1
|
Le Verger K, Küng LC, Fabre AC, Schmelzle T, Wegmann A, Sánchez-Villagra MR. Goldfish phenomics reveals commonalities and a lack of universality in the domestication process for ornamentation. Evol Lett 2024; 8:774-786. [PMID: 39677575 PMCID: PMC11637523 DOI: 10.1093/evlett/qrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 12/17/2024] Open
Abstract
Domestication process effects are manifold, affecting genotype and phenotype, and assumed to be universal in animals by part of the scientific community. While mammals and birds have been thoroughly investigated, from taming to intensive selective breeding, fish domestication remains comparatively unstudied. The most widely bred and traded ornamental fish species worldwide, the goldfish, underwent the effect of long-term artificial selection on differing skeletal and soft tissue modules through ornamental domestication. Here, we provide a global morphological analysis in this emblematic ornamental domesticated fish. We demonstrate that goldfish exhibit unique morphological innovations in whole-body, cranial, and sensory (Weberian ossicles and brain) anatomy compared to their evolutionary clade, highlighting a remarkable morphological disparity within a single species comparable to that of a macroevolutionary radiation. In goldfish, as in the case of dogs and pigeons in their respective evolutionary contexts, the most ornamented varieties are extremes in the occupied morphological space, emphasizing the power of artificial selection for nonadaptive traits. Using 21st century tools on a dataset comprising the 16 main goldfish breeds, 23 wild close relatives, and 39 cypriniform species, we show that Charles Darwin's expressed wonder at the goldfish is justified. There is a commonality of overall pattern in the morphological differentiation of domesticated forms selected for ornamental purposes, but the singularity of goldfish occupation and extension within (phylo)morphospaces, speaks against a universality in the domestication process.
Collapse
Affiliation(s)
- Kévin Le Verger
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Laurelle C Küng
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Anne-Claire Fabre
- Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland
- Naturhistorisches Museum der Burgergemeinde Bern, Bern, Switzerland
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Thomas Schmelzle
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Alexandra Wegmann
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Sorensen PW, Lim H. Extreme olfactory sensitivity of silver and bighead carp to overlapping suites of 21-carbon steroids suggests that these species, and likely all other Cyprinoidei, employ them as pheromones. Gen Comp Endocrinol 2024; 350:114471. [PMID: 38373463 DOI: 10.1016/j.ygcen.2024.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Although well established that several fishes including goldfish in the suborder Cypinoidei within the family Cypriniformes use the maturation-inducing steroid 17,20β-dihydroxy-pregn-4-ene-3-one (17,20βP) and its metabolites as a priming pheromone which they detect with sensitivity and specificity, it is unclear whether and how other Cypriniformes might have evolved to do so. This study examined this question in the family Xenocyprididae. Using electro-olfactogram recording we tested the olfactory sensitivity of silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) to a range of 213 steroids in 21 mixtures at 10-9M. While silver carp detected 6 of 21 mixtures, bighead carp detected 5 (p< 0.05). Silver carp were sensitive to 13 21-carbon steroids in these mixtures including 17,20βP while bighead carp detected 9, including 8 detected by silver carp. This assortment of steroids overlapped that detected by goldfish (family Cyprinidae) but no non-Cyprinoid, suggesting common evolutionary origin and function with differences characteristic of species-specificity.
Collapse
Affiliation(s)
- Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN 55108 USA
| | - Hangkyo Lim
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|
3
|
Lei HP, Jakovlić I, Zhou S, Liu X, Yan C, Jin X, Wang B, Li WX, Wang GT, Zhang D. Geography, phylogeny and host switch drive the coevolution of parasitic Gyrodactylus flatworms and their hosts. Parasit Vectors 2024; 17:42. [PMID: 38291495 PMCID: PMC10825989 DOI: 10.1186/s13071-023-06111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite coevolutionary dynamics. Previous coevolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker) and (now) outdated algorithms. METHODS To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms. RESULTS The overall coevolutionary fit between the parasites and hosts was consistently significant. Multiple indicators confirmed that gyrodactylids are generally highly host-specific parasites, but several species could parasitize either multiple (more than 5) or phylogenetically distant fish hosts. The molecular dating results indicated that gyrodactylids tend to evolve towards high host specificity. Speciation by host switch was identified as a more important speciation mode than co-speciation. Assuming that the ancestral host belonged to Cypriniformes, we inferred four major host switch events to non-Cypriniformes hosts (mostly Salmoniformes), all of which occurred deep in the evolutionary history. Despite their relative rarity, these events had strong macroevolutionary consequences for gyrodactylid diversity. For example, in our dataset, 57.28% of all studied gyrodactylids parasitized only non-Cypriniformes hosts, which implies that the evolutionary history of more than half of all included lineages could be traced back to these major host switch events. The geographical co-occurrence of fishes and gyrodactylids determined the host use by these gyrodactylids, and geography accounted for most of the phylogenetic signal in host use. CONCLUSIONS Our findings suggest that the coevolution of Gyrodactylus flatworms and their hosts is largely driven by geography, phylogeny, and host switches.
