cerqua I, Khan H, Capasso R. Unveiling the therapeutic and nutritious potential of Vigna unguiculata in line with its phytochemistry. Heliyon 2024; 10:e37911. [PMID: 39323861 PMCID: PMC11422034 DOI: 10.1016/j.heliyon.2024.e37911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Vigna unguiculata, belonging to the Fabaceae family, commonly known as cowpea is an important edible legume, distributed mainly across the African and Asian countries. Traditionally, the plant has an outstanding background for the management of multiple diseases, animal feeding and human consumption. Objective This review aims to mainly focus on the traditional applications, pharmacological activities, phytochemistry as well as nutritious composition of the V. unguiculata. Methods Data present in the literature on the V. unguiculata, were collected from major scientific databases including Science Direct, SpringerLink, Google Scholar, Medline Plus, Web of Science, PubMed and Elsevier. Results Number of compounds have been isolated including flavonoids, steroids, alkaloids, phenolic compounds, saponins, fatty acids, tannins, carbohydrates, vitamins, amino acids, carotenoids and fibers from various parts of plant. These compounds exhibit widespread pharmacological potentials both in-vitro and in-vivo including anthelmintic, antibacterial, antinociceptive, thrombolytic, antidiabetic, hypocholestrolemic and antiatherogenic effect, antimicrobial, anti-sickling, antioxidant, anti-covid activity, anticancer and neurobehavioral activities. These compounds have strong pharmacological background and might be responsible for the traditional uses of this plant that are not investigated. Conclusion It is concluded that V. unguiculata possessed strong pharmacological, nutritious and phytochemical potential, therefore, it is strongly recommended for additional comprehensive investigations in order to determine its clinical utility.
Collapse
Affiliation(s)
- Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Fazal Hadi
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Ibrahim F. Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rimah Abdullah Saleem
- Haematology and immunology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah, 21961, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ida Cerqua
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| |
Collapse
|
4
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 PMCID: PMC11812042 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Yang H, Lian C, Liu J, Yu H, Zhao L, He N, Liu X, Xue S, Sun X, Zhang L, Wang L, Yang J, Fu Y, Ma R, Zhang B, Ye L, Chen S. High-quality assembly of the T2T genome for Isodon rubescens f. lushanensis reveals genomic structure variations between 2 typical forms of Isodon rubescens. Gigascience 2024; 13:giae075. [PMID: 39388604 PMCID: PMC11466039 DOI: 10.1093/gigascience/giae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rabdosiae rubescentis herba (Isodon rubescens) is widely used as a folk medicine to treat esophageal cancer and sore throat in China. Its germplasm resources are abundant in China, with I. rubescens (Hemsl.) Hara and I. rubescens f. lushanensis as 2 typical forms. I. rubescens (Hemsl.) Hara is featured by biosynthesis of the diterpenoid oridonin with strong anticancer activity, while I. rubescens f. lushanensis produces another diterpenoid with anticancer activity, lushanrubescensin. However, the biosynthetic pathways of both still need to be fully understood. In particular, little is known about the genetic background of I. rubescens f. lushanensis. FINDINGS We used Pacific Biosciences (PacBio) single-molecule real-time and Nanopore Ultra-long sequencing platforms, respectively, and obtained 139.07 Gb of high-quality data, with a sequencing depth of about 328×. We also obtained a high-quality reference genome for I. rubescens f. lushanensis, with a genome size of 349 Mb and a contig N50 of 28.8 Mb. The heterozygosity of the genome is 1.7% and the repeatability is 83.43%. In total, 34,865 protein-coding genes were predicted. Moreover, we found that most of the variant or unique genes in the diterpenoid synthesis pathways of I. rubescens f. lushanensis and I. rubescens (Hemsl.) Hara were enriched in diterpene synthases. CONCLUSIONS We provide the first genome sequence and gene annotation for the I. rubescens f. lushanensis, which provides molecular evidence for understanding the chemotypic differences of I. rubescens.
