1
|
He Y, Wei Z, Xu J, Jin F, Li T, Qian L, Ma J, Zheng W, Javanmardi N, Wang T, Sun K, Feng ZQ. Genetics-Based Targeting Strategies for Precise Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e13817. [PMID: 40387259 DOI: 10.1002/advs.202413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Indexed: 05/20/2025]
Abstract
Genetics-based neuromodulation schemes are capable of selectively manipulating the activity of defined cell populations with high temporal-spatial resolution, providing unprecedented opportunities for probing cellular biological mechanisms, resolving neuronal projection pathways, mapping neural profiles, and precisely treating neurological and psychiatric disorders. Multimodal implementation schemes, which involve the use of exogenous stimuli such as light, heat, mechanical force, chemicals, electricity, and magnetic stimulation in combination with specific genetically engineered effectors, greatly expand their application space and scenarios. In particular, advanced wireless stimulation schemes have enabled low-invasive targeted neuromodulation through local delivery of navigable micro- and nanosized stimulators. In this review, the fundamental principles and implementation protocols of genetics-based precision neuromodulation are first introduced.The implementation schemes are systematically summarized, including optical, thermal, force, chemical, electrical, and magnetic stimulation, with an emphasis on those wireless and low-invasive strategies. Representative studies are dissected and analyzed for their advantages and disadvantages. Finally, the significance of genetics-based precision neuromodulation is emphasized and the open challenges and future perspectives are concluded.
Collapse
Affiliation(s)
- Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Jianda Xu
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| | - Kangjian Sun
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| |
Collapse
|
2
|
Huang J, Xue S, Teixeira AP, Fussenegger M. A mediator-free sonogenetic switch for therapeutic protein expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf191. [PMID: 40114374 PMCID: PMC11925730 DOI: 10.1093/nar/gkaf191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
An ultrasound-responsive transgene circuit can provide non-invasive, spatiotemporally precise remote control of gene expression and cellular behavior in synthetic biology applications. However, current ultrasound-based systems often rely on nanoparticles or harness ultrasound's thermal effects, posing risks of tissue damage and cellular stress that limit their therapeutic potential. Here, we present Spatiotemporal Ultrasound-induced Protein Expression Regulator (SUPER), a novel gene switch enabling mediator-free, non-invasive and direct regulation of protein expression via ultrasound in mammalian cells. SUPER leverages the mammalian reactive oxygen species (ROS) sensing system, featuring KEAP1 (Kelch-like ECH-associated protein 1), NRF2 (nuclear factor erythroid 2-related factor 2), and antioxidant response element (ARE) as its core components. We demonstrate that low-intensity (1.5 W/cm2, ∼45 kHz), brief (40 s) ultrasound exposure generates non-toxic levels of ROS, activating the KEAP1/NRF2 pathway in engineered cells and leading to the controlled expression of target gene(s) via a synthetic ARE promoter. The system exhibits robust expression dynamics, excellent reversibility, and functionality in various cell types, including human mesenchymal stem cell-derived lines (hMSC-TERT). In a proof-of-concept study, ultrasound stimulation of subcutaneously implanted microencapsulated engineered cells stably expressing the sonogenetic circuit in a type 1 diabetic mouse model triggered sufficient insulin production to restore normoglycemia. Our work highlights ultrasound's potential as a precise and non-invasive tool for advancing cell and gene therapies in personalized medicine.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| |
Collapse
|
3
|
Antoniazzi AM, Unda SR, Norman S, Pomeranz LE, Marongiu R, Stanley SA, Friedman JM, Kaplitt MG. Non-invasive in vivo bidirectional magnetogenetic modulation of pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644041. [PMID: 40166248 PMCID: PMC11957015 DOI: 10.1101/2025.03.18.644041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primary nociceptors in the dorsal root ganglion (DRG) receive sensory information from discrete parts of the body and are responsible for initiating signaling events that in supraspinal regions will be interpreted as physiological or pathological pain. Genetic, pharmacologic and electric neuromodulation of nociceptor activity in freely moving non-transgenic animals has been shown to be challenging due to many factors including the immunogenicity of non-mammalian proteins, procedure invasiveness and poor temporal precision. Here, we introduce a magnetogenetic strategy that enables remote bidirectional regulation of nociceptor activity. Magnetogenetics utilizes a source of direct magnetic field (DMF) to control neuronal activity in cells that express an anti-ferritin nanobody-TRPV1 receptor fusion protein (Nb-Ft-TRPV1). In our study, AAV2retro-mediated delivery of an excitatory Nb-Ft-TRPV1 construct into the sciatic nerve of wild-type mice resulted in stable long-term transgene expression accompanied by significant reduction of mechanical withdrawal thresholds during DMF exposure, place aversion of the DMF zone and activity changes in the anterior cingulate (ACC) nucleus. Conversely, delivery of an inhibitory variant of the Nb-Ft-TRPV1 construct, engineered to gate chloride ions in response to DMF, led to reversed behavioral manifestations of mechanical allodynia and showed place preference for the DMF zone, suggestive of functional pain relief. Changes in DRG activity were confirmed by post-mortem levels, immediately following DMF exposure, of the activity-induced gene cfos, which increased with the excitatory construct in normal mice and decreased with the inhibitory construct in pain models Our study demonstrates that magnetogenetic channels can achieve long-term expression in the periphery without losing functionality, providing a stable gene therapy system for non-invasive, magnetic field regulation of pain-related neurons for research and potential clinical applications.