Collapse
Affiliation(s)
- Hong-Peng Lei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ivan Jakovlić
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chuan Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Jin
- College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China
| | - Bo Wang
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Xu MRX, Liao ZY, Brock JR, Du K, Li GY, Chen ZQ, Wang YH, Gao ZN, Agarwal G, Wei KHC, Shao F, Pang S, Platts AE, van de Velde J, Lin HM, Teresi SJ, Bird K, Niederhuth CE, Xu JG, Yu GH, Yang JY, Dai SF, Nelson A, Braasch I, Zhang XG, Schartl M, Edger PP, Han MJ, Zhang HH. Maternal dominance contributes to subgenome differentiation in allopolyploid fishes. Nat Commun 2023; 14:8357. [PMID: 38102128 PMCID: PMC10724154 DOI: 10.1038/s41467-023-43740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.
Collapse
Affiliation(s)
- Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhen-Yang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Guo-Yin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | | | - Ying-Hao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhong-Nan Gao
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, School of Life Sciences, Chongqing, China
| | | | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Jozefien van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hong-Min Lin
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kevin Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jin-Gen Xu
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Guo-Hua Yu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Jian-Yuan Yang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Si-Fa Dai
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | | | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bayern, Germany.
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Min-Jin Han
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
5
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
6
|
Kamińska-Gibas T, Szczygieł J, Blasweiler A, Gajda Ł, Yilmaz E, Jurecka P, Kolek L, Ples M, Irnazarow I. New reports on iron related proteins: Molecular characterization of two ferroportin genes in common carp (Cyprinus carpio L.) and its expression pattern. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109087. [PMID: 37777096 DOI: 10.1016/j.fsi.2023.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Iron uptake, transport, and storage require the involvement of several proteins, including ferroportin (fpn), the sole known iron efflux transporter. Due to its critical function fpn has been studied, particularly in humans. Here, we characterized the ferroportin gene in common carp (Cyprinus carpio L.) and performed RNA-seq analysis to evaluate its constitutive transcription levels across different tissues. Our results indicate that C. carpio possesses two functional fpns with distinct expression patterns, highlighting the potential for functional divergence and expression differentiation among fpns in this species.
Collapse
Affiliation(s)
- Teresa Kamińska-Gibas
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Annemiek Blasweiler
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ebru Yilmaz
- Department of Aquaculture and Fisheries, Faculty of Agriculture, Aydın Adnan Menderes University, Aydin, Turkey
| | - Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Ludmiła Kolek
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Marek Ples
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Str., 41-800, Zabrze, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland.
| |
Collapse
|
7
|
Feng C, Wang K, Xu W, Yang L, Wanghe K, Sun N, Wu B, Wu F, Yang L, Qiu Q, Gan X, Chen Y, He S. Monsoon boosted radiation of the endemic East Asian carps. SCIENCE CHINA. LIFE SCIENCES 2023; 66:563-578. [PMID: 36166180 DOI: 10.1007/s11427-022-2141-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 10/14/2022]
Abstract
Major historical events often trigger the rapid flourishing of a few lineages, which in turn shape established biodiversity patterns. How did this process occur and develop? This study provides a window into this issue. The endemic East Asian carps (EEAC) dominated the ichthyofauna of East Asia and exhibited a high degree of adaptation to monsoonal river-lake ecosystems. A series of evidence, including ecogeography, phylogenetics, and macroevolution, suggests that the EEAC is a lineage that arose with the East Asian monsoon and thrived intimately with subsequent monsoon activities. We further deduce the evolution of the EEAC and find that a range of historical events in the monsoon setting (e.g., marine transgression and regression and glacial-interglacial cycle) have further reshaped the distribution patterns of EEAC's members. Comparative genomics analyses reveal that introgressions during the initial period of EEAC radiation and innovations in the regulation of the brain and nervous system may have aided their adaptation to river-lake ecosystems in a monsoon setting, which boosted radiation. Overall, this study strengthens knowledge of the evolutionary patterns of freshwater fishes in East Asia and provides a model case for understanding the impact of major historical events on the evolution of biota.
