1
|
Wang Y, Wang G, Zhang L, Cai Q, Lin M, Huang D, Xie Y, Lin W, Lin X. Aeromonas hydrophila CobQ is a new type of NAD +- and Zn 2+-independent protein lysine deacetylase. eLife 2025; 13:RP97511. [PMID: 39998869 PMCID: PMC11856932 DOI: 10.7554/elife.97511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ's positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Agricultural College, Anhui Science and Technology UniversityChuzhouChina
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuyue Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety MonitoringFuzhouChina
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province UniversityFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
2
|
Zhang W, Ma Y, Huang Y, He M, Zhang X, Xu L, Wang Y, Liu L, Zhu Y. Genome-wide characterization of RsHDAC gene members unravels a positive role of RsHDA9 in thermotolerance in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109439. [PMID: 39721191 DOI: 10.1016/j.plaphy.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish. Herein, a total of 21 RsHDAC genes were identified from the radish genome. Among them, two RsSRTs, six RsHDTs and 13 RsHDAs were classified into the SIR2, HD2 and RPD3/HDA1subfamily, respectively. The RNA-seq analysis indicated that three RsHDAs (RsHDA6.1, RsHDA6.2 and RsHDA19) and five RsHDTs exhibited high expression in vascular cambium of radish taproot. Both the RsHDT3 and RsHDA9 showed dramatically up-regulated expression under heat, salt and three heavy metals treatments. Moreover, the transient LUC reporter assay revealed that the promoter activity of the nucleus-localized RsHDA9 was intensely induced by heat stress. Intriguingly, overexpression of RsHDA9 promoted thermotolerance via enhancing proline accumulation and scavenging of reactive oxygen species in radish cotyledons, whereas the supplement of trichostatin A (TSA) led to the opposite phenotype. Notably, RsWRKY26 bound to the RsHDA9 promoter and activated its transcription to achieve enhancing thermotolerance in radish. Collectively, these findings would facilitate deciphering molecular mechanism underlying RsHDA9-mediated regulatory network of thermogenesis in radish.
Collapse
Affiliation(s)
- Weilan Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingfei Ma
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yudi Huang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Min He
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Xu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yan Wang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuelin Zhu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Wang G, Chen L, Lian J, Gong L, Tian F, Wang Y, Lin X, Liu Y. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. J Proteome Res 2025; 24:333-343. [PMID: 39659247 DOI: 10.1021/acs.jproteome.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Post-translational modifications are crucial in regulating biological functions across both prokaryotes and eukaryotes. In Aeromonas hydrophila, CobQ, a recently identified novel deacetylase, plays a significant role in lysine deacetylation, influencing bacterial metabolism and stress responses. The present study utilized quantitative proteomics to investigate the impact of cobQ deletion on the global protein expression profile in A. hydrophila. Through data-independent acquisition mass spectrometry, we identified 233 upregulated and 41 downregulated proteins in the cobQ deletion mutant (ΔahcobQ) strain compared to the wild-type (WT) strain. Key differentially expressed proteins were involved in oxidative phosphorylation, bacterial secretion, and ribosomal function. Additionally, phenotypic assays demonstrated that the ΔahcobQ strain exhibited an increased resistance to oxidative phosphorylation inhibitors, suggesting a pivotal role for AhCobQ in energy metabolism. Outer membrane proteins and efflux pumps also showed altered expression, indicating potential implications for membrane permeability and antibiotic resistance. These results suggested that AhCobQ plays a vital regulatory role in maintaining metabolic homeostasis and responding to environmental stress, highlighting its potential as a target for therapeutic interventions against A. hydrophila infections.
Collapse
Affiliation(s)
- Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linxin Chen
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanqi Lian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanqing Gong
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Tian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Sanjuan-Badillo A, P. Martínez-Castilla L, García-Sandoval R, Ballester P, Ferrándiz C, Sanchez MDLP, García-Ponce B, Garay-Arroyo A, R. Álvarez-Buylla E. HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2024; 19:2353536. [PMID: 38771929 PMCID: PMC11110687 DOI: 10.1080/15592324.2024.2353536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.
Collapse
Affiliation(s)
- Andrea Sanjuan-Badillo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, de la Universidad Nacional Autónoma de México, Ciudad de México, México
| | - León P. Martínez-Castilla
- Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | | | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Maria de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Zheng H, Dang Y, Gao Y, Li S, Wu F, Zhang F, Wang X, Du X, Wang L, Song J, Sui N. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. PLANT PHYSIOLOGY 2024; 196:3048-3070. [PMID: 39405192 DOI: 10.1093/plphys/kiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 12/14/2024]
Abstract
N 6-methyladenosine (m6A) modification is a crucial and widespread molecular mechanism governing plant development and stress tolerance. The specific impact of m6A regulation on plants with inherently high salt tolerance remains unclear. Existing research primarily focuses on the overexpression or knockout of individual writer or eraser components to alter m6A levels. However, a comprehensive study simultaneously altering overall m6A modification levels within the same experiment is lacking. Such an investigation is essential to determine whether opposing changes in m6A modification levels exert entirely different effects on plant salt tolerance. In this study, we identified the major writer member mRNA adenosine methylase A (SbMTA) in sorghum (Sorghum bicolor) as critical for sorghum survival. The sbmta mutant exhibits a phenotype characterized by reduced overall m6A, developmental arrest, and, ultimately, lethality. Overexpression of SbMTA increased m6A levels and salt tolerance, while overexpression of the m6A eraser alkylated DNA repair protein AlkB homolog 10B (SbALKBH10B) in sorghum showed the opposite phenotype. Comparative analyses between sorghum with different m6A levels reveal that SbMTA- and SbALKBH10B-mediated m6A alterations significantly impact the stability and expression levels of genes related to the abscisic acid signaling pathway and growth under salt stress. In summary, this study unveils the intricate relationship between m6A modifications and salt tolerance in sorghum, providing valuable insights into how m6A modification levels on specific transcripts influence responses to salt stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - FengHui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
7
|
An C, Liu Z, Pan X, Li A, Wei W, Yang T, Liao W, Wang C. Effect of histone modifications on fruit ripening. PHYSIOLOGIA PLANTARUM 2024; 176:e14639. [PMID: 39618143 DOI: 10.1111/ppl.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
Histone modifications are canonical epigenetic modifications mediating plant growth and development. Specially, histone modifications play important regulatory roles in plant fruit ripening, directly affecting fruit color changes, soluble sugar accumulation, and fruit softening. In this review, we focus on the effects of histone acetylation and methylation during fruit ripening. In particular, histone acetylation at H3 and H4 accelerates fruit ripening, whereas removal of histone acetylation via histone deacetylases (HDACs) inhibits or delays ripening by regulating the expression of carotenoid and anthocyanin production, glycometabolism, cell wall degradation, ethylene synthesis and signalling, and cell expansin-related genes. In addition, histone methylation is also involved in fruit ripening, in which the emergence of H3K27me3 modifications represses fruit ripening and H3K4me3 modifications promote fruit ripening by affecting multiple ripening-related pathways. However, the relationship between other histone modifications and fruit ripening is currently unclear. Here, we point out that accurate and comprehensive studies concerning the regulatory mechanism of histone modifications in fruit ripening are needed to facilitate the design of high-quality and high-yield fruit.