Collapse
Affiliation(s)
- Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
4
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
5
|
Zhang Y, Li H, Chen L, Zhang F, Cao W, Ouyang H, Zeng D, Li X. Non-contact exposure to dinotefuran disrupts honey bee homing by altering MagR and Cry2 gene expression. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136710. [PMID: 39642735 DOI: 10.1016/j.jhazmat.2024.136710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Dinotefuran is known to negatively affect honeybee (Apis mellifera) behavior, but the underlying mechanism remains unclear. The magnetoreceptor (MagR, which responds to magnetic fields) and cryptochrome (Cry2, which is sensitive to light) genes are considered to play important roles in honey bees' homing and localization behaviors. Our study found that dinotefuran, even without direct contact, can act like a magnet, significantly altering MagR expression in honeybees. This non-contact exposure reduced the bees' homing rate. In further experiments, we exposed foragers to light and magnetic fields, the MagR gene responded to magnetic fields only in the presence of light, with Cry2 playing a key switching role in the magnetic field receptor mechanism (MagR-Cry2). Yeast two-hybrid and BiFc assays confirmed an interaction of these two genes. Moreover, the bees' homing rate was significantly reduced when the expression of these genes was decreased using RNAi. These findings suggest that changes in MagR and Cry2 expression are critical to the reduction in homing ability caused by non-contact dinotefuran exposure. This study reveals the potential navigation mechanisms of honey bees during homing and foraging and shows that the impact of dinotefuran on honey bee populations is more extensive than previously understood.
Collapse
Affiliation(s)
- Yongheng Zhang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Honghong Li
- Guangxi vocational university of agriculture, Nanning, Guangxi 530004, China.
| | - Lichao Chen
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Fu Zhang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjing Cao
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Huili Ouyang
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongqiang Zeng
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi key laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Phan TN, Fan CH, Wang HC, Liu HL, Lin YC, Yeh CK. Modulation of GABAergic neurons in acute epilepsy using sonogenetics. J Control Release 2025; 377:341-353. [PMID: 39557217 DOI: 10.1016/j.jconrel.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Epilepsy, a neurological disorder caused by hypersynchronous neural disturbances, has traditionally been treated with surgery, pharmacotherapy, and neuromodulation techniques such as deep brain stimulation and vagus nerve stimulation. However, these methods are often limited by invasiveness, off-target effects, and poor resolution. We present a noninvasive alternative utilizing sonogenetics to selectively stimulate γ-aminobutyric acid (GABA)ergic neurons in the amygdala through engineered auditory-sensing protein, mPrestin (N7T, N308S), in a pentylenetetrazole-induced rat model. Activation of GABAergic neurons induced by the sonication with 0.5-MHz transcranial ultrasound can modulate epileptiform activity by 50 %. Electrophysiological recordings confirmed effective neuromodulation and persistent seizure suppression up to 60 min post-treatment without tissue damage, inflammation, or apoptosis. This sonogenetic approach offers a promising, safe method for epilepsy management by targeting GABAergic neurons.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701401, Taiwan
| | - Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
7
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Neuman K, Zhang X, Lejeune BT, Pizzarella D, Vázquez M, Lewis LH, Koppes AN, Koppes RA. Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth. Adv Healthc Mater 2025; 14:e2403956. [PMID: 39568232 PMCID: PMC11773108 DOI: 10.1002/adhm.202403956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Axonal growth is heavily influenced by topography and biophysical stimuli including magnetic and electrical fields. Despite extensive investigation, the degree of influence and the underlying genetic mechanisms remain poorly understood. Here, a novel approach to guide neurite growth is undertaken using an innovative ferromagnetic composite material - glass-coated magnetic microwire - to furnish a synergistic combination of magnetic and topographical cues. Whole rat dorsal root ganglia (DRG) are cultured under five different conditions: control, static magnetic field, magnetic microwire, static magnetic field + glass fiber, and static magnetic field + magnetic microwire. DRG outgrowth responses under each condition, including total neurite outgrowth and directionality, are compared. The combination of both magnetic stimulation and topography significantly increases total neurite outgrowth compared to the controls. The combination of magnetic stimulation and magnetic microwire lead to a strong directional bias of growth along the microwire, double what is observed with the glass fiber. Next generation RNA sequencing of DRG exposed to static magnetic field + magnetic microwire reveals the downregulation of genes relating to the immune response, interleukin signaling, and signal transduction. These results set the stage for contemplating future biophysical stimulation for axonal guidance and improved understanding of material-tissue interactions.
Collapse
Affiliation(s)
- Katelyn Neuman
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Xiaoyu Zhang
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Brian. T. Lejeune
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Manuel Vázquez
- Instituto de Ciencia de Materiales de MadridCSICMadrid28049Spain
| | - Laura H. Lewis
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Abigail N. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of BioengineeringNortheastern UniversityBostonMA02115USA
- Dept. of BiologyNortheastern UniversityBostonMA02115USA
| | - Ryan A. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
9
|
Ding S, Li J, Fang Y, Zhuo X, Gu L, Zhang X, Yang Y, Wei M, Liao Z, Li Q. Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:35-45. [PMID: 39277139 DOI: 10.1016/j.pbiomolbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
Collapse
Affiliation(s)
- Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Xingjie Zhuo
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanxiao Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional regulation of motor circuits using magnetogenetic gene therapy. SCIENCE ADVANCES 2024; 10:eadp9150. [PMID: 39383230 PMCID: PMC11463271 DOI: 10.1126/sciadv.adp9150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
11
|
Wang H, Hou J, Wang D, Shi H, Gong L, Lv X, Liu J. Effect of low frequency alternating magnetic field for erythritol production in Yarrowia lipolytica. Arch Microbiol 2024; 206:392. [PMID: 39230673 DOI: 10.1007/s00203-024-04115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.