Collapse
Affiliation(s)
- Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota of Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Feixiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Lei Yang
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yiyu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
8
|
Nazarizadeh M, Nováková M, Loot G, Gabagambi NP, Fatemizadeh F, Osano O, Presswell B, Poulin R, Vitál Z, Scholz T, Halajian A, Trucchi E, Kočová P, Štefka J. Historical dispersal and host-switching formed the evolutionary history of a globally distributed multi-host parasite - The Ligula intestinalis species complex. Mol Phylogenet Evol 2023; 180:107677. [PMID: 36572162 DOI: 10.1016/j.ympev.2022.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Studies on parasite biogeography and host spectrum provide insights into the processes driving parasite diversification. Global geographical distribution and a multi-host spectrum make the tapeworm Ligula intestinalis a promising model for studying both the vicariant and ecological modes of speciation in parasites. To understand the relative importance of host association and biogeography in the evolutionary history of this tapeworm, we analysed mtDNA and reduced-represented genomic SNP data for a total of 139 specimens collected from 18 fish-host genera across a distribution range representing 21 countries. Our results strongly supported the existence of at least 10 evolutionary lineages and estimated the deepest divergence at approximately 4.99-5.05 Mya, which is much younger than the diversification of the fish host genera and orders. Historical biogeography analyses revealed that the ancestor of the parasite diversified following multiple vicariance events and was widespread throughout the Palearctic, Afrotropical, and Nearctic between the late Miocene and early Pliocene. Cyprinoids were inferred as the ancestral hosts for the parasite. Later, from the late Pliocene to Pleistocene, new lineages emerged following a series of biogeographic dispersal and host-switching events. Although only a few of the current Ligula lineages show narrow host-specificity (to a single host genus), almost no host genera, even those that live in sympatry, overlapped between different Ligula lineages. Our analyses uncovered the impact of historical distribution shifts on host switching and the evolution of host specificity without parallel host-parasite co-speciation. Historical biogeography reconstructions also found that the parasite colonized several areas (Afrotropical and Australasian) much earlier than was suggested by only recent faunistic data.
Collapse
Affiliation(s)
- Masoud Nazarizadeh
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Milena Nováková
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Géraldine Loot
- UMR-5174, EDB (Laboratoire Evolution and Diversité Biologique), CNRS, IRD, Université Toulouse III Paul Sabatier, France
| | | | - Faezeh Fatemizadeh
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Odipo Osano
- School of Environmental Studies, University of Eldoret, Kenya
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Zoltán Vitál
- Research Center for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Hungary
| | - Tomáš Scholz
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Ali Halajian
- Research Administration and Development, and 2-DSI-NRF SARChI Chair (Ecosystem health), Department of Biodiversity, University of Limpopo, South Africa
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic.
| |
Collapse
|
9
|
Zhang Z, Li J, Zhang X, Lin B, Chen J. Comparative mitogenomes provide new insights into phylogeny and taxonomy of the subfamily Xenocyprinae (Cypriniformes: Cyprinidae). Front Genet 2022; 13:966633. [DOI: 10.3389/fgene.2022.966633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Xenocyprinae is a cyprinid subfamily that not only has a discrete geographic distribution but also has a long history dating to the Early Miocene. However, it is controversial whether systematic classification and some species validity of Xenocyprinae exist, as well as its phylogenetic relationships and evolutionary history. In the present study, we first reviewed the description and taxonomic history of Xenocyprinae, and then the complete mitochondrial genome of Distoechodon compressus, an endemic and locally distributed species belonging to Xenocyprinae, was sequenced and annotated. Finally, all the mitogenomes of Xenocyprinae were compared to reconstruct the phylogenetic relationship and estimate the divergence time. The results showed that the mitogenomes are similar in organization and structure with 16618–16630 bp length from 12 mitogenomes of eight species. Phylogenetic analysis confirmed the monology of Xenocyprinae and illustrated three clades within the Xenocyprinae to consist of ambiguous generic classification. Plagiognathops is a valid genus located at the base of the phylogenetic tree. The genus Xenocypris was originally monophyletic, but X. fangi was excluded. Divergence time estimation revealed that the earliest divergence within Xenocyprinae occurred approximately 12.1 Mya when Plagiognathops separated from the primitive Xenocypris. The main two clades (Xenocypris and (Distoechodon + Pseudobrama + X. fangi)) diverged 10.0 Mya. The major divergence of Xenocyprinae species possibly occurred in the Middle to Late Miocene and Late Pliocene, suggesting that speciation and diversifications could be attributed to the Asian monsoon climate. This study clarifies some controversial issues of systematics and provides essential information on the taxonomy and phylogeny of the subfamily Xenocyprinae.