Collapse
Affiliation(s)
- Caiting An
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ailing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wenying Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tingyue Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Li W, Zhang X, Zhang Q, Li Q, Li Y, Lv Y, Liu Y, Cao Y, Wang H, Chen X, Yang H. PICKLE and HISTONE DEACETYLASE6 coordinately regulate genes and transposable elements in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1080-1094. [PMID: 38976580 DOI: 10.1093/plphys/kiae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Qingche Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Wang P, Su L, Cao L, Hu H, Wan H, Wu C, Zheng Y, Bao C, Liu X. AtSRT1 regulates flowering by regulating flowering integrators and energy signals in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108841. [PMID: 38879987 DOI: 10.1016/j.plaphy.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.
Collapse
Affiliation(s)
- Ping Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lufang Su
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lan Cao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chunhong Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chun Bao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China.
| |
Collapse
|
11
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Guo Y, You Y, Chen F, Liao Y. Identification of the histone acetyltransferase gene family in the Artemisia annua genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1389958. [PMID: 39114468 PMCID: PMC11303224 DOI: 10.3389/fpls.2024.1389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024]
Abstract
As the most effective therapeutic drug for malaria, artemisinin can only be extracted from Artemisia annua L., which is sensitive to the surrounding growing habitat. Histone acetyltransferases (HATs) contain acetyl groups, which modulate mRNA transcription and thereby regulate plant environmental adaptation. Comprehensive analyses of HATs have been performed in many plants, but systematic identification of HATs in medicinal plants is lacking. In the present study, we identified 11 AaHATs and characterized these genes into four classes according to their conserved protein structures. According to the phylogenetic analysis results, potential functions of HAT genes from Arabidopsis thaliana, Oryza sativa, and A. annua were found. According to our results, AaHAT has a highly conserved evolutionary history and is rich in highly variable regions; thus, AaHAT has become a comparatively ideal object of medical plant identification and systematic study. Moreover, motifs commonly present in histone acetyltransferases in the A. annua genome may be associated with functional AaHATs. AaHATs appear to be related to gene-specific functions. AaHATs are regulated by cis-elements, and these genes may affect phytohormone responsiveness, adaptability to stress, and developmental growth. We performed expression analyses to determine the potential roles of AaHATs in response to three environmental stresses. Our results revealed a cluster of AaHATs that potentially plays a role in the response of plants to dynamic environments.
Collapse
Affiliation(s)
| | | | | | - Yong Liao
- Department of Pharmacy, Second Clinical Medical College, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
13
|
Chu Y, Duan R, Song H, Zhang W, Zhou Y, Ma Y, Yin X, Tian L, Ausin I, Han Z. AtHD2D is involved in regulating lateral root development and participates in abiotic stress response in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154242. [PMID: 38614048 DOI: 10.1016/j.jplph.2024.154242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Roots are essential to terrestrial plants, as their growth and morphology are crucial for plant development. The growth of the roots is affected and regulated by several internal and external environmental signals and metabolic pathways. Among them, chromatin modification plays an important regulatory role. In this study, we explore the potential roles of the histone deacetylase AtHD2D in root development and lay the foundation for further research on the biological processes and molecular mechanisms of AtHD2D in the future. Our study indicates that AtHD2D affects the root tip microenvironment homeostasis by affecting the gene transcription levels required to maintain the root tip microenvironment. In addition, we confirmed that AtHD2D is involved in regulating Arabidopsis lateral root development and further explained the possible role of AtHD2D in auxin-mediated lateral root development. AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. We believe that AtHD2D is involved in coping with abiotic stress by promoting the development of lateral roots. Overexpression of AtHD2D promotes the accumulation of reactive oxygen species (ROS) in roots, indicating that AtHD2D is also involved in developing lateral roots mediated by ROS. Previous studies have shown that the overexpression of AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. Based on our data, we believe that AtHD2D participates in the response to abiotic stress by promoting the development of lateral roots. AtHD2D-mediated lateral root development provides new ideas for studying the mechanism of HDAC protein in regulating root development.
Collapse
Affiliation(s)
- Yueyang Chu
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Ruochen Duan
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Haoran Song
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Wenshuo Zhang
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Yuxuan Zhou
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Yutong Ma
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Xiaotong Yin
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-food Canada, London, Ontario, N5V 4T3, Canada
| | - Israel Ausin
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China
| | - Zhaofen Han
- College of Life Science, Northwest A & F University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
14
|
Hou J, Xiao H, Yao P, Ma X, Shi Q, Yang J, Hou H, Li L. Unveiling the mechanism of broad-spectrum blast resistance in rice: The collaborative role of transcription factor OsGRAS30 and histone deacetylase OsHDAC1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1740-1756. [PMID: 38294722 PMCID: PMC11123394 DOI: 10.1111/pbi.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
15
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
16
|
Yang Z, Du J, Tan X, Zhang H, Li L, Li Y, Wei Z, Xu Z, Lu Y, Chen J, Sun Z. Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Rep 2024; 43:113838. [PMID: 38386554 DOI: 10.1016/j.celrep.2024.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants. Here, we uncover that the protein stability of OsLOX14, a critical enzyme involved in JA biosynthesis, is regulated by a histone deacetylase, OsHDA706, and is hindered by a viral protein. Our results show that OsHDA706 deacetylates OsLOX14 and enhances the stability of OsLOX14, leading to JA accumulation and an improved broad-spectrum rice antiviral defense. Furthermore, we found that the viral protein P2, encoded by the destructive rice stripe virus, disrupts the association of OsHDA706-OsLOX14, promoting viral infection. Overall, our findings reveal how HDAC manipulates the interplay of deacetylation and protein stability of a JA biosynthetic enzyme to enhance plant antiviral responses.