Collapse
Affiliation(s)
- Hong Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiayang Hou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Dongxu Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Hu Shi
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Luqian Gong
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xuemeng Lv
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jinlong Liu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- Fermentation Technology Innovation Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
12
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
13
|
Chen C, Chen H, Wang P, Wang X, Wang X, Chen C, Pan W. Reactive Oxygen Species Activate a Ferritin-Linked TRPV4 Channel under a Static Magnetic Field. ACS Chem Biol 2024; 19:1151-1160. [PMID: 38648729 DOI: 10.1021/acschembio.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| |
Collapse
|
14
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional Regulation of Motor Circuits Using Magnetogenetic Gene Therapy Short: Magnetogenetic Regulation of Motor Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548699. [PMID: 37503198 PMCID: PMC10369996 DOI: 10.1101/2023.07.13.548699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. AAV-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine 2a receptor-cre driver mice resulted in motor freezing when placed in an MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in-vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
15
|
Al Harraq A, Feng M, Gauri HM, Devireddy R, Gupta A, Sun Q, Bharti B. Magnetic Control of Nonmagnetic Living Organisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17339-17346. [PMID: 38531044 PMCID: PMC11009914 DOI: 10.1021/acsami.4c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Min Feng
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hashir M. Gauri
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ram Devireddy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Ankur Gupta
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Qing Sun
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Zhu Y, Liao L, Gao S, Tao Y, Huang H, Fang X, Yuan C, Gao C. Neuroprotective effects of repetitive transcranial magnetic stimulation on Alzheimer's disease: Undetermined therapeutic protocols and mechanisms. NEUROPROTECTION 2024; 2:16-32. [DOI: 10.1002/nep3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by gradual deterioration of cognitive functions, for which an effective treatment is currently unavailable. Repetitive transcranial magnetic stimulation (rTMS), a well‐established noninvasive brain stimulation method, is utilized in clinical settings to address various neuropsychiatric conditions, such as depression, neuropathic pain, and poststroke dysfunction. Increasing evidence suggests that rTMS may enhance cognitive abilities in individuals with AD. However, its optimal therapeutic protocols and precise mechanisms are currently unknown, impeding its clinical implementation. In the present review, we aimed to summarize and discuss the efficacy‐related parameters in rTMS treatment, encompassing stimulus frequency, stimulus pattern, stimulus intensity, and the configuration of the stimulus coil. Furthermore, we reviewed promising rTMS therapeutic protocols involving various combinations of these factors, that were examined in clinical studies. Based on our analysis, we propose that a multisite high‐frequency rTMS (HF‐rTMS) regimen has value in AD therapy, and that promising single‐site protocols, such as HF‐rTMS, applied over the left dorsolateral prefrontal cortex, precuneus, or cerebellum are required to be validated in larger clinical studies. Lastly, we provide a comprehensive review of the potential mechanisms underlying the neuroprotective effects of rTMS on cognition in AD in terms of brain network modulation as well as cellular and molecular reactions. In conclusion, the interaction of diverse mechanisms may be responsible for the total therapeutic effect of rTMS on AD. This review provides theoretical and practical evidence for the future clinical application and scientific research of rTMS in AD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
- Department of Rehabilitation Medicine General Hospital of Southern Theatre Command of PLA Guangzhou China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyan Yuan
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
17
|
Zhu Y, Huang H, Chen Z, Tao Y, Liao LY, Gao SH, Wang YJ, Gao CY. Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice. Neurosci Bull 2024; 40:182-200. [PMID: 37578635 PMCID: PMC10838862 DOI: 10.1007/s12264-023-01098-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 08/15/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Chen
- Department of Special Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
18
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
19
|
Zhang Y, Pang N, Huang X, Meng W, Meng L, Zhang B, Jiang Z, Zhang J, Yi Z, Luo Z, Wang Z, Niu L. Ultrasound deep brain stimulation decelerates telomere shortening in Alzheimer's disease and aging mice. FUNDAMENTAL RESEARCH 2023; 3:469-478. [PMID: 38933758 PMCID: PMC11197585 DOI: 10.1016/j.fmre.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023] Open
Abstract
Telomere length is a reliable biomarker for health and longevity prediction in both humans and animals. The common neuromodulation techniques, including deep brain stimulation (DBS) and optogenetics, have excellent spatial resolution and depth penetration but require implementation of electrodes or optical fibers. Therefore, it is important to develop methods for noninvasive modulation of telomere length. Herein, we reported on a new method for decelerating telomere shortening using noninvasive ultrasound deep brain stimulation (UDBS). Firstly, we found that UDBS could activate the telomerase-associated proteins in normal mice. Then, in the Alzheimer's disease mice, UDBS was observed to decelerate telomere shortening of the cortex and myocardial tissue and to effectively improve spatial learning and memory abilities. Similarly, UDBS was found to significantly slow down telomere shortening of the cortex and peripheral blood, and improve motor and cognitive functions in aging mice. Finally, transcriptome analysis revealed that UDBS upregulated the neuroactive ligand-receptor interaction pathway. Overall, the present findings established the critical role of UDBS in delaying telomere shortening and indicated that ultrasound modulation of telomere length may constitute an effective therapeutic strategy for aging and aging-related diseases.
Collapse
Affiliation(s)
- Yaya Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Na Pang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Dongguan University of Technology, Dongguan 523808, China
| | - Wen Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhengye Jiang
- School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai 200120, China
| | - Zhou Yi
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai 200120, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai 200120, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
- School of Medicine, Xiamen University, Xiamen 361000, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Ramazanova I, Suslov M, Sibgatullina G, Petrov K, Fedorenko S, Mustafina A, Samigullin D. Manipulation of New Fluorescent Magnetic Nanoparticles with an Electromagnetic Needle, Allowed Determining the Viscosity of the Cytoplasm of M-HeLa Cells. Pharmaceuticals (Basel) 2023; 16:200. [PMID: 37259349 PMCID: PMC9965334 DOI: 10.3390/ph16020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 04/17/2025] Open
Abstract
Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN). The present work aimed to demonstrate the methodological and technical approach for manipulating the local magnetic field gradient, generated by EN, novel luminescent MNPs internalized in HeLa cancer cells. The controlling of the magnetic field intensity and estimation of the attractive force of EN was demonstrated. Both designs of EN and their main characteristics are also described. Depending on the distance and applied voltage, the attractive force ENs ranged from 0.056 ± 0.002 to 37.85 ± 3.40 pN. As a practical application of the presented, the evaluation of viscous properties of the HeLa cell's cytoplasm, based on the measurement of the movement rate of MNPs inside cells under impact of a known magnetic force, was carried out; the viscosity was 1.45 ± 0.04 Pa·s.