Collapse
|
10
|
Mu X, Yang Y, Sun J, Yi liu, Xu M, Shao C, Chu KH, Li W, Liu C, Gu D, Fang M, Zhang C, Liu F, Song H, Wang X, Chen J, Ma KY. FishPIE: a universal phylogenetically informative exon markers set for ray-finned fishes. iScience 2022; 25:105025. [PMID: 36105587 PMCID: PMC9464953 DOI: 10.1016/j.isci.2022.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the evolutionary history of the highly diverse ray-finned fishes has been challenging, and the development of more universal primers for phylogenetic analyses may help overcoming these challenges. We developed FishPIE, a nested PCR primer set of 82 phylogenetically informative exon markers, and tested it on 203 species from 31 orders of Actinopterygii. We combined orthologous sequences of the FishPIE markers obtained from published genomes and transcriptomes and constructed the phylogeny of 710 species belonging to 190 families and 60 orders. The resulting phylogenies had topologies comparable to previous phylogenomic studies. We demonstrated that the FishPIE markers could address phylogenetic questions across broad taxonomic levels. By incorporating the newly sequenced taxa, we were able to shed new light on the phylogeny of the highly diverse Cypriniformes. Thus, FishPIE holds great promise for generating genetic data for broad taxonomic groups and accelerating our understanding of the fish tree of life. FishPIE is a nested PCR primer set of 82 markers for fish phylogenetic analysis The markers can be broadly applied to all orders of ray-finned fishes Their phylogenetic performance is comparable to that of genomic analyses
Collapse
|
11
|
Kumbar J, Ganesh CB. Organization of the Melanin concentrating hormone secreting neuronal system in the brain of the cichlid fish Oreochromis mossambicus. J Chem Neuroanat 2022; 124:102141. [PMID: 35907561 DOI: 10.1016/j.jchemneu.2022.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022]
Abstract
Melanin concentrating hormone (MCH) is a highly conserved cyclic peptide present in vertebrates. In this study, we describe the organization of MCH-immunoreactive (MCH-ir) cells and fibres in different regions of the brain in the cichlid fish Oreochromis mossambicus. Only MCH-ir fibres were observed in dorsal and ventral subdivisions of the telencephalon, the preoptic area and magnocellular and parvocellular divisions of the nucleus preopticus, and in hypothalamic areas such as the suprachiasmatic nucleus and tuberal area. Distinctly labelled MCH-ir perikarya were observed in the paraventricular organ, lateral and medial subdivisions of the nucleus lateralis tuberis, nucleus recessus lateralis and in the nucleus posterioris tuberis. The pituitary gland showed MCH-ir fibres in the proximal pars distalis, neurohypophyseal ramifications and in pars intermedia where the dark accumulations of MCH-ir content corresponded to enlarged axon terminals. In the diencephalon, MCH-ir fibres were also labelled in the pretectal area, thalamic nuclei and preglomerular complex. In the midbrain tegmentum, a cluster of MCH-ir neurons was detected in the dorsal tegmental nucleus, whereas MCH-ir fibres were distributed in the torus semicircularis and optic tectum. In the rhombencephalon, MCH-ir fibres were located in the nucleus lateralis valvulae, cerebellum and secondary gustatory nucleus. Overall, the widespread distribution of MCH-ir cells and fibres in the brain suggests diverse roles for MCH such as regulation of sensorimotor and neuroendocrine functions in the tilapia.
Collapse
Affiliation(s)
- Jyoti Kumbar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad-580 003 India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad-580 003 India.
| |
Collapse
|
12
|
Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol 2022; 6:1354-1366. [PMID: 35817827 PMCID: PMC9439954 DOI: 10.1038/s41559-022-01813-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates. Genome sequencing and haplotype assembly of two cyprinid teleosts, a sexual tetraploid and an unisexual hexaploid, reveal insights into the evolutionary mechanisms underpinning the reproductive success of unisexual polyploid vertebrates.