Collapse
Affiliation(s)
- Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Du X, Gao Y, Zhang H, Xu X, Li Y, Zhao L, Luo M, Wang H. HDA6 modulates Arabidopsis pavement cell morphogenesis through epigenetic suppression of ROP6 GTPase expression and signaling. THE NEW PHYTOLOGIST 2024; 241:2523-2539. [PMID: 38214469 DOI: 10.1111/nph.19532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
The transcriptional regulation of Rho-related GTPase from plants (ROPs), which determine cell polarity formation and maintenance during plant development, still remains enigmatic. In this study, we elucidated the epigenetic mechanism of histone deacetylase HDA6 in transcriptional repression of ROP6 and its impact on cell polarity and morphogenesis in Arabidopsis leaf epidermal pavement cells (PCs). We found that the hda6 mutant axe1-4 exhibited impaired jigsaw-shaped PCs and convoluted leaves. This correlated with disruptions in the spatial organizations of cortical microtubules and filamentous actin, which is integral to PC indentation and lobe formation. Further transcriptional analyses and chromatin immunoprecipitation assay revealed that HDA6 specifically represses ROP6 expression through histone H3K9K14 deacetylation. Importantly, overexpression of dominant negative-rop6 in axe1-4 restored interdigitated cell morphology. Our study unveils HDA6 as a key regulator in Arabidopsis PC morphogenesis through epigenetic suppression of ROP6. It reveals the pivotal role of HDA6 in the transcriptional regulation of ROP6 and provides compelling evidence for the functional interplay between histone deacetylation and ROP6-mediated cytoskeletal arrangement in the development of interdigitated PCs.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingmiao Gao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
18
|
Saharan K, Baral S, Shaikh NH, Vasudevan D. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. Curr Res Struct Biol 2024; 7:100136. [PMID: 38463934 PMCID: PMC10920125 DOI: 10.1016/j.crstbi.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/β arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Regional Centre for Biotechnology (RCB), Faridabad, 121001, India
| | - Somanath Baral
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Nausad Hossain Shaikh
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Structural Biology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
19
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
20
|
Chen X, Liu C, Wang H, Liu Q, Yue Y, Duan Y, Wang Z, Zheng L, Chen X, Wang Y, Huang J, Xu Q, Pan Y. Ustilaginoidea virens-secreted effector Uv1809 suppresses rice immunity by enhancing OsSRT2-mediated histone deacetylation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:148-164. [PMID: 37715970 PMCID: PMC10754013 DOI: 10.1111/pbi.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is a devastating rice (Oryza sativa) disease worldwide. However, the molecular mechanisms underlying U. virens-rice interactions are largely unknown. In this study, we identified a secreted protein, Uv1809, as a key virulence factor. Heterologous expression of Uv1809 in rice enhanced susceptibility to rice false smut and bacterial blight. Host-induced gene silencing of Uv1809 in rice enhanced resistance to U. virens, suggesting that Uv1809 inhibits rice immunity and promotes infection by U. virens. Uv1809 suppresses rice immunity by targeting and enhancing rice histone deacetylase OsSRT2-mediated histone deacetylation, thereby reducing H4K5ac and H4K8ac levels and interfering with the transcriptional activation of defence genes. CRISPR-Cas9 edited ossrt2 mutants showed no adverse effects in terms of growth and yield but displayed broad-spectrum resistance to rice pathogens, revealing a potentially valuable genetic resource for breeding disease resistance. Our study provides insight into defence mechanisms against plant pathogens that inactivate plant immunity at the epigenetic level.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Chen Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Hailin Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Qi Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Yaping Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Xiaolin Chen
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
- Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
21
|
Li W, Deng M, Wang S, Wang C, Guo M, Song Y, Guo J, Yan J, Ma F, Guan Q, Xu J. HISTONE DEACETYLASE 6 interaction with ABSCISIC ACID-INSENSITIVE 5 decreases apple drought tolerance. PLANT PHYSIOLOGY 2023; 193:2711-2733. [PMID: 37607253 PMCID: PMC10663142 DOI: 10.1093/plphys/kiad468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Understanding the molecular regulation of plant response to drought is the basis of drought-resistance improvement through molecular strategies. Here, we characterized apple (Malus × domestica) histone deacetylase 6 (MdHDA6), which negatively regulates apple drought tolerance by catalyzing deacetylation on histones associated with drought-responsive genes. Transgenic apple plants over-expressing MdHDA6 were less drought-tolerant, while those with down-regulated MdHDA6 expression were more drought-resistant than nontransgenic apple plants. Transcriptomic and histone 3 acetylation (H3ac) Chromatin immunoprecipitation-seq analyses indicated that MdHDA6 could facilitate histone deacetylation on the drought-responsive genes, repressing gene expression. Moreover, MdHDA6 interacted with the abscisic acid (ABA) signaling transcriptional factor, ABSCISIC ACID-INSENSITIVE 5 (MdABI5), forming the MdHDA6-MdABI5 complex. Interestingly, MdHDA6 facilitated histone deacetylation on the drought-responsive genes regulated by MdABI5, resulting in gene repression. Furthermore, a dual-Luc experiment showed that MdHDA6 could repress the regulation of a drought-responsive gene, RESPONSIVE TO DESICCATION 29A (MdRD29A) activated by MdABI5. On the one hand, MdHDA6 can facilitate histone deacetylation and gene repression on the positive drought-responsive genes to negatively regulate drought tolerance in apple. On the other hand, MdHDA6 directly interacts with MdABI5 and represses the expression of genes downstream of MdABI5 via histone deacetylation around these genes to reduce drought tolerance. Our study uncovers a different drought response regulatory mechanism in apple based on the MdHDA6-MdABI5 complex function and provides the molecular basis for drought-resistance improvement in apple.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun 2023; 14:7106. [PMID: 37925502 PMCID: PMC10625627 DOI: 10.1038/s41467-023-42914-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.
