1
|
Bright F, Katzeff JS, Hodges JR, Piguet O, Kril JJ, Halliday GM, Kim WS. Glycoprotein Pathways Altered in Frontotemporal Dementia With Autoimmune Disease. Front Immunol 2021; 12:736260. [PMID: 34539672 PMCID: PMC8440893 DOI: 10.3389/fimmu.2021.736260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a younger onset form of neurodegeneration initiated in the frontal and/or temporal lobes with a slow clinical onset but rapid progression. bvFTD is highly complex biologically with different pathological signatures and genetic variants that can exhibit a spectrum of overlapping clinical manifestations. Although the role of innate immunity has been extensively investigated in bvFTD, the involvement of adaptive immunity in bvFTD pathogenesis is poorly understood. We analyzed blood serum proteomics to identify proteins that are associated with autoimmune disease in bvFTD. Eleven proteins (increased: ATP5B, CALML5, COLEC11, FCGBP, PLEK, PLXND1; decreased: APOB, ATP8B1, FAM20C, LOXL3, TIMD4) were significantly altered in bvFTD with autoimmune disease compared to those without autoimmune disease. The majority of these proteins were enriched for glycoprotein-associated proteins and pathways, suggesting that the glycome is targeted in bvFTD with autoimmune disease.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jared S Katzeff
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Meshginfar N, Tavakoli H, Dornan K, Hosseinian F. Phenolic lipids as unique bioactive compounds: a comprehensive review on their multifunctional activity toward the prevention of Alzheimer's disease. Crit Rev Food Sci Nutr 2020; 61:1394-1403. [PMID: 32363900 DOI: 10.1080/10408398.2020.1759024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phenolic lipids are multifunctional compounds which play an important biological role in the body. Their unique biologic functionality stems from their strong amphiphilic character which allows them to be incorporated in erythrocytes. Through membrane incorporation, these compounds exert their biological effects on neurons which are not modulated by hydrophilic compounds. These bioactive compounds are present in nature as secondary plant metabolites, and consequently their availability is limited, for dietary and medical purposes. In this review, the pathways and mechanisms associated with the pathogenesis of Alzheimer's disease will be described. In addition, the modulatory effects of phenolic lipids on these pathways and a list of several synthetic, semi synthetic and natural sources of phenolic lipids will be examined as having the potential to prevent or combat Alzheimer's disease.
Collapse
Affiliation(s)
- Nasim Meshginfar
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Hamed Tavakoli
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Kelly Dornan
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Farah Hosseinian
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada.,Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Delivanoglou N, Boziki M, Theotokis P, Kesidou E, Touloumi O, Dafi N, Nousiopoulou E, Lagoudaki R, Grigoriadis N, Charalampopoulos I, Simeonidou C. Spatio-temporal expression profile of NGF and the two-receptor system, TrkA and p75NTR, in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:41. [PMID: 31996225 PMCID: PMC6990493 DOI: 10.1186/s12974-020-1708-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course. METHODS EAE was induced in C57BL/6 mice 6-8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20-22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system. RESULTS Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN+ cells, GAP-43+ axons, GFAP+ cells, Arginase1+ cells, and Mac3+ cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase+ cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220+ cells) and no expression on T lymphocytes was noticed. CONCLUSION Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation/genetics
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Nerve Growth Factor/biosynthesis
- Nerve Growth Factor/genetics
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Nickoleta Delivanoglou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolina Dafi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Charalampopoulos
- Laboratory of Pharmacology, Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
4
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc Natl Acad Sci U S A 2016; 113:9587-92. [PMID: 27482083 DOI: 10.1073/pnas.1610099113] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.
Collapse
|
6
|
ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases. Med Hypotheses 2016; 88:38-45. [PMID: 26880635 DOI: 10.1016/j.mehy.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.
Collapse
|
7
|
Lee YE, An J, Lee KH, Kim SS, Song HJ, Pyeon H, Nam H, Kang K, Joo KM. The Synergistic Local Immunosuppressive Effects of Neural Stem Cells Expressing Indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model. PLoS One 2015; 10:e0144298. [PMID: 26636969 PMCID: PMC4670164 DOI: 10.1371/journal.pone.0144298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/16/2015] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression Regulation, Enzymologic/immunology
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Neural Stem Cells/immunology
- Neural Stem Cells/transplantation
- Rats
- Rats, Sprague-Dawley
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Young Eun Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeyeol An
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kee-Hang Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Su Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejang Pyeon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeongjin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KMJ); (KK)
| | - Kyeung Min Joo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (KMJ); (KK)
| |
Collapse
|
8
|
Faour-Nmarne C, Azab AN. Effects of olanzapine on LPS-induced inflammation in rat primary glia cells. Innate Immun 2015; 22:40-50. [PMID: 26542836 DOI: 10.1177/1753425915613425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
Olanzapine (OLZ) is an atypical antipsychotic drug that also has mood-stabilizing effects. The mechanism of action of OLZ is not fully understood. Accumulating data suggest that inflammation plays a role in the pathophysiology of mental disorders and that psychotropic drugs exhibit some anti-inflammatory properties. This study was undertaken to examine the effects of OLZ on LPS-induced inflammation in rat primary glia cells. Glia cells were extracted from newborn rat brains. OLZ (1 or 50 µM) was added to culture medium at 6 or 72 h before addition of LPS for another 18 h, and levels of IL-10, prostaglandin (PG) E2, NO and TNF-α, and expression of cyclo-oxygensase (COX)-2 and inducible NO synthase (iNOS) were determined. Treatment with 50 µM OLZ (but not 1 µM) significantly decreased LPS-induced secretion of IL-10, PGE2 and TNF-α. In contrast, 50 µM OLZ significantly increased NO levels. OLZ did not alter the expression of COX-2 or iNOS in LPS-treated cells. These results suggest that OLZ differently affects the secretion of inflammatory mediators. Most of the significant effects of OLZ were obtained when 50 µM was used, which is a high and probably therapeutically irrelevant concentration. Therefore, under the conditions used in the present study OLZ seemed to lack a potent anti-inflammatory effect.