Collapse
Affiliation(s)
- Hao Yang
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, PR China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450046, PR China
| | - Conglong Lian
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, PR China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450046, PR China
| | - Jinlu Liu
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Le Zhao
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ni He
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuyu Liu
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shujuan Xue
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, PR China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450046, PR China
| | - Xiaoya Sun
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, PR China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450046, PR China
| | - Liping Zhang
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lili Wang
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jingfan Yang
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yu Fu
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Ma
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bao Zhang
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Suiqing Chen
- College of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, PR China
- Co-Construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450046, PR China
| |
Collapse
|
6
|
Wu T, Wang P, Fu Q, Xiao H, Zhao Y, Li Y, Song X, Xie H, Song Z. Effects of dietary supplementation of Anoectochilus roxburghii extract (ARE) on growth performance, abdominal fat deposition, meat quality, and gut microbiota in broilers. Poult Sci 2023; 102:102842. [PMID: 37406599 PMCID: PMC10404775 DOI: 10.1016/j.psj.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
The broiler industry frequently encounters 2 common problems: excessive deposition of abdominal fat and poor quality of meat. However, there are limited nutritional manipulation strategies to address these issues. While Anoectochilus roxburghii (Wall.) Lindl., a traditional Chinese herb, has been shown to have multiple beneficial effects in humans, its potential roles in broiler chickens remain unexplored. In this study, the effects of dietary supplementation with Anoectochilus roxburghii extract (ARE) on growth performance, abdominal fat deposition, meat quality, blood indices, and gut microbiota were investigated in yellow-feather broiler chickens. A total of 90 twenty-one-day-old yellow-feather broilers were randomly divided into 3 treatments, and each treatment included 5 replicates with 6 birds per replicate. Birds were fed a basal diet supplemented with 0, 0.15, or 0.30% ARE for 6 wk. The results showed that the inclusion of ARE in the diet did not have any significant effect on meat yield (P > 0.05). However, it did lead to a reduction in abdominal fat deposition and an improvement in meat quality (P < 0.05). Mechanistically, the addition of ARE inhibited lipid biosynthesis and enhanced lipid breakdown in both the liver and adipose tissue of the broilers. Furthermore, ARE supplementation increased the antioxidase activities in the muscle and serum of the broilers (P < 0.05). In addition, the supplementation of ARE optimized the diversity and composition of the cecal microbiota, particularly by lowering the ratio of Firmicutes to Bacteroidetes (P < 0.05). Moreover, the abundance of some bacteria that were positively correlated with abdominal fat deposition was reduced by ARE, and vice versa (P < 0.05). Collectively, the results suggest that ARE is a promising candidate as a feed additive for reducing abdominal fat deposition and improving meat quality in the broiler industry.
Collapse
Affiliation(s)
- Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinghua Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haihan Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yameng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xudong Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
7
|
Chen S, Liao B, Guo S, Shen X, Meng Y, Liang Y, Xu J, Chen S. Genetic analysis reveals the inconsistency of amorpha-4,11-diene synthase, a key enzyme in the artemisinin synthesis pathway, in asteraceae. Chin Med 2023; 18:5. [PMID: 36627656 PMCID: PMC9832723 DOI: 10.1186/s13020-023-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Amorpha-4,11-diene synthase (ADS) is a key enzyme in the artemisinin biosynthetic pathway. ADS promotes the first step of artemisinin synthesis by cyclizing faresyl pyrophosphate to synthesize the sesquiterpene product amorpha-4,11-diene. Thanks to the continuous improvement of genomic information, its evolutionary trace can be analyzed in a genome view. METHODS Phylogenetic analysis was used to identify ADS-like genes in other Asteraceae. Gene structure and motif analysis was used to analyze the structural similarity of these identified genes. Heterologous expression and GC-MS analysis were performed to determine whether the functions of ADS and Cna4666 are consistent. Validation of ADS genes evolutionary trajectories was achieved by selective pressure and synteny analysis. RESULT In this study, we extracted 8 ADS genes from the Artemisia annua L. genome annotation and 121 ADS similar genes from the genomes of Artemisia annua L. and other plants in the Asteraceae, and further exploring their evolutionary relationship. Phylogenetic analysis showed that the genes most closely related to ADS genes were found in the genome of Chrysanthemum nankingense. Among them, the gene structure and motif composition of Cna4666 is very similar to ADS, we wondered whether it has the potential to synthesize amorpha-4,11-diene. Therefore, we extracted the products of recombinant p0_ADS.1 and Cna4666 proteins by HS-SPME combined with GC-MS analysis, the results indicate that Cna4666 is an α-bisabolol synthase, which cannot synthesize amorpha-4,11-diene. Through synteny analysis, we did not find collinear blocks of ADS genes in the Helianthus annuus and C. nankingense genomes. Furthermore, Ka/Ks ratios indicated that the evolution of ADS genes from their similar genes principally underwent purifying selection, and there was a strong positive selection between ADS genes. CONCLUSIONS This study proved that ADS is a multi-copy gene in Artemisia annua L., and they are not widely distributed in Asteraceae. The data will increase our understanding of the evolutionary selection pressure on ADS genes. The results suggest that ADS genes are subject to strong positive selection internally, and it is possible that they are a recently evolved gene in the Artemisia.