Collapse
|
13
|
Gu Q, Wang S, Zhong H, Yuan H, Yang J, Yang C, Huang X, Xu X, Wang Y, Wei Z, Wang J, Liu S. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC). BMC Genomics 2022; 23:242. [PMID: 35350975 PMCID: PMC8962218 DOI: 10.1186/s12864-022-08468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
An important aspect of studying evolution is to understand how new species are formed and their uniqueness is maintained. Hybridization can lead to the formation of new species through reorganization of the adaptive system and significant changes in phenotype. Interestingly, eight stable strains of 2nNCRC derived from interspecies hybridization have been established in our laboratory. To examine the phylogeographical pattern of the widely distributed genus Carassius across Eurasia and investigate the possible homoploid hybrid origin of the Carassius auratus complex lineage in light of past climatic events, the mitochondrial genome (mtDNA) and one nuclear DNA were used to reconstruct the phylogenetic relationship between the C. auratus complex and 2nNCRC and to assess how demographic history, dispersal and barriers to gene flow have led to the current distribution of the C. auratus complex.
Results
As expected, 2nNCRC had a very close relationship with the C. auratus complex and similar morphological characteristics to those of the C. auratus complex, which is genetically distinct from the other three species of Carassius. The estimation of divergence time and ancestral state demonstrated that the C. auratus complex possibly originated from the Yangtze River basin in China. There were seven sublineages of the C. auratus complex across Eurasia and at least four mtDNA lineages endemic to particular geographical regions in China. The primary colonization route from China to Mongolia and the Far East (Russia) occurred during the Late Pliocene, and the diversification of other sublineages of the C. auratus complex specifically coincided with the interglacial stage during the Early and Mid-Pleistocene in China.
Conclusion
Our results support the origin of the C. auratus complex in China, and its wide distribution across Eurasia was mainly due to natural Pleistocene dispersal and recent anthropogenic translocation. The sympatric distribution of the ancestral area for both parents of 2nNCRC and the C. auratus complex, as well as the significant changes in the structure of pharyngeal teeth and morphological characteristics between 2nNCRC and its parents, imply that homoploid hybrid speciation (HHS) for C. auratus could likely have occurred in nature. The diversification pattern indicated an independent evolutionary history of the C. auratus complex, which was not separated from the most recent common ancestor of C. carassius or C. cuvieri. Considering that the paleoclimate oscillation and the development of an eastward-flowing drainage system during the Pliocene and Pleistocene in China provided an opportunity for hybridization between divergent lineages, the formation of 2nNCRC in our laboratory could be a good candidate for explaining the HHS of C. auratus in nature.
Collapse
|
14
|
Li C, Jiang S, Schneider K, Jin J, Lin H, Wang J, Elmer KR, Zhao J. Cryptic species in White Cloud Mountain minnow, Tanichthys albonubes: Taxonomic and conservation implications. Mol Phylogenet Evol 2020; 153:106950. [PMID: 32889137 DOI: 10.1016/j.ympev.2020.106950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Cryptic species describe two or more species that had mistakenly been considered to be a single species, a phenomenon that has been found throughout the tree of life. Recognizing cryptic species is key to estimating the real biodiversity of the world and understanding evolutionary processes. Molecular methods present an unprecedented opportunity for biologists to question whether morphologically similar populations are actually cryptic species. The minnow Tanichthys albonubes is a critically endangered freshwater fish and was classified as a second-class state-protected animal in China. Previous studies have revealed highly divergent lineages with similar morphological characters in this species. Herein, we tested for cryptic species across the ranges of all known wild populations of this minnow. Using multilocus molecular (one mitochondrial gene, two nuclear genes and 13 microsatellite loci) and morphological data for 230 individuals from eight populations, we found deep genetic divergence among these populations with subtle morphological disparity. Morphological examination found variance among these populations in the number of branched anal-fin rays. Based on genetic data, we inferred eight monophyletic groups that were well supported by haplotype network and population clustering analyses. Species delimitation methods suggested eight putative species in the T. albonubes complex. Molecular dating suggested that these cryptic species diverged in the period from the Pliocene to the Pleistocene. Based on these findings, we propose the existence of seven cryptic species in the T. albonubes complex. Our results highlight the need for a taxonomic revision of Tanichthys. What is more, the conservation status of and conservation strategies for the T. albonubes complex should be reassessed as soon as possible.