Collapse
Affiliation(s)
- Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yinglong Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Guo M, Wang S, Liu H, Yao S, Yan J, Wang C, Miao B, Guo J, Ma F, Guan Q, Xu J. Histone deacetylase MdHDA6 is an antagonist in regulation of transcription factor MdTCP15 to promote cold tolerance in apple. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2254-2272. [PMID: 37475182 PMCID: PMC10579720 DOI: 10.1111/pbi.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Understanding the molecular regulation of plant cold response is the basis for cold resistance germplasm improvement. Here, we revealed that the apple histone deacetylase MdHDA6 can perform histone deacetylation on cold-negative regulator genes and repress their expression, leading to the positive regulation of cold tolerance in apples. Moreover, MdHDA6 directly interacts with the transcription factor MdTCP15. Phenotypic analysis of MdTCP15 transgenic apple lines and wild types reveals that MdTCP15 negatively regulates cold tolerance in apples. Furthermore, we found that MdHDA6 can facilitate histone deacetylation of MdTCP15 and repress the expression of MdTCP15, which positively contributes to cold tolerance in apples. Additionally, the transcription factor MdTCP15 can directly bind to the promoter of the cold-negative regulator gene MdABI1 and activate its expression, and it can also directly bind to the promoter of the cold-positive regulator gene MdCOR47 and repress its expression. However, the co-expression of MdHDA6 and MdTCP15 can inhibit MdTCP15-induced activation of MdABI1 and repression of MdCOR47, suggesting that MdHDA6 suppresses the transcriptional regulation of MdTCP15 on its downstream genes. Our results demonstrate that histone deacetylase MdHDA6 plays an antagonistic role in the regulation of MdTCP15-induced transcriptional activation or repression to positively regulate cold tolerance in apples, revealing a new regulatory mechanism of plant cold response.
Collapse
Affiliation(s)
- Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Han Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Senyang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Bingjie Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
24
|
Liu M, Lin X, Cao K, Yang L, Xu H, Zhou X. Multi-Omic Analysis Reveals the Molecular Mechanism of UV-B Stress Resistance in Acetylated RcMYB44 in Rhododendron chrysanthum. Genes (Basel) 2023; 14:2022. [PMID: 38002965 PMCID: PMC10671296 DOI: 10.3390/genes14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (H.X.)
| |
Collapse
|
25
|
Hu LL, Zheng LW, Zhu XL, Ma SJ, Zhang KY, Hua YP, Huang JY. Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2023; 23:248. [PMID: 37170202 PMCID: PMC10173674 DOI: 10.1186/s12870-023-04256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes (HMs) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. RESULTS In this study, we identified 102 AtHMs, 280 BnaHMs, 251 BcHMs, 251 BjHMs, 144 BnHMs, 155 BoHMs, 137 BrHMs, 122 CrHMs, and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs, indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46, BnaHDT10, and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance (BnaPRMT11, BnaSDG46, BnaSDG10, BnaJMJ58, BnaHDT10, and BnaHDA1) were identified. CONCLUSIONS Taken together, these findings help clarify the biological roles of Brassicaceae HMs. The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.
Collapse
Affiliation(s)
- Lin-Lin Hu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Li-Wei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Xin-Lei Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sheng-Jie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Kai-Yan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Yan H, Chen H, Liao Q, Xia M, Yao T, Peng L, Zou L, Zhao G, Zhao J, Wu DT. Genome-Wide Identification of Histone Deacetylases and Their Roles Related with Light Response in Tartary Buckwheat ( Fagopyrum tataricum). Int J Mol Sci 2023; 24:8090. [PMID: 37175799 PMCID: PMC10179446 DOI: 10.3390/ijms24098090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Histone deacetylases (HDACs), known as histone acetylation erasers, function crucially in plant growth and development. Although there are abundant reports focusing on HDACs of Arabidopsis and illustrating their important roles, the knowledge of HDAC genes in Tartary buckwheat (Polygonales Polygonaceae Fagopyrum tataricum (L.) Gaertn) is still scarce. In the study, a total of 14 HDAC genes were identified and divided into three main groups: Reduced Potassium Dependency-3/His-52 tone Deacetylase 1 (RPD3/HDA1), Silent Information Regulator 2 (SIR2), and the plant-53 specific HD2. Domain and motif composition analysis showed there were conserved domains and motifs in members from the same subfamilies. The 14 FtHDACs were distributed asymmetrically on 7 chromosomes, with three segmental events and one tandem duplication event identified. The prediction of the cis-element in promoters suggested that FtHDACs probably acted in numerous biological processes including plant growth, development, and response to environmental signals. Furthermore, expression analysis based on RNA-seq data displayed that all FtHDAC genes were universally and distinctly expressed in diverse tissues and fruit development stages. In addition, we found divergent alterations in FtHDACs transcript abundance in response to different light conditions according to RNA-seq and RT-qPCR data, indicating that five FtHDACs might be involved in light response. Our findings could provide fundamental information for the HDAC gene family and supply several targets for future function analysis of FtHDACs related with light response of Tartary buckwheat.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongxu Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Qingxia Liao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Mengying Xia
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Tian Yao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (H.C.); (Q.L.); (M.X.); (T.Y.); (L.P.); (L.Z.); (G.Z.); (D.-T.W.)