Collapse
Affiliation(s)
- Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Ying Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Herbgenomics: Decipher molecular genetics of medicinal plants. Innovation (N Y) 2022; 3:100322. [PMID: 36199278 PMCID: PMC9529535 DOI: 10.1016/j.xinn.2022.100322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
|
9
|
Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med 2022; 17:112. [PMID: 36171596 PMCID: PMC9514984 DOI: 10.1186/s13020-022-00655-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the global traditional health systems. However, adulterated and counterfeit TCM is on the rise. DNA barcoding is an effective, rapid, and accurate technique for identifying plant species. In this study, we collected manuscripts on DNA barcoding published in the last decade and summarized the use of this technique in identifying 50 common Chinese herbs listed in the Chinese pharmacopoeia. Based on the dataset of the major seven DNA barcodes of plants in the NCBI database, the strengths and limitations of the barcodes and their derivative barcoding technology, including single-locus barcode, multi-locus barcoding, super-barcoding, meta-barcoding, and mini-barcoding, were illustrated. In addition, the advances in DNA barcoding, particularly identifying plant species for TCM using machine learning technology, are also reviewed. Finally, the selection process of an ideal DNA barcoding technique for accurate identification of a given TCM plant species was also outlined.
Collapse
Affiliation(s)
- Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiaozhen Liu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Simin Qiu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Xu J, Liao B, Yuan L, Shen X, Liao X, Wang J, Hu H, Huang Z, Xiang L, Chen S. 50th anniversary of artemisinin: From the discovery to allele-aware genome assembly of Artemisia annua. MOLECULAR PLANT 2022; 15:1243-1246. [PMID: 35869631 DOI: 10.1016/j.molp.2022.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center, and Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xuejiao Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Guo S, Liao X, Chen S, Liao B, Guo Y, Cheng R, Xiao S, Hu H, Chen J, Pei J, Chen Y, Xu J, Chen S. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front Genet 2022; 13:764534. [PMID: 35547259 PMCID: PMC9084321 DOI: 10.3389/fgene.2022.764534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Polygonum is a generalized genus of the Polygonaceae family that includes various herbaceous plants. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Polygonum at the chloroplast (cp) genome-scale level, we sequenced and annotated the complete chloroplast genomes of four Polygonum species using next-generation sequencing technology and CpGAVAS. Then, repeat sequences, IR contractions, and expansion and transformation sites of chloroplast genomes of four Polygonum species were studied, and a phylogenetic tree was built using the chloroplast genomes of Polygonum. The results indicated that the chloroplast genome construction of Polygonum also displayed characteristic four types of results, comparable to the published chloroplast genome of recorded angiosperms. The chloroplast genomes of the four Polygonum plants are highly consistent in genome size (159,015 bp-163,461 bp), number of genes (112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes), gene types, gene order, codon usage, and repeat sequence distribution, which identifies the high preservation among the Polygonum chloroplast genomes. The Polygonum phylogenetic tree was recreated by a full sequence of the chloroplast genome, which illustrates that the P. bistorta, P. orientale, and P. perfoliatum are divided into the same branch, and P. aviculare belongs to Fallopia. The precise system site of lots base parts requires further verification, but the study would provide a basis for developing the available genetic resources and evolutionary relationships of Polygonum.