Collapse
Affiliation(s)
- Caroline Faour-Nmarne
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. Neural Plast 2015; 2015:130639. [PMID: 26090232 PMCID: PMC4452105 DOI: 10.1155/2015/130639] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.
Collapse
|
10
|
Lisi L, Laudati E, Navarra P, Dello Russo C. The mTOR kinase inhibitors polarize glioma-activated microglia to express a M1 phenotype. J Neuroinflammation 2014; 11:125. [PMID: 25051975 PMCID: PMC4128534 DOI: 10.1186/1742-2094-11-125] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Increased activation of mammalian target of rapamycin (mTOR) is observed in numerous human cancers. Recent studies on the glioma kinome have identified several deregulated pathways that converge and activate mTOR. The available evidence on the role of microglia in CNS cancers would suggest a dual role, a tumoricidal role and -on the contrary- a role favoring tumor growth. METHODS In the present paper, we have compared the effects of μM concentrations of rapamycin (RAPA) and its analog, RAD001 (RAD), on activated microglia; the latter was obtained by exposing cells to conditioned medium harvested either from inflammatory activated glioma cells (LI-CM) or from glioma cells kept under basal conditions (C-CM). RESULTS Here we show that the inhibition of mTOR polarizes glioma-activated microglial cells towards the M1 phenotype, with cytotoxic activities, preventing the induction of the M2 status that promotes tumor growth. In fact RAPA and RAD significantly increased iNOS expression and activity, while on the same time significantly reducing IL-10 gene expression induced by C-CM, thus suggesting that the drugs prevent the acquisition of a M2 phenotype in response to glioma factors promoting a classic M1 activation. Similar results were obtained using the conditioned media obtained after glioma stimulation with LPS-IFNγ (LI-CM), which was found to induce a mixture of M1 and M2a/b polarization phenotypes. In these conditions, the inhibition of mTOR led to a significant up-regulation of iNOS, and in parallel to the down-regulation of both ARG and IL-10 gene expression. CONCLUSIONS These data suggest that mTOR inhibition may prevent glioma induced M2 polarization of microglial cells and increase their cytotoxic potential, possibly resulting in antitumor actions.
Collapse
Affiliation(s)
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, L,go F Vito 1, 00168 Rome, Italy.
| | | |
Collapse
|
11
|
The role of cytokines in Guillain-Barré syndrome. J Neurol 2010; 258:533-48. [PMID: 21104265 DOI: 10.1007/s00415-010-5836-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 10/13/2010] [Accepted: 11/09/2010] [Indexed: 12/17/2022]
Abstract
Cytokines play an important role in the pathogenesis of autoimmune diseases including Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN). In this article, we reviewed the current knowledge of the role of cytokines such as TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-23, IL-17, IL-10, IL-4 and chemokines in GBS and EAN as unraveled by studies both in the clinic and the laboratory. However, these studies occasionally yield conflicting results, highlighting the complex role that cytokines play in the disease process. Efforts to modulate cytokine function in GBS and other autoimmune disease have shown efficiency indicating that cytokines are important therapeutic targets.
Collapse
|
12
|
Członkowska A, Kurkowska-Jastrzębska I. Inflammation and gliosis in neurological diseases--clinical implications. J Neuroimmunol 2010; 231:78-85. [PMID: 20943275 DOI: 10.1016/j.jneuroim.2010.09.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inflammatory reaction accompany all acute processes in the central nervous system (CNS), (as stroke or traumatic brain injury) and chronic neurodegenerative processes (as Parkinson's or Alzheimer's disease), and through the stage of cleaning of damage tissue, contribute to recovery and regeneration and eventually to restoration of the function. However many studies showed that inflammation in the CNS may be harmful because of an excessive vulnerability of the nervous tissue or impaired regulation. Manipulation of the inflammation is now one of the approaches in the treatment of the various