| |
Collapse
|
27
|
Zhou H, Yuan Z, Han S, He H, Rong J, Guo D, Zhang Y, Zhang D, Liu X, Zhou C. Global Decrease in H3K9 Acetylation in Sorghum Seed Postgermination Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5836-5850. [PMID: 36994885 DOI: 10.1021/acs.jafc.2c08863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sorghum seed germination is accompanied by increases in nutrient contents and reduced levels of antinutrients and is therefore being applied to food processing. However, the characterization of acetylated histone H3 at lysine residue 9 (H3K9ac) in sorghum postgermination has lagged. In this study, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to identify H3K9ac enrichment and obtained transcriptome in postgermination stages. More than 10,000 hypoacetylated genes gained H3K9ac marks in the postgermination stages. In addition, we observed that the expression of the main histone deacetylase (HDAC) genes was elevated. The application of the HDAC inhibitor trichostatin A (TSA) resulted in seed growth arrest, suggesting that the repression of the H3K9ac modification is critical for postgermination. Additionally, we obtained a comprehensive view of abundant genomic changes in H3K9ac-marked regions and transcription between the mock and TSA treatment groups, which suggested that H3K9ac was required in the late stage of autotrophic seedling establishment. Metabolic profiling, transcriptome analyses, and ChIP-seq revealed that H3K9ac is enriched at genes involved in phenylpropanoid, including lignin and flavonoid, biosynthesis. Our results suggest important roles of H3K9ac in sorghum seed postgermination stages.
Collapse
Affiliation(s)
- Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Zhu Yuan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Sifang Han
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Huan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Jiajia Rong
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Dandan Guo
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, 430056 Wuhan, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Biomedical Research Institute, School of Basic Medicine, Hubei University of Medicine, 442000 Shiyan, China
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, 430056 Wuhan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| |
Collapse
|
28
|
Wu S, Yang Y, Chen J, Li J, Jian G, Yang J, Mao K, Zeng L, Gu D. Histone deacetylase CsHDA6 mediates the regulated formation of the anti-insect metabolite α-farnesene in tea (Camellia sinensis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111501. [PMID: 36257410 DOI: 10.1016/j.plantsci.2022.111501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
α-Farnesene accumulated in tea plants following infestations by most insects, and mechanical wounding is the common factor. However, the specific mechanism underlying the wounding-regulated accumulation of α-farnesene in tea plants remains unclear. In this study, we observed that histone deacetylase inhibitor treatment induced the accumulation of α-farnesene. The histone deacetylase CsHDA6 interacted directly with CsMYC2, which was an important transcription factor in the jasmonic acid (JA) pathway, and co-regulated the expression of the key α-farnesene synthesis gene CsAFS. Wounding caused by insect infestation affected CsHDA6 production at the transcript and protein levels, while also inhibited the binding of CsHDA6 to the CsAFS promoter. The resulting increased acetylation of histones H3/H4 in CsAFS enhanced the expression of CsAFS and the accumulation of α-farnesene. In conclusion, our study demonstrated the effect of histone acetylation on the production of tea plant HIPVs and revealed the importance of the CsHDA6-CsMYC2 transcriptional regulatory module.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jiaming Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Kaiquan Mao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
29
|
Histone Deacetylase HDA15 Restrains PHYB-Dependent Seed Germination via Directly Repressing GA20ox1/2 Gene Expression. Cells 2022; 11:cells11233788. [PMID: 36497048 PMCID: PMC9735612 DOI: 10.3390/cells11233788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
Seed germination is essential for the colonization of the land plants. Light is a major environmental factor affecting seed germination, which is predominantly regulated by photoreceptor phytochrome B (PHYB). PHYB is activated by red light (designated as PHYB-on) whereas it is inactivated by far-red light (referred as PHYB-off). We previously reported that Arabidopsis histone deacetylase HDA15 interacts with phytochrome-interacting factor1 (PIF1) to repress seed germination under PHYB-off conditions. Here, we show that HDA15 plays a negative role in regulating seed germination under PHYB-on conditions. Overexpression of HDA15 in Arabidopsis restrains PHYB-dependent seed germination, while gibberellin (GA) relieves the repressive role of HDA15 under PHYB-off conditions. We further show that HDA15 directly binds to GA20ox1 and GA20ox2, two key GA biosynthesis genes and represses their expression by removal of histone H3 and H4 acetylation. Moreover, the levels of HDA15 transcript and HDA15 protein are up-regulated in the phyB mutant. Collectively, our work proposes that HDA15 acts as a negative regulator of PHYB-dependent seed germination by directly repressing GA20ox1/2 gene expression.
Collapse
|
30
|
Tahir MS, Karagiannis J, Tian L. HD2A and HD2C co-regulate drought stress response by modulating stomatal closure and root growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062722. [PMID: 36507458 PMCID: PMC9727301 DOI: 10.3389/fpls.2022.1062722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylase 2 (HD2) is a unique family of histone deacetylases (HDACs) in plants. Despite evidence that certain HD2 family HDACs play an important role in plant growth and stress response, the coordination of HD2s in these processes remains largely unknown. We found that HD2-type, HD2A and HD2C coordinate to play a role in drought stress response in Arabidopsis. We showed that the hd2a.hd2c double mutant (Mac16) exhibit decreased drought survival and increased water loss as compared to the single mutants, hd2a and hd2c. Gene expression analysis showed that the ABI1 and ABI2 genes were upregulated and SLAC1 was downregulated which led to the modified stomatal functioning in the Mac16 as compared to the single mutants. Overexpression of HD2A and HD2C showed enhanced drought survival and decreased water loss. We also showed that the GA2ox1 and GA2ox2 genes, which are involved in the catabolism of bioactive gibberellic acids, were upregulated in the Mac16 as compared to the single mutants, which led to a decreased root growth in the Mac16. Furthermore, we showed that HD2A and HD2C can physically interact and increased genome-wide H3K9 acetylation was observed in the Mac16, compared to the single mutants. Overall, our investigation revealed that HD2A and HD2C coordinate to play a cumulative role in drought stress response and root growth in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
31
|
Kang H, Fan T, Wu J, Zhu Y, Shen WH. Histone modification and chromatin remodeling in plant response to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:986940. [PMID: 36262654 PMCID: PMC9574397 DOI: 10.3389/fpls.2022.986940] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
32
|
Cai Y, Xu M, Liu J, Zeng H, Song J, Sun B, Chen S, Deng Q, Lei J, Cao B, Chen C, Chen M, Chen K, Chen G, Zhu Z. Genome-wide analysis of histone acetyltransferase and histone deacetylase families and their expression in fruit development and ripening stage of pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2022; 13:971230. [PMID: 36161016 PMCID: PMC9490122 DOI: 10.3389/fpls.2022.971230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The fruit development and ripening process involve a series of changes regulated by fine-tune gene expression at the transcriptional level. Acetylation levels of histones on lysine residues are dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which play an essential role in the control of gene expression. However, their role in regulating fruit development and ripening process, especially in pepper (Capsicum annuum), a typical non-climacteric fruit, remains to understand. Herein, we performed genome-wide analyses of the HDAC and HAT family in the pepper, including phylogenetic analysis, gene structure, encoding protein conserved domain, and expression assays. A total of 30 HAT and 15 HDAC were identified from the pepper genome and the number of gene differentiation among species. The sequence and phylogenetic analysis of CaHDACs and CaHATs compared with other plant HDAC and HAT proteins revealed gene conserved and potential genus-specialized genes. Furthermore, fruit developmental trajectory expression profiles showed that CaHDAC and CaHAT genes were differentially expressed, suggesting that some are functionally divergent. The integrative analysis allowed us to propose CaHDAC and CaHAT candidates to be regulating fruit development and ripening-related phytohormone metabolism and signaling, which also accompanied capsaicinoid and carotenoid biosynthesis. This study provides new insights into the role of histone modification mediate development and ripening in non-climacteric fruits.