Collapse
Affiliation(s)
- Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyu Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangjin Chen
- Department of City and Regional Planning, Nanjing University, Nanjing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Zhong L, Shi C, Hou Q, Yang R, Li M, Fu X. Promotive effects of four herbal medicine
ARCC
on wound healing in mice and human. Health Sci Rep 2022; 5:e494. [PMID: 35509387 PMCID: PMC9059203 DOI: 10.1002/hsr2.494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Background Traditional Chinese medicine (TCM) had been extensively used in China for wound management and had shown great potential in wound treatment while its mechanism is still needed to be addressed. Objective The present study sought to investigate the therapuetic effect of the TCM ARCC on acute and chronic wounds. Methods Here, using the ultra‐low temperature preparation method, the mixed ultramicro powder prepared with Angelica (A), Angelica (R), Calcined Gypsum (C) and Caleramide (C) named as ARCC. The effects of ARCC on wound healing in adult and aged mice were comparatively evaluated through a full‐thickness skin defect model. In addition, we randomly selected 10 patients aged 55 to 70 years from a cohort of 500 patients with diabetic feet to assess their prognosis. Results As the results showed that the healing rate had delayed in aged mice compared to adult mice, while ARCC prominently augmented the healing process in aged mice. Moreover, ARCC treatment wounds in aged mice showed accelerated re‐epithelization, enhanced granulation tissue formation, and increased vascularization, which was similar to that of adult mice. Furthermore, ARCC also achieved therapeutic effects in diabetic foot patients, accelerating wound healing. The results found that foot ulcers improved significantly 7 days after the ARCC administration, and 80% of patients were healed within 1 month. Discussion In the present study, ARCC was found to have therapeutic effects on both acute and chronic wounds in animal models. ARCC also demonstrated therapeutic effects in diabetic feet, which promoted wound healing, prevented wound infection, and avoided the risk of further surgery or amputation. All these evidences suggested ARCC was a promising approach for wound treatment. Conclusions ARCC might be recommended as a promising therapeutic medication in diabetic and chronic refractory wounds.
Collapse
Affiliation(s)
- Lingzhi Zhong
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Cuijuan Shi
- Department of Endocrinology First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China
- National Clinical Research Center for Chinese Meicine Acupuncture and Moxibustion Tianjin China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Rungong Yang
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- Central Laboratory, Trauma Treatment Center, Central Laboratory Chinese PLA General Hospital Hainan Hospital Sanya China
| | - Xiaobing Fu
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration Beijing China
- Research Unit of Trauma Care, Tissue Repair and Regeneration Chinese Academy of Medical Sciences 2019RU051 Beijing China
| |
Collapse
|
13
|
Su X, Yang L, Wang D, Shu Z, Yang Y, Chen S, Song C. 1 K Medicinal Plant Genome Database: an integrated database combining genomes and metabolites of medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac075. [PMID: 35669712 PMCID: PMC9160725 DOI: 10.1093/hr/uhac075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaojun Su
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan, China
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
| | - Lulu Yang
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
- Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, 1066 Xueyuan Avenue, 518060 Shenzhen, Guangdong, China
| | - Dongliang Wang
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
| | - Ziqiang Shu
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
| | - Yicheng Yang
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
| | - Shilin Chen
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070 Beijing, China
| | - Chi Song
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan, China
- Wuhan Benagen Technology Company Limited, 430070 Wuhan, Hubei, China
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070 Beijing, China
| |
Collapse
|
14
|
Endophytic bacterial and fungal community compositions in different organs of ginseng (Panax ginseng). Arch Microbiol 2022; 204:208. [PMID: 35275265 DOI: 10.1007/s00203-022-02815-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023]
Abstract
Panax ginseng (Panax ginseng C. A. Mey.) is a perennial herb of the genus ginseng, which is used as medicine with dried roots and rhizomes. With the deepening of research on ginseng, the chemical components and pharmacological effects of ginseng have gradually been discovered. Endophytes are beneficial to host plants. However, the composition of endophytes in different organs from ginseng is poorly elucidated. The report of ginsenoside production by endophytic microbes isolated from Panax sp., motivated us to explore the endophytic microbial diversity related to the roots, stems, and leaves. In this study, the V5-V7 variable region of endophytic bacteria 16S rRNA gene and V1 variable region of endophytic fungi ITS gene in different organs were analyzed by high-throughput sequencing. The diversity and abundance of endophytic microbes in the three organs are different and are affected by the organs. For example, the most abundant endophytic bacterial genus in roots was Mycobacterium, while, the stems and leaves were Ochrobactrum. Similarly, the fungal endophytes, Coniothyrium and Cladosporium, were also found in high abundance in stems, in comparison to roots and leaves. The Shannon index shows that the diversity of endophytic bacteria in roots is the highest, and the richness of endophytic bacterial was root > stem (p < 0.05). Principal coordinate analysis showed that there were obvious microbial differences among the three groups, and the endophytic bacterial composition of the leaves was closer to that of the roots. This study provides an important reference for the study of endophytic microorganisms in ginseng.