Collapse
Affiliation(s)
- Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia
| | - Maxim Suslov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia
| | - Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, 420111 Kazan, Russia
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., 420111 Kazan, Russia
| |
Collapse
|
21
|
Central Nervous System Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
22
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
23
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
24
|
Fan H. Central Nervous System Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_29-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Revisiting the Potential Functionality of the MagR Protein. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings have sparked great interest in the putative magnetic receptor protein MagR. However, in vivo experiments have revealed no magnetic moment of MagR at room temperature. Nevertheless, the interaction of MagR and MagR fusion proteins with silica-coated magnetite beads have proven useful for protein purification. In this study, we recombinantly produced two different MagR proteins in Escherichia coli BL21(DE3) to (1) expand earlier protein purification studies, (2) test if MagR can magnetize whole E. coli cells once it is expressed to a high cytosolic, soluble titer, and (3) investigate the MagR-expressing E. coli cells’ magnetic properties at low temperatures. Our results show that MagR induces no measurable, permanent magnetic moment in cells at low temperatures, indicating no usability for cell magnetization. Furthermore, we show the limited usability for magnetic bead-based protein purification, thus closing the current knowledge gap between theoretical considerations and empirical data on the MagR protein.
Collapse
|
26
|
Suhail M, Khan A, Rahim MA, Naeem A, Fahad M, Badshah SF, Jabar A, Janakiraman AK. Micro and nanorobot-based drug delivery: an overview. J Drug Target 2021; 30:349-358. [PMID: 34706620 DOI: 10.1080/1061186x.2021.1999962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Progress in the drug delivery system in the last few decades has led to many advancements for efficient drug delivery. Both micro and nanorobots, are regarded as superior drug delivery systems to deliver drugs efficiently by altering other forms of energy into propulsion and movements. Furthermore, it can be advantageous as it is directed to targeted sites beneath physiological environments and conditions. They have been validated to possess the capability to encapsulate, transport, and supply therapeutic contents directly to the disease sites, thus enhancing the therapeutic efficiency and decreasing systemic side effects of the toxic drugs. This review discusses about the microand nanorobots for the diagnostics and management of diseases, types of micro, and nanorobots, role of robots in drug delivery, and its biomedical applications.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Arshad Khan
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Muhammad Fahad
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University D.I.Khan, Dera Ismail Khan, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Jabar
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| |
Collapse
|
27
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
28
|
Liu X, Chen G, He J, Wan G, Shen D, Xia A, Chen F. Transcriptomic analysis reveals the inhibition of reproduction in rice brown planthopper, Nilaparvata lugens, after silencing the gene of MagR (IscA1). INSECT MOLECULAR BIOLOGY 2021; 30:253-263. [PMID: 33410574 DOI: 10.1111/imb.12692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
MagR (IscA1) is a member of the iron-sulphur cluster assembly proteins, which plays vital roles in many physiological processes, such as energy metabolism, electron transfer, iron homeostasis, heme biosynthesis and physiologically magnetic response. Its deletion leads to the loss of mitochondrial DNA, inactivation of iron-sulphur proteins and abnormal embryonic development in organisms. However, the physiological roles of MagR in insects are unclear. This study characterized the effects and molecular regulatory mechanism of MagR gene silencing on the reproduction of brachypterous female adults of Nilaparvata lugens. After silencing the MagR gene using RNAi approach, the duration of reproductive period was shortened and the fecundity and hatchability reduced significantly. A total of 479 differentially expressed genes (DEGs) were identified for female adults after 2 days of dsRNA injection through RNA-sequencing technology, including 352 significantly upregulated DEGs and 127 significantly downregulated DEGs, among which 44 DEGs were considered the key genes involved in the effects of NlMagR silencing on the reproduction, revealing the regulatory mechanism of MagR at RNA transcription level and providing a new strategy for the control of N. lugens.