Collapse
Affiliation(s)
- Yutong Cai
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengwei Xu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiarong Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haiyue Zeng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jiali Song
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Binmei Sun
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Siqi Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qihui Deng
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Muxi Chen
- Guangdong Helinong Seeds Co., Ltd., Shantou, China
| | - Kunhao Chen
- Guangdong Helinong Seeds Co., Ltd., Shantou, China
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Hou J, Zheng X, Ren R, Shi Q, Xiao H, Chen Z, Yue M, Wu Y, Hou H, Li L. The histone deacetylase 1/GSK3/SHAGGY-like kinase 2/BRASSINAZOLE-RESISTANT 1 module controls lateral root formation in rice. PLANT PHYSIOLOGY 2022; 189:858-873. [PMID: 35078247 PMCID: PMC9157092 DOI: 10.1093/plphys/kiac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Lateral roots (LRs) are a main component of the root system of rice (Oryza sativa) that increases root surface area, enabling efficient absorption of water and nutrients. However, the molecular mechanism regulating LR formation in rice remains largely unknown. Here, we report that histone deacetylase 1 (OsHDAC1) positively regulates LR formation in rice. Rice OsHDAC1 RNAi plants produced fewer LRs than wild-type plants, whereas plants overexpressing OsHDAC1 exhibited increased LR proliferation by promoting LR primordia formation. Brassinosteroid treatment increased the LR number, as did mutation of GSK3/SHAGGY-like kinase 2 (OsGSK2), whereas overexpression of OsGSK2 decreased the LR number. Importantly, OsHDAC1 could directly interact with and deacetylate OsGSK2, inhibiting its activity. OsGSK2 deacetylation attenuated the interaction between OsGSK2 and BRASSINAZOLE-RESISTANT 1 (OsBZR1), leading to accumulation of OsBZR1. The overexpression of OsBZR1 increased LR formation by regulating Auxin/IAA signaling genes. Taken together, the results indicate that OsHDAC1 regulates LR formation in rice by deactivating OsGSK2, thereby preventing degradation of OsBZR1, a positive regulator of LR primordia formation. Our findings suggest that OsHDAC1 is a breeding target in rice that can improve resource capture.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Author for correspondence:
| |
Collapse
|
34
|
Chu L, Yang C, Zhuang F, Gao Y, Luo M. The HDA9‐HY5 module epigenetically regulates flowering time in
Arabidopsis thaliana. J Cell Physiol 2022; 237:2961-2968. [DOI: 10.1002/jcp.30761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Feng Zhuang
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yingmiao Gao
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences Guangzhou China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science Guangzhou China
| |
Collapse
|
35
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
36
|
Gong X, Huang Y, Liang Y, Yuan Y, Liu Y, Han T, Li S, Gao H, Lv B, Huang X, Linster E, Wang Y, Wirtz M, Wang Y. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. MOLECULAR PLANT 2022; 15:740-754. [PMID: 35381198 DOI: 10.1016/j.molp.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.
Collapse
Affiliation(s)
- Xiaodi Gong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yundong Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yuhao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Tongwen Han
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Bo Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China.
| |
Collapse
|
37
|
Morończyk J, Brąszewska A, Wójcikowska B, Chwiałkowska K, Nowak K, Wójcik AM, Kwaśniewski M, Gaj MD. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022; 11:863. [PMID: 35269485 PMCID: PMC8909028 DOI: 10.3390/cells11050863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.
Collapse
Affiliation(s)
- Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Barbara Wójcikowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Anna M. Wójcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| |
Collapse
|
38
|
Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. ABIOTECH 2022; 3:12-24. [PMID: 36304197 PMCID: PMC9590556 DOI: 10.1007/s42994-022-00070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Temperature is a key factor in determining plant growth and development, geographical distribution, and seasonal behavior. Plants accurately sense subtle changes in ambient temperature and alter their growth and development accordingly to improve their chances of survival and successful propagation. Thermomorphogenesis encompasses a variety of morphological changes that help plants acclimate to warm environmental temperatures. Revealing the molecular mechanism of thermomorphogenesis is important for breeding thermo-tolerant crops and ensuring food security under global climate change. Plant adaptation to elevated ambient temperature is regulated by multiple signaling pathways and epigenetic mechanisms such as histone modifications, histone variants, and non-coding RNAs. In this review, we summarize recent advances in the mechanism of epigenetic regulation during thermomorphogenesis with a focus on the model plant Arabidopsis thaliana and briefly discuss future prospects for this field.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
39
|
Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int J Mol Sci 2022; 23:ijms23031549. [PMID: 35163471 PMCID: PMC8835792 DOI: 10.3390/ijms23031549] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.