Collapse
|
15
|
Global Pharmacopoeia Genome Database is an integrated and mineable genomic database for traditional medicines derived from eight international pharmacopoeias. SCIENCE CHINA. LIFE SCIENCES 2022; 65:809-817. [PMID: 34378141 PMCID: PMC8354779 DOI: 10.1007/s11427-021-1968-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Genomic data have demonstrated considerable traction in accelerating contemporary studies in traditional medicine. However, the lack of a uniform format and dispersed storage limits the full potential of herb genomic data. In this study, we developed a Global Pharmacopoeia Genome Database (GPGD). The database contains 34,346 records for 903 herb species from eight global pharmacopoeias (Brazilian, Egyptian, European, Indian, Japanese, Korean, the Pharmacopoeia of the People's Republic of China, and U.S. Pharmacopoeia's Herbal Medicines Compendium). In particular, the GPGD contains 21,872 DNA barcodes from 867 species, 2,203 organelle genomes from 674 species, 55 whole genomes from 49 species, 534 genomic sequencing datasets from 366 species, and 9,682 transcriptome datasets from 350 species. Among the organelle genomes, 534 genomes from 366 species were newly generated in this study. Whole genomes, organelle genomes, genomic fragments, transcriptomes, and DNA barcodes were uniformly formatted and arranged by species. The GPGD is publicly accessible at http://www.gpgenome.com and serves as an essential resource for species identification, decomposition of biosynthetic pathways, and molecular-assisted breeding analysis. Thus, the database is an invaluable resource for future studies on herbal medicine safety, drug discovery, and the protection and rational use of herbal resources.
Collapse
|
16
|
Liu Q, Guo S, Zheng X, Shen X, Zhang T, Liao B, He W, Hu H, Cheng R, Xu J. Licorice Germplasm Resources Identification Using DNA Barcodes Inner-Variants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2036. [PMID: 34685843 PMCID: PMC8541099 DOI: 10.3390/plants10102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Based on the gradual transformation from wild growth to artificial cultivation, the accurate authentication of licorice seeds contributes to the first committed step of its quality control and is pivotal to ensure the clinical efficacy of licorice. However, it is still challenging to obtain genetically stable licorice germplasm resources due to the multi-source, multi-heterozygous, polyploid, and hybrid characteristics of licorice seeds. Here, a new method for determining the heterozygosity of licorice seed mixture, based on the various sites, and finding the composition characteristics of licorice seed is preliminarily designed and proposed. Namely, high-throughput full-length multiple DNA barcodes(HFMD), based on ITS multi-copy variation exist, the full-length amplicons of ITS2, psbA-trnH and ITS are directly sequenced by rDNA through the next-generation sequence(NGS) and single-molecule real-time (SMRT) technologies. By comparing the three sequencing methods, our results proved that SMRT sequencing successfully identified the complete gradients of complex mixed samples with the best performance. Meanwhile, HFMD is a brilliant and feasible method for evaluating the heterozygosity of licorice seeds. It shows a perfect interpretation of DNA barcoding and can be applied in multi-base multi-heterozygous and polyploid species.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Shuai Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.G.); (W.H.)