Collapse
Affiliation(s)
- X Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Wan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - D Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - A Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Zheng Y, Zhao W, Ma X, Dong L, Tian L, Zhou M. Comparison of ELF-EMFs stimulation with current stimulation on the regulation of LTP of SC-CA1 synapses in young rat hippocampus. Int J Radiat Biol 2021; 97:1032-1041. [PMID: 33970763 DOI: 10.1080/09553002.2021.1928781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Long-term potentiation (LTP) is an important functional indicator for synaptic plasticity. Extremely low frequency electromagnetic fields (ELF-EMFs) are a physical means to regulate LTP, which induce induced currents. It is unknown whether induced current is the key factor when LTP is regulated by ELF-EMFs.New Method: A method is proposed for calculating the current value induced by ELF-EMFs. Then, a comparison of ELF-EMFs with current on the regulation of theta-burst or high-frequency stimulation (TBS/HFS)-LTP was performed. RESULTS The LTP after ELF-EMFs and μA current regulation was significantly reduced. The regulatory effect of 0.1 μA current on LTP was similar with 100 Hz/2 mT ELF-EMFs, while 0.2 μA had a stronger regulatory effect than 200 Hz/2 mT on HFS-LTP.Comparison with Existing Methods: Most of the existing methods were used to calculate the induced current in human models, while we present a more accurate model for calculating the induced current induced by ELF-EMFs in the rat brain slices. CONCLUSIONS This work indicated that μA current and ELF-EMFs stimulation reduced LTP. Also, we demonstrated that the regulatory effect of ELF-EMFs on LTP is not entirely deriving from the induced current, since its magnetic mechanism might have played a certain role.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Xiaoxu Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Abstract
Increased control of biological growth and form is an essential gateway to transformative medical advances. Repairing of birth defects, restoring lost or damaged organs, normalizing tumors, all depend on understanding how cells cooperate to make specific, functional large-scale structures. Despite advances in molecular genetics, significant gaps remain in our understanding of the meso-scale rules of morphogenesis. An engineering approach to this problem is the creation of novel synthetic living forms, greatly extending available model systems beyond evolved plant and animal lineages. Here, we review recent advances in the emerging field of synthetic morphogenesis, the bioengineering of novel multicellular living bodies. Emphasizing emergent self-organization, tissue-level guided self-assembly, and active functionality, this work is the essential next generation of synthetic biology. Aside from useful living machines for specific functions, the rational design and analysis of new, coherent anatomies will greatly increase our understanding of foundational questions in evolutionary developmental and cell biology.
Collapse
Affiliation(s)
- Mo R. Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, A809B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
31
|
Xiong X, Liu Y, Zhang J, Wang S, Li L, Gao M. Mutational analysis of MpPhy reveals magnetoreception and photosensitivity involvement in secondary metabolites biosynthesis in Monascus purpureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112164. [PMID: 33676287 DOI: 10.1016/j.jphotobiol.2021.112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Light or low frequency magnetic field (LF-MF) as one of the cultivation environments affects secondary metabolites (SMs) production of M. purpureus. Phytochrome (Phy) is a hybrid histidine kinase possessing dual properties of photoreceptor and kinase to sense red and far-red light. The interaction effects of LF-MF and light on SMs of M. purpureus was investigated by knocking out the Phy-like gene in M. purpureus (MpPhy) by homologous recombination. A MpPhy-deletion (ΔMpPhy) strain produced less Monascus pigments (MPs) and monacolin K (mon K) than the wild-type (WT) strain and reduced citrinin production by 78.3% on 10th day but didn't affect the biomass. These results indicated that the MpPhy gene is involved in SMs biosynthesis of M. purpureus. MPs production in WT was decreased significantly when the inoculum was exposed to white/blue/green/red light (500 Lux). But it in ΔMpPhy was no significant difference when exposed to white/red light. The colony size of ΔMpPhy was smaller on potato dextrose agar media containing 0.01% SDS. These results indicated that the deletion of MpPhy gene affected the aerial hyphae and increased sensitivity to cell membrane stress but decreased sensitivity to red light. The inoculum of both WT and ΔMpPhy was exposure to the LF-MF (50 Hz). The accumulation of WT secondary metabolites was not changed, while SMs production of ΔMpPhy was significantly enhanced under exposed to 2.0 mT LF-MF. This indicated that the decrease of SMs caused by the deletion of MpPhy gene was restored by LF-MF. It revealed that there is a crosstalk between magnetoreception and photosensitivity.
Collapse
Affiliation(s)
- Xiaoqian Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jialan Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
32
|
Lei H, Pan Y, Wu R, Lv Y. Innate Immune Regulation Under Magnetic Fields With Possible Mechanisms and Therapeutic Applications. Front Immunol 2020; 11:582772. [PMID: 33193393 PMCID: PMC7649827 DOI: 10.3389/fimmu.2020.582772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
With the wide applications of magnetic fields (MFs) in medicine, researchers from different disciplines have gained interest in understanding the effect of various types of MFs on living cells and organisms. In this paper, we mainly focus on the immunological and physical aspects of the immune responses and their mechanisms under different types of MFs. Immune cells were slightly affected by low-frequency alternating MFs but were strongly influenced by moderate-intensity MFs and high-gradient MFs (HGMFs). Larger immune cells, such as macrophages, were more sensitive to HGMFs, which biased the cell polarization into the anti-inflammatory M2 phenotype. Subject to the gradient forces of varying directions and strength, the elongated M2 macrophage also remodeled the cytoskeleton with actin polymerization and changed the membrane receptors and ion channel gating. These alterations were very similar to changes caused by the small GTPase RhoA interference in macrophage. Regulation of iron metabolism may also contribute to the MF effects in macrophages. High MFs were found to regulate the iron content in monocyte-/macrophage-derived osteoclasts by affecting the expression of iron-regulation genes. On the other hand, paramagnetic nanoparticles (NPs) combined with external MFs play an important role in T-cell immunity. Paramagnetic NP-coated T-cells can cluster their T-cell receptors (TCRs) by using an external MF, thus increasing the cell–cell contact and communication followed by enhanced tumor killing capacity. The external MF can also guide the adoptively transferred magnetic NP-coated T-cells to their target sites in vivo, thus dramatically increasing the efficiency of cell therapy. Additionally, iron oxide NPs for ferroptosis-based cancer therapy and other MF-related therapeutic applications with obstacles were also addressed. Furthermore, for a profound understanding of the effect of MFs on immune cells, multidisciplinary research involving both experimental research and theoretical modeling is essential.