Collapse
Affiliation(s)
- Chao Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Shuying Jiang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kevin Schneider
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jinjin Jin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hungdu Lin
- The Affiliated School of National Tainan First Senior High School, Tainan, Taiwan
| | - Junjie Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jun Zhao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
15
|
Sun L, Gao T, Wang F, Qin Z, Yan L, Tao W, Li M, Jin C, Ma L, Kocher TD, Wang D. Chromosome‐level genome assembly of a cyprinid fish
Onychostoma macrolepis
by integration of nanopore sequencing, Bionano and Hi‐C technology. Mol Ecol Resour 2020; 20:1361-1371. [DOI: 10.1111/1755-0998.13190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Tian Gao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Feilong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Zuliang Qin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Longxia Yan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - Canbiao Jin
- Lushui Ecological Agriculture Company Langao Shaanxi China
| | - Li Ma
- Lushui Ecological Agriculture Company Langao Shaanxi China
| | - Thomas D. Kocher
- Department of Biology University of Maryland College Park MD USA
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| |
Collapse
|
16
|
Kuchta R, Řehulková E, Francová K, Scholz T, Morand S, Šimková A. Diversity of monogeneans and tapeworms in cypriniform fishes across two continents. Int J Parasitol 2020; 50:771-786. [PMID: 32687912 DOI: 10.1016/j.ijpara.2020.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
Cypriniformes, which exhibit a wide geographical distribution, are the most species-rich group of freshwater fishes. Despite considerable research on their parasites, no reliable estimates of their parasite diversity on a large geographical scale are available. In the present review, we analyse species richness of two parasitic flatworm groups (monogeneans and tapeworms) reported from cypriniform fishes in the two most intensively studied parts of the Holarctic region, Europe and North America. We also review knowledge on parasite speciation and host-parasite coevolution, and emphasise the risk of parasite co-introduction resulting from transfers of cypriniforms among different continents. As parasite diversity in European cypriniforms has been more intensively explored, we predicted a lower level of knowledge on parasite diversity in North American fishes, despite North America having a higher diversity of cypriniforms than Europe. Our data revealed a higher mean species richness of monogeneans and tapeworms per cypriniform species in Europe compared with North America. We showed that species richness of both parasite taxa in both continents is strongly affected by sample size, but that fish traits also play an important role in determining monogenean and tapeworm species richness in European cyprinoids. We recorded higher host specificity for cypriniform parasites in North America, even within parasite genera shared by cypriniforms on both continents. The host range of monogeneans parasitising cyprinoids on both continents was affected by phylogeny, indicating an effect of parasite life history on host specificity. The difference in parasite host range between the two continents could potentially be explained by either the low overall level of sampling activity in North America or an underestimation of parasite diversity in Europe. We suggest that future research efforts be focussed on cypriniforms in order to obtain reliable data for robust assessments of parasite species richness and phylogenies, to assess host-parasite coevolution and to reveal fish biogeography.
Collapse
Affiliation(s)
- Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eva Řehulková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Kateřina Francová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Serge Morand
- CNRS ISEM - CIRAD ASTRE, Montpellier University, Montpellier, France; Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
17
|
Further evidence for paternal DNA transmission in gynogenetic grass carp. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1287-1296. [PMID: 32548694 DOI: 10.1007/s11427-020-1698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Gynogenesis is an important breeding method in aquaculture and has been widely applied to many fish species. If gynogenetic progenies are to inherit paternal partial genomic DNA, this will increase genetic variation and will provide a useful outcome for breeding. In this study, we investigated the genetic variation in homeobox (Hox) gene clusters (HoxA4a, HoxA9a, HoxA11b, HoxB1b, HoxC4a, HoxC6b, and HoxD10a) among koi carp (Cyprinus carpio haematopterus, KOC; the stimulation sperm source), grass carp (Ctenopharyngodon idellus), and gynogenetic grass carp (GGC). We found paternal DNA (a special DNA fragment and HoxC6b) derived from KOC and a recombinant gene belonging to HoxC6b in GGC. We are the first to report the recombinant HoxC6b in GGC. Our study provides further evidence for paternal DNA transmission to gynogenetic progenies, which is a finding with great significance for the genetic breeding of fish.
Collapse
|
18
|
Ge S, Guo YL. Evolution of genes and genomes in the genomics era. SCIENCE CHINA-LIFE SCIENCES 2020; 63:602-605. [PMID: 32189239 DOI: 10.1007/s11427-020-1672-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|