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China;
| | - Tianyi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Wenrui He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.G.); (W.H.)
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| |
Collapse
|
17
|
Liao X, Guo S, Yin X, Liao B, Li M, Su H, Li Q, Pei J, Gao J, Lei J, Li X, Huang Z, Xu J, Chen S. Hierarchical chromatin features reveal the toxin production in Bungarus multicinctus. Chin Med 2021; 16:90. [PMID: 34535171 PMCID: PMC8447776 DOI: 10.1186/s13020-021-00502-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bungarus multicinctus, from which a classical Chinese medicine is produced, is known as the most venomous land snake in the world, but the chromatin organization and transcription factor activity during venom replenishment progress have not been explored yet. This study aimed to determine the roles of chromatin structure in toxin activity via bioinformatics and experimental validation. METHODS Chromosome conformation capture (Hi-C) analysis was used to examine interactions among chromosomes and identify different scales of chromatin during envenomation in B. multicinctus. Correlations between epigenetic modifications and chromatin structure were verified through ChIP-seq analysis. RNA-seq was used to validate the influence of variation in chromatin structure and gene expression levels on venom production and regulation. RESULTS Our results suggested that intra-chromosomal interactions are more intense than inter-chromosomal interactions among the control group, 3-day group of venom glands and muscles. Through this, we found that compartmental transition was correlated with chromatin interactions. Interestingly, the up-regulated genes in more compartmental switch regions reflect the function of toxin activity. Topologically associated domain (TAD) boundaries enriched with histone modifications are associated with different distributions of genes and the expression levels. Toxin-coding genes in the same loop are highly expressed, implying that the importance of epigenetic regulation during envenomination. On a smaller scale, the epigenetic markers affect transcriptional regulation by controlling the recruitment/inhibition of transcription initiation complexes. CONCLUSIONS Chromatin structure and epigenetic modifications could play a vital status role in the mechanisms of venom regulation in B. multicinctus.
Collapse
Affiliation(s)
- Xuejiao Liao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuai Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianmei Yin
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingqian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - He Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Qiushi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jihai Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Lei
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Zhou GR, Liao BS, Li QS, Xu J, Chen SL. Establishing a genomic database for the medicinal plants in the Brazilian Pharmacopoeia. Chin Med 2021; 16:71. [PMID: 34353338 PMCID: PMC8340495 DOI: 10.1186/s13020-021-00484-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brazil is exceptionally abundant in medicinal plant resources and has a rich ethnopharmacological history. Brazilian Pharmacopoeia (BP) acts as a national standard that regulates drug quality and has six published editions. Recent genomic approaches have led to a resurgence of interest in herbal drugs. The genomic data of plants has been used for pharmaceutical applications, protecting natural resources, and efficiently regulating the market. However, there are few genomic databases specifically for medicinal plants, and the establishment of a database that focuses on the herbs contained in the BP is urgently required. METHODS The medicinal plant species included in each edition of the BP were analyzed to understand the evolution of the Brazilian herbal drugs. The data of 82 plants in the BP were collected and categorized into four sections: DNA barcodes, super-barcodes, genomes, and sequencing data. A typical web server architecture pattern was used to build the database and website. Furthermore, the cp-Gs of the Aloe genus in the database were analyzed as an illustration. RESULTS A new database, the Brazilian Pharmacopoeia Genomic Database (BPGD) was constructed and is now publicly accessible. A BLAST server for species identification and sequence searching with the internal transcribed spacer 2 (ITS2), the intergenic region (psbA-trnH), and the chloroplast genome (cp-G) of Brazilian medicinal plants was also embedded in the BPGD. The database has 753 ITS2 of 76 species, 553 psbA-trnH and 190 genomes (whole genome and chloroplast genome) of 57 species. In addition, it contains 37 genome sequence data sets of 24 species and 616 transcriptome sequence data sets of 34 species and also includes 187 cp-Gs representing 57 medicinal species in the BP. Analyses of the six cp-Gs of three Aloe species identified the variable regions in the cp-Gs. These can be used to identify species and understand the intraspecific relationships. CONCLUSIONS This study presents the first genomic database of medicinal plants listed in the latest BP. It serves as an efficient platform to obtain and analyze genomic data, accelerate studies regarding Brazilian medicinal plants and facilitate the rational development on their market regulation.