Collapse
Affiliation(s)
- Hong Lei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Pan
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Chen G, Zhuo Y, Tao B, Liu Q, Shang W, Li Y, Wang Y, Li Y, Zhang L, Fang Y, Zhang X, Fang Z, Yu Y. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs. Stem Cell Res Ther 2020; 11:487. [PMID: 33198804 PMCID: PMC7667787 DOI: 10.1186/s13287-020-02004-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteoporosis is a common metabolic bone disease without effective treatment. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to differentiate into multiple cell types. Increased adipogenic differentiation or reduced osteogenic differentiation of BMSCs might lead to osteoporosis. Whether static magnetic fields (SMFs) might influence the adipo-osteogenic differentiation balance of BMSCs remains unknown. Methods The effects of SMFs on lineage differentiation of BMSCs and development of osteoporosis were determined by various biochemical (RT-PCR and Western blot), morphological (staining and optical microscopy), and micro-CT assays. Bioinformatics analysis was also used to explore the signaling pathways. Results In this study, we found that SMFs (0.2–0.6 T) inhibited the adipogenic differentiation of BMSCs but promoted their osteoblastic differentiation in an intensity-dependent manner. Whole genomic RNA-seq and bioinformatics analysis revealed that SMF (0.6 T) decreased the PPARγ-mediated gene expression but increased the RUNX2-mediated gene transcription in BMSCs. Moreover, SMFs markedly alleviated bone mass loss induced by either dexamethasone or all-trans retinoic acid in mice. Conclusions Taken together, our results suggested that SMF-based magnetotherapy might serve as an adjunctive therapeutic option for patients with osteoporosis. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-02004-y.
Collapse
Affiliation(s)
- Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yujuan Zhuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yinxiu Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
34
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Dan K, Chan SY, Young DJ, Loh XJ. Recent innovations in artificial skin. Biomater Sci 2020; 8:776-797. [PMID: 31820749 DOI: 10.1039/c9bm01445d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The skin is a "smart", multifunctional organ that is protective, self-healing and capable of sensing and many forms of artificial skins have been developed with properties and functionalities approximating those of natural skin. Starting from specific commercial products for the treatment of burns, progress in two fields of research has since allowed these remarkable materials to be viable skin replacements for a wide range of dermatological conditions. This review maps out the development of bioengineered skin replacements and synthetic skin substitutes, including electronic skins. The specific behaviors of these skins are highlighted, and the performances of both types of artificial skins are evaluated against this. Moving beyond mere replication, highly advanced artificial skin materials are also identified as potential augmented skins that can be used as flexible electronics for health-care monitoring and other applications.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, A*STAR, 2Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Moderate static magnetic fields enhance antitumor CD8 + T cell function by promoting mitochondrial respiration. Sci Rep 2020; 10:14519. [PMID: 32884074 PMCID: PMC7471296 DOI: 10.1038/s41598-020-71566-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
With the discovery of magnetoreceptor mechanisms in animals, it materialized the novel applications of controlling cell and animal behaviors using magnetic fields. T cells have shown to be sensitive to magnetic fields. Here, we reported that exposure to moderate SMFs (static magnetic fields) led to increased granule and cytokine secretion as well as ATP production and mitochondrial respiration from CD8+ T cells. These effects were inhibited by knocking down the Uqcrb and Ndufs6 genes of mitochondrial respiratory chain, whose transcriptions were regulated by candidate magnetoreceptor genes Isca1 and Cry1/Cry2. SMF exposure also promoted CD8+ T cell granule and cytokine secretion and repressed tumor growth in vivo. SMFs enhanced CD8+ T cell cytotoxicity, and the adoptive transfer into tumor-bearing mice resulted in enhanced antitumor effects. Collectively, our study suggests that moderate SMFs enhance CD8+ T cell cytotoxicity by promoting mitochondrial respiration and promoted the antitumor function of CD8+ T cells.
Collapse
|
36
|
Corbett DC, Fabyan WB, Grigoryan B, O'Connor CE, Johansson F, Batalov I, Regier MC, DeForest CA, Miller JS, Stevens KR. Thermofluidic heat exchangers for actuation of transcription in artificial tissues. SCIENCE ADVANCES 2020; 6:6/40/eabb9062. [PMID: 32998880 PMCID: PMC7527231 DOI: 10.1126/sciadv.abb9062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 05/12/2023]
Abstract
Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call "heat exchangers for actuation of transcription" (HEAT). This approach leverages fluid-based heat transfer from printed networks in the tissues to activate heat-inducible transgenes expressed by embedded cells. We show that gene expression patterning can be tuned both spatially and dynamically by varying channel network architecture, fluid temperature, fluid flow direction, and stimulation timing in a user-defined manner and maintained in vivo. We apply this approach to activate the 3D positional expression of Wnt ligands and Wnt/β-catenin pathway regulators, which are major regulators of development, homeostasis, regeneration, and cancer throughout the animal kingdom.
Collapse
Affiliation(s)
- Daniel C Corbett
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Wesley B Fabyan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Colleen E O'Connor
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Fredrik Johansson
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Ivan Batalov
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Mary C Regier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Metasuk A, Kitiyanant N, Chetsawang B. Expression of nano-ferritin in neuronal cells encompassed by minimal Arc promoter system. Biochem Biophys Res Commun 2020; 526:574-579. [PMID: 32247609 DOI: 10.1016/j.bbrc.2020.03.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022]
Abstract
Genetic engineering for neuronal cell activity labeling and neuronal cell activity modulation are invaluable for elucidating the underlying characteristics of the brain and neurons. In this study, ferritin fusion protein (FFP) was combined with Tet expression construct under a modified immediate-early gene (IEG) Arc/Arg3.1 promoter so-called SARE-ArcMin. This expression system is a neuronal activity-dependent expression module for nano-ferritin, a radio/magnetic wave-sensitive protein well-accepted as a potential recombinant neuronal actuator. The system was characterized in transcriptional and translational levels in human neuroblastoma SH-SY5Y cells. The mRNA and protein expression levels of nano-ferritin were significant in the activated neurons suggesting that the activity dependent expression patterns of the ferritin also acted as a neuronal cell activation indicator. The system sufficed the need for precise neuronal cell activity specific expression and demonstrated a platform that suggested the use of the nano-ferritin for the study of neuronal cells.