Collapse
Affiliation(s)
- Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Yuanlin Guan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Zhaodong Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Ye Lu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Jinhui Chen
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
40
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
41
|
Ezhova TA. Paradoxes of Plant Epigenetics. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Plants have a unique ability to adapt ontogenesis to changing environmental conditions and the influence of stress factors. This ability is based on the existence of two specific features of epigenetic regulation in plants, which seem to be mutually exclusive at first glance. On the one hand, plants are capable of partial epigenetic reprogramming of the genome, which can lead to adaptation of physiology and metabolism to changed environmental conditions as well as to changes in ontogenesis programs. On the other hand, plants can show amazing stability of epigenetic modifications and the ability to transmit them to vegetative and sexual generations. The combination of these inextricably linked epigenetic features not only ensures survival in the conditions of a sessile lifestyle but also underlies a surprisingly wide morphological diversity of plants, which can lead to the appearance of morphs within one population and the existence of interpopulation morphological differences. The review discusses the molecular genetic mechanisms that cause a paradoxical combination of the stability and lability properties of epigenetic modifications and underlie the polyvariance of ontogenesis. We also consider the existing approaches for studying the role of epigenetic regulation in the manifestation of polyvariance of ontogenesis and discuss their limitations and prospects.
Collapse
|
42
|
Sun Z, Ma Y, Liu Y, Lv J, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The Acetylation Modification of SP1 Regulates the Protein Stability in Silkworm. Appl Biochem Biotechnol 2021; 194:1621-1635. [PMID: 34826090 DOI: 10.1007/s12010-021-03757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Acetylation is a highly conservative and reversible post-translational modification. Acetylation modification can regulate gene expression by altering protein function and is widely identified in an increasing number of species. Previously, the acetylated proteome of silkworm was identified by combining acetylated polypeptide enrichment with nano-HPLC/MS/MS; the identification revealed that the SP proteins (SPs) were high acetylated. In this study, the acetylation of SP1, one of the SPs, was further confirmed using immunoprecipitation (IP) and Western blotting. Then, we found the acetylation could upregulate SP1 protein expression by enhancing the protein stability. Further research found that the acetylation of SP1 protein can competitively inhibit its ubiquitination and thus improve the stability and cell accumulation of SP1 protein by inhibiting the ubiquitin-mediated proteasome degradation pathway. This result provides a basis for acetylation to regulate the nutrient storage and utilization of silkworm.
Collapse
Affiliation(s)
- Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yafei Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yue Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, 310018, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
43
|
Cao F, Li Z, Jiang L, Liu C, Qian Q, Yang F, Ma F, Guan Q. Genome-wide association study (GWAS) of leaf wax components of apple. STRESS BIOLOGY 2021; 1:13. [PMID: 37676571 PMCID: PMC10441854 DOI: 10.1007/s44154-021-00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 09/08/2023]
Abstract
The wax layer of apple leaves plays an important role in improving stress resistance, but relatively little is known about the mechanisms of wax synthesis and transport in apple leaves. In this study, 17 wax components, including alcohols, alkanes, fatty acids and terpenes, were analyzed by gas chromatography-tandem mass spectrometry (GC-MS) from the leaves of 123 apple germplasms. Whole-genome sequencing of these apple accessions yielded 5.9 million high-quality single nucleotide polymorphisms (SNPs). We performed a genome-wide association study (GWAS) on 17 wax components and identified several genes related to wax synthesis and transport, including MdSHN1 (SHINE1), MdLTP4 (LIPID TRANSFER PROTEIN4), MdWSD1 (WAX ESTER SYNTHASE/ACYL-COA DIAC-YLGLYCEROL ACYLTRANSFERASE1), MdRDR1 (RNA-DEPENDENT RNA POLYMERASE1), MdACBP6 (ACYL-COA-BINDING PROTEIN6), MdNLE (NOTCHLESS) and MdABCG21 (ATP-BINDING CASSETTE G21). Moreover, we identified some prominent SNPs that may affect gene expression and protein function. These results provide insights into mechanisms of wax synthesis and transport in apple leaves and broaden the genetic resources and basis for facilitating resistance breeding.
Collapse
Affiliation(s)
- Fuguo Cao
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Zhongxing Li
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Lijuan Jiang
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chen Liu
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qian Qian
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Feng Yang
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Fengwang Ma
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qingmei Guan
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
44
|
Gao S, Zeng X, Wang J, Xu Y, Yu C, Huang Y, Wang F, Wu K, Yang S. Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells 2021; 10:cells10113001. [PMID: 34831226 PMCID: PMC8616286 DOI: 10.3390/cells10113001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023] Open
Abstract
The changes in histone acetylation mediated by histone deacetylases (HDAC) play a crucial role in plant development and response to environmental changes. Mammalian HDACs are regulated by post-translational modifications (PTM), such as phosphorylation, acetylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification (SUMOylation), which affect enzymatic activity and transcriptional repression. Whether PTMs of plant HDACs alter their functions are largely unknown. In this study, we demonstrated that the Arabidopsis SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HISTONE DEACETYLASE 6 (HDA6) both in vitro and in vivo. Biochemical analyses indicated that HDA6 is not modified by SUMO1. Overexpression of HDA6 in siz1-3 background results in a decreased level of histone H3 acetylation, indicating that the activity of HDA6 is increased in siz1-3 plants. Chromatin immunoprecipitation (ChIP) assays showed that SIZ1 represses HDA6 binding to its target genes FLOWERING LOCUS C (FLC) and MADS AFFECTING FLOWERING 4 (MAF4), resulting in the upregulation of FLC and MAF4 by increasing the level of histone H3 acetylation. Together, these findings indicate that the Arabidopsis SUMO E3 ligase SIZ1 interacts with HDA6 and negatively regulates HDA6 function.