Collapse
Affiliation(s)
- Guan-Ru Zhou
- Institute of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430000, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bao-Sheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu-Shi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shi-Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
19
|
Ghazal H, Adam Y, Idrissi Azami A, Sehli S, Nyarko HN, Chaouni B, Olasehinde G, Isewon I, Adebiyi M, Ajani O, Matovu E, Obembe O, Ajamma Y, Kuzamunu G, Pandam Salifu S, Kayondo J, Benkahla A, Adebiyi E. Plant genomics in Africa: present and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:21-36. [PMID: 33837593 DOI: 10.1111/tpj.15272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Plants are the world's most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population's increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.
Collapse
Affiliation(s)
- Hassan Ghazal
- National Center for Scientific and Technical Research, Rabat, Morocco
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
| | | | - Sofia Sehli
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Hannah N Nyarko
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Bouchra Chaouni
- Laboratory of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Grace Olasehinde
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Biological Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Marion Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer Science, Landmark University, Kwara-State, Omu-Aran, Nigeria
| | - Olayinka Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Chemistry, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Olawole Obembe
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Biological Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
| | - Gaston Kuzamunu
- African Institute for Mathematical Sciences, Cape Town, 7945, South Africa
- Department of Pathology, Division of Human Genetics, University of Cape Town, IDM, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Observatory, 7925, South Africa
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Jonathan Kayondo
- Uganda Virus Research Institute (UVRI), Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Alia Benkahla
- Bioinformatics and Biostatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| |
Collapse
|
20
|
Hongmei S, Wenrui H, Dianyun H, Yang X. Complete chloroplast genome sequence of Dendranthema zawadskii Herbich. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2117-2119. [PMID: 34250234 PMCID: PMC8245063 DOI: 10.1080/23802359.2021.1942261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendranthema zawadskii Herbich is one of 17 species of Dendranthema in China, and it is often used as an ornamental plant. The chloroplast genome size of Dendranthema zawadskii Herbich is 150,995 bp, including a large single-copy region (82,771 bp), a small single-copy region (18,308 bp), and a pair of inverted repeats regions (24,958 bp). Total 112 genes were annotated, including 79 protein-coding genes, four ribosomal RNA genes, and 29 transfer RNA genes. The phylogenetic position of Dendranthema zawadskii Herbich is close to Dendranthema indicum.
Collapse
Affiliation(s)
- Sun Hongmei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Infinitus (China) Co. Ltd., Jiangmen, China
| | - He Wenrui
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hou Dianyun
- Agricultural College, Henan University of Science and Technology, Luoyang, China
| | - Xiuwei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicine, School of Pharmaceutical Science, Peking University, Beijing, China
| |
Collapse
|
21
|
Jiang H, Hu C, Chen M. The Advantages of Connectivity Map Applied in Traditional Chinese Medicine. Front Pharmacol 2021; 12:474267. [PMID: 33776757 PMCID: PMC7991830 DOI: 10.3389/fphar.2021.474267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Amid the establishment and optimization of Connectivity Map (CMAP), the functional relationships among drugs, genes, and diseases are further explored. This biological database has been widely used to identify drugs with common mechanisms, repurpose existing drugs, discover the molecular mechanisms of unknown drugs, and find potential drugs for some diseases. Research on traditional Chinese medicine (TCM) has entered a new era in the wake of the development of bioinformatics and other subjects including network pharmacology, proteomics, metabolomics, herbgenomics, and so on. TCM gradually conforms to modern science, but there is still a torrent of limitations. In recent years, CMAP has shown its distinct advantages in the study of the components of TCM and the synergetic mechanism of TCM formulas; hence, the combination of them is inevitable.