Collapse
Affiliation(s)
- Akara Metasuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
38
|
Gamboa L, Zamat AH, Kwong GA. Synthetic immunity by remote control. Theranostics 2020; 10:3652-3667. [PMID: 32206114 PMCID: PMC7069089 DOI: 10.7150/thno.41305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.
Collapse
Affiliation(s)
- Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Ali H. Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
39
|
Shao Y, Tian HY, Zhang JJ, Kharrati-Koopaee H, Guo X, Zhuang XL, Li ML, Nanaie HA, Dehghani Tafti E, Shojaei B, Reza Namavar M, Sotoudeh N, Oluwakemi Ayoola A, Li JL, Liang B, Esmailizadeh A, Wang S, Wu DD. Genomic and Phenotypic Analyses Reveal Mechanisms Underlying Homing Ability in Pigeon. Mol Biol Evol 2020; 37:134-148. [PMID: 31501895 DOI: 10.1093/molbev/msz208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | | | - Elahe Dehghani Tafti
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bahador Shojaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Narges Sotoudeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shu Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
40
|
Wang G, Zhang P, Mendu SK, Wang Y, Zhang Y, Kang X, Desai BN, Zhu JJ. Revaluation of magnetic properties of Magneto. Nat Neurosci 2019; 23:1047-1050. [PMID: 31570862 DOI: 10.1038/s41593-019-0473-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suresh K Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yali Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yajun Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xi Kang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
41
|
Sardoiwala MN, Srivastava AK, Karmakar S, Roy Choudhury S. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chem Neurosci 2019; 10:3375-3385. [PMID: 31244053 DOI: 10.1021/acschemneuro.9b00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Optogenetics have evolved as a promising tool to control the processes at a cellular level via photons. Specially, it confers a specific control over cellular function through real-time cytomodulation even in freely moving animals. Neuronal stimulation is prerequisite for deep tissue light penetration or insertion of optrode for light illumination to the neurons that have been proven to be compromised due to poor light penetration and invasiveness of the procedure, respectively. In this review, the application of nanotechnology is being elaborated by the use of metal nanoparticles (AuNPs), upconversion nanocrystals (UCNPs), and quantum dots (CdSe) for targeting particular organs or tissues, and their potential to emit a specific light on excitation to overcome the limitations associated with earlier methods has been elucidated. The optothermal and magnetothermal properties, photoluminescence, and higher photostability of nanomaterials are explored in context of therapeutic applicability of optogenetics. The nanostructure characteristics and specific ion channel targeting have shown promising therapeutic potential against neurodegenerative disorders (Alzheimer's, Parkinson's, Huntington's), epilepsy, and blindness. This review compiles mechanical and optical characteristics of nanomaterials that endow superior optogenetic therapeutic potentials to cure immedicable infirmities.
Collapse
Affiliation(s)
| | - Anup K. Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| |
Collapse
|
42
|
Abstract
Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.
Collapse
Affiliation(s)
- Michael G Christiansen
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, 8093 Zürich, Switzerland
| | - Alexander W Senko
- Department of Materials Science and Engineering, Research Laboratory of Electronics, and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Research Laboratory of Electronics, and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
43
|
Yang X, Lu D, Zhang X, Chen W, Gao S, Dong W, Ma Y, Zhang L. Knockout of ISCA1 causes early embryonic death in rats. Animal Model Exp Med 2019; 2:18-24. [PMID: 31016283 PMCID: PMC6431120 DOI: 10.1002/ame2.12059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Iron-sulfur cluster assembly 1 (ISCA1) is an iron-sulfur (Fe/S) carrier protein that accepts Fe/S from a scaffold protein and transfers it to target proteins including the mitochondrial Fe/S containing proteins. ISCA1 is also the newly identified causal gene for multiple mitochondrial dysfunctions syndrome (MMDS). However, our knowledge about the physiological function of ISCA1 in vivo is currently limited. In this study, we generated an ISCA1 knockout rat line and analyzed the embryo development. METHODS ISCA1 knockout rats were generated by replacing the exon1 of ISCA1 gene with the mCherry-Cre fusion gene using CRISPR-Cas9 technology. The ISCA1 expression pattern was analyzed by fluorescence imaging using ISCA1 promotor driven Cre and mCherry expression. The embryonic morphology was examinated by microscope and mitochondrial proteins were tested by Western blot. RESULTS An ISCA1 knockout rat line was obtained, which expressed mCherry-Cre fusion protein. Both of the fluorescence images from mCherry and Cre induced mCherry in a reporter rat strain, showing that ISCA1 expressed in most of the tissues in rats. The ISCA1 knockout resulted in abnormal development at 8.5 days, with a significant decrease of NDUFA9 protein and an increase of aconitase 2 (ACO2) in rat embryos. CONCLUSION Deletion of ISCA1 induced early death in rats. ISCA1 affected the expression of key proteins in the mitochondrial respiratory chain complex, suggesting that ISCA1 has an important influence on the respiratory complex and energy metabolism.
Collapse
Affiliation(s)
- Xinlan Yang
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Dong
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Neuroscience CenterChinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Neuroscience CenterChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
44
|
Low ZWK, Li Z, Owh C, Chee PL, Ye E, Kai D, Yang DP, Loh XJ. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805453. [PMID: 30690897 DOI: 10.1002/smll.201805453] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Artificial skin devices are able to mimic the flexibility and sensory perception abilities of the skin. They have thus garnered attention in the biomedical field as potential skin replacements. This Review delves into issues pertaining to these skin-deep devices. It first elaborates on the roles that these devices have to fulfill as skin replacements, and identify strategies that are used to achieve such functionality. Following which, a comparison is done between the current state of these skin-deep devices and that of natural skin. Finally, an outlook on artificial skin devices is presented, which discusses how complementary technologies can create skin enhancements, and what challenges face such devices.