Collapse
Affiliation(s)
- Sujuan Gao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Ministry of Agriculture, Guangzhou 510225, China;
| | - Xueqin Zeng
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510000, China;
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Chunwei Yu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
| | - Yishui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
- Correspondence: (K.W.); (S.Y.)
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (K.W.); (S.Y.)
| |
Collapse
|
45
|
Chen X, Xu Q, Duan Y, Liu H, Chen X, Huang J, Luo C, Zhou DX, Zheng L. Ustilaginoidea virens modulates lysine 2-hydroxyisobutyrylation in rice flowers during infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1801-1814. [PMID: 34245484 DOI: 10.1111/jipb.13149] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The post-translational modification lysine 2-hydroxyisobutyrylation (Khib ) plays an important role in gene transcription, metabolism, and enzymatic activity. Khib sites have been identified in rice (Oryza sativa). However, the Khib status of proteins in rice flowers during pathogen infection remains unclear. Here, we report a comprehensive identification of Khib -modified proteins in rice flowers, and the changes in these proteins during infection with the fungal pathogen Ustilaginoidea virens. By using a tandem mass tag-based quantitative proteomics approach, we identified 2,891 Khib sites on 964 proteins in rice flowers. Our data demonstrated that 2-hydroxyisobutyrylated proteins are involved in diverse biological processes. Khib levels were substantially reduced upon infection with U. virens. Chromatin immunoprecipitation polymerase chain reaction (PCR) and reverse transcription quantitative PCR analyses revealed that histone Khib is involved in the expression of disease-resistance genes. More importantly, most quantified sites on core histones H3 were downregulated upon U. virens infection. In addition, the histone deacetylases HDA705, HDA716, SRT1, and SRT2 are involved in the removal of Khib marks in rice. HDA705 was further confirmed to negatively regulate rice disease resistance to pathogens U. virens, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae (Xoo). Our data suggest that U. virens could modulate Khib in rice flowers during infection.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
46
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
47
|
Zheng L, Li C, Ma X, Zhou H, Liu Y, Wang P, Yang H, Tamada Y, Huang J, Wang C, Hu Z, Wang X, Wang G, Li H, Hu J, Liu X, Zhou C, Zhang Y. Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation. Nucleic Acids Res 2021; 49:7347-7360. [PMID: 34165567 PMCID: PMC8287917 DOI: 10.1093/nar/gkab536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/03/2023] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel type of histone acylation whose prevalence and function in plants remain unclear. Here, we identified 41 Khib sites on histones in Arabidopsis thaliana, which did not overlap with frequently modified N-tail lysines (e.g. H3K4, H3K9 and H4K8). Chromatin immunoprecipitation-sequencing (ChIP-seq) assays revealed histone Khib in 35% of protein-coding genes. Most Khib peaks were located in genic regions, and they were highly enriched at the transcription start sites. Histone Khib is highly correlated with acetylation (ac), particularly H3K23ac, which it largely resembles in its genomic and genic distribution. Notably, co-enrichment of histone Khib and H3K23ac correlates with high gene expression levels. Metabolic profiling, transcriptome analyses, and ChIP-qPCR revealed that histone Khib and H3K23ac are co-enriched on genes involved in starch and sucrose metabolism, pentose and glucuronate interconversions, and phenylpropanoid biosynthesis, and help fine-tune plant response to dark-induced starvation. These findings suggest that Khib and H3K23ac may act in concert to promote high levels of gene transcription and regulate cellular metabolism to facilitate plant adaption to stress. Finally, HDA6 and HDA9 are involved in removing histone Khib. Our findings reveal Khib as a conserved yet unique plant histone mark acting with lysine acetylation in transcription-associated epigenomic processes.
Collapse
Affiliation(s)
- Lanlan Zheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xueping Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Yuan Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Ji Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| | - Chunfei Wang
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng 475001, China
| | - Zhubing Hu
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng 475001, China
| | - Xuening Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an Shaanxi 710119, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an Shaanxi 710119, China
| | - Haihong Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Juntao Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
48
|
Zhou X, He J, Velanis CN, Zhu Y, He Y, Tang K, Zhu M, Graser L, de Leau E, Wang X, Zhang L, Andy Tao W, Goodrich J, Zhu JK, Zhang CJ. A domesticated Harbinger transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1462-1474. [PMID: 33960113 DOI: 10.1111/jipb.13108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.
Collapse
Affiliation(s)
- Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Junna He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Christos N Velanis
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingku Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lisa Graser
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
- University of Applied Sciences Mannheim, Paul-Wittsack-Str. 10,, Mannheim, 68163, Germany
| | - Erica de Leau
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette,, IN 47907, USA
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
49
|
Lu X, Xu M, Zhu Q, Zhang J, Liu G, Bao Y, Gu L, Tian Y, Wen H, Zhu WG. RNF8-ubiquitinated KMT5A is required for RNF168-induced H2A ubiquitination in response to DNA damage. FASEB J 2021; 35:e21326. [PMID: 33710666 DOI: 10.1096/fj.202002234r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Histone modifications play critical roles in DNA damage repair to safeguard genome integrity. However, how different histone modifiers coordinate to build appropriate chromatin context for DNA damage repair is largely unknown. Here, we report a novel interplay between the histone methyltransferase KMT5A and two E3 ligases RNF8 and RNF168 in establishing the histone modification status for DNA damage repair. KMT5A is a newly identified substrate of RNF8 in vitro and in vivo. In response to DNA double-strand breaks (DSBs), RNF8 promotes KMT5A recruitment onto damaged chromatin in a ubiquitination-dependent manner. RNF8-induced KMT5A ubiquitination increases the binding capacity of KMT5A to RNF168. Interestingly, KMT5A not only drives a local increase in H4K20 monomethylation at DSBs, but also promotes RNF168's activity in catalyzing H2A ubiquitination. We proved that the interaction between the H2A acidic patch and KMT5A R188/R189 residues is critical for KMT5A-mediated regulation of H2A ubiquitination. Taken together, our results highlight a new role for KMT5A in linking H4K20 methylation and H2A ubiquitination and provide insight into the histone modification network during DNA damage repair.
Collapse
Affiliation(s)
- Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Min Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yantao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
50
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|