Collapse
Affiliation(s)
- Huimin Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Hu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meijuan Chen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Hu Y, Ma D, Ning S, Ye Q, Zhao X, Ding Q, Liang P, Cai G, Ma X, Qin X, Wei D. High-Quality Genome of the Medicinal Plant Strobilanthes cusia Provides Insights Into the Biosynthesis of Indole Alkaloids. FRONTIERS IN PLANT SCIENCE 2021; 12:742420. [PMID: 34659312 PMCID: PMC8515051 DOI: 10.3389/fpls.2021.742420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 05/21/2023]
Abstract
Strobilanthes cusia (Nees) Kuntze is an important plant used to process the traditional Chinese herbal medicines "Qingdai" and "Nanbanlangen". The key active ingredients are indole alkaloids (IAs) that exert antibacterial, antiviral, and antitumor pharmacological activities and serve as natural dyes. We assembled the S. cusia genome at the chromosome level through combined PacBio circular consensus sequencing (CCS) and Hi-C sequencing data. Hi-C data revealed a draft genome size of 913.74 Mb, with 904.18 Mb contigs anchored into 16 pseudo-chromosomes. Contig N50 and scaffold N50 were 35.59 and 68.44 Mb, respectively. Of the 32,974 predicted protein-coding genes, 96.52% were functionally annotated in public databases. We predicted 675.66 Mb repetitive sequences, 47.08% of sequences were long terminal repeat (LTR) retrotransposons. Moreover, 983 Strobilanthes-specific genes (SSGs) were identified for the first time, accounting for ~2.98% of all protein-coding genes. Further, 245 putative centromeric and 29 putative telomeric fragments were identified. The transcriptome analysis identified 2,975 differentially expressed genes (DEGs) enriched in phenylpropanoid, flavonoid, and triterpenoid biosynthesis. This systematic characterization of key enzyme-coding genes associated with the IA pathway and basic helix-loop-helix (bHLH) transcription factor family formed a network from the shikimate pathway to the indole alkaloid synthesis pathway in S. cusia. The high-quality S. cusia genome presented herein is an essential resource for the traditional Chinese medicine genomics studies and understanding the genetic underpinning of IA biosynthesis.
Collapse
Affiliation(s)
- Yongle Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyishan, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shuju Ning
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanxuan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiansu Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Pingping Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guoqian Cai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomao Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daozhi Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Daozhi Wei
| |
Collapse
|
23
|
LI XW, CHEN SL. Herbgenomics facilitates biological study of TCM. Chin J Nat Med 2020; 18:561-562. [DOI: 10.1016/s1875-5364(20)30067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 11/28/2022]
|
24
|
Yin X, Liao B, Guo S, Liang C, Pei J, Xu J, Chen S. The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina. Chin Med 2020; 15:18. [PMID: 32082412 PMCID: PMC7020376 DOI: 10.1186/s13020-020-0298-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Many species of the genus Rosa have been used as ornamental plants and traditional medicines. However, industrial development of roses is hampered due to highly divergent characteristics. METHODS We analyzed the chloroplast (cp) genomes of Rosa laevigata, R. rugosa and R. canina, including the repeat sequences, inverted-repeat (IR) contractions and expansions, and mutation sites. RESULTS The size of the cp genome of R. laevigata, R. rugosa and R. canina was between 156 333 bp and 156 533 bp, and contained 113 genes (30 tRNA genes, 4 rRNA genes and 79 protein-coding genes). The regions with a higher degree of variation were screened out (trnH-GUU, trnS-GCU, trnG-GCC, psbA-trnH, trnC-GCA,petN, trnT-GGU, psbD, petA, psbJ, ndhF, rpl32,psaC and ndhE). Such higher-resolution loci lay the foundation of barcode-based identification of cp genomes in Rosa genus. A phylogenetic tree of the genus Rosa was reconstructed using the full sequences of the cp genome. These results were largely in accordance with the current taxonomic status of Rosa. CONCLUSIONS Our data: (i) reveal that cp genomes can be used for the identification and classification of Rosa species; (ii) can aid studies on molecular identification, genetic transformation, expression of secondary metabolic pathways and resistant proteins; (iii) can lay a theoretical foundation for the discovery of disease-resistance genes and cultivation of Rosa species.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130 China
| | - Baosheng Liao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shuai Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130 China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|