Collapse
Affiliation(s)
- Zhi Wei Kenny Low
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, Fujian Province, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
45
|
Xia Y, Chen H, Zhao Y, Zhang F, Li X, Wang L, Weir MD, Ma J, Reynolds MA, Gu N, Xu HHK. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:30-41. [PMID: 30813031 DOI: 10.1016/j.msec.2018.12.120] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. To date, there has been no report on osteoinductivity of IONP-incorporated calcium phosphate cement (IONP-CPC) scaffold on stem cells using an exterior static magnetic field (SMF). The objectives of this study were to: (1) develop a novel magnetic IONP-CPC construct for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of human dental pulp stem cells (hDPSCs) seeded on IONP-CPC scaffold for the first time. The novel magnetic IONP-CPC under SMF enhanced the cellular performance of hDPSCs, yielding greater alkaline phosphatase activities (about 3-fold), increased expressions of osteogenic marker genes, and more cell-synthesized bone minerals (about 2.5-fold), compared to CPC control and nonmagnetic IONP-CPC. In addition, IONP-CPC induced more active osteogenesis than CPC control in rat mandible defects. These results were consistent with the enhanced cellular performance by magnetic IONP in media under SMF. Moreover, nano-aggregates were detected inside the cells by transmission electron microscopy (TEM). Therefore, the enhanced cell performance was attributed to the physical forces generated by the magnetic field together with cell internalization of the released magnetic nanoparticles from IONP-CPC constructs.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yantao Zhao
- Beijing Engineering Research Center of Orthopedic Implants, First Affiliated Hospital of CPLA General Hospital, Beijing 100048, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greene Baum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Long X, Zhang SJ. Commentary: MagR Alone Is Insufficient to Confer Cellular Calcium Responses to Magnetic Stimulation. Front Neural Circuits 2018; 12:97. [PMID: 30483065 PMCID: PMC6240619 DOI: 10.3389/fncir.2018.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
47
|
Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics. Behav Pharmacol 2018; 28:598-609. [PMID: 29099403 DOI: 10.1097/fbp.0000000000000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics was the method of the year in 2010 according to Nature Neuroscience. Since then, this method has become widespread, the use of virally delivered genetic tools has extended to other fields such as pharmacogenetics, and optogenetic techniques have become frequently applied in genetically manipulated animals for in-vivo circuit analysis and behavioral studies. However, several issues should be taken into consideration when planning such experiments. We aimed to summarize the critical points concerning optogenetic manipulation of a specific brain area in mutant mice. First, the appropriate vector should be chosen to allow optimal optogenetic manipulation. Adeno-associated viral vectors are the most common carriers with different available serotypes. Light-sensitive channels are available in many forms, and the expression of the delivered genetic material can be influenced in many ways. Second, selecting the adequate stimulation protocol is also essential. The pattern, intensity, and timing could be determinative parameters. Third, the mutant strain might have a phenotype that influences the observed behavior. In conclusion, detailed preliminary experiments and numerous control groups are required to choose the best vector and stimulation protocol and to ensure that the mutant animals do not have a specific phenotype that can influence the examined behavior.
Collapse
|
48
|
Krishnan V, Park SA, Shin SS, Alon L, Tressler CM, Stokes W, Banerjee J, Sorrell ME, Tian Y, Fridman GY, Celnik P, Pevsner J, Guggino WB, Gilad AA, Pelled G. Wireless control of cellular function by activation of a novel protein responsive to electromagnetic fields. Sci Rep 2018; 8:8764. [PMID: 29884813 PMCID: PMC5993716 DOI: 10.1038/s41598-018-27087-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/24/2018] [Indexed: 11/26/2022] Open
Abstract
The Kryptopterus bicirrhis (glass catfish) is known to respond to electromagnetic fields (EMF). Here we tested its avoidance behavior in response to static and alternating magnetic fields stimulation. Using expression cloning we identified an electromagnetic perceptive gene (EPG) from the K. bicirrhis encoding a protein that responds to EMF. This EPG gene was cloned and expressed in mammalian cells, neuronal cultures and in rat’s brain. Immunohistochemistry showed that the expression of EPG is confined to the mammalian cell membrane. Calcium imaging in mammalian cells and cultured neurons expressing EPG demonstrated that remote activation by EMF significantly increases intracellular calcium concentrations, indicative of cellular excitability. Moreover, wireless magnetic activation of EPG in rat motor cortex induced motor evoked responses of the contralateral forelimb in vivo. Here we report on the development of a new technology for remote, non-invasive modulation of cell function.
Collapse
Affiliation(s)
- Vijai Krishnan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, 48823, USA.,The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Sarah A Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Lina Alon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - William Stokes
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Jineta Banerjee
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Mary E Sorrell
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA.,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yuemin Tian
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Gene Y Fridman
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - William B Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Assaf A Gilad
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA. .,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA. .,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, 48823, USA. .,The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48823, USA. .,Department of Radiology, Michigan State University, East Lansing, Michigan, 48823, USA.
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA. .,Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, 48823, USA. .,The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48823, USA. .,Department of Radiology, Michigan State University, East Lansing, Michigan, 48823, USA.
| |
Collapse
|
49
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
50
|
Serruya MD, Harris JP, Adewole DO, Struzyna LA, Burrell JC, Nemes A, Petrov D, Kraft RH, Chen HI, Wolf JA, Cullen DK. Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701183. [PMID: 34045935 PMCID: PMC8152180 DOI: 10.1002/adfm.201701183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
Collapse
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James P Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ashley Nemes
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Reuben H Kraft
- Computational Biomechanics Group, Department of Mechanical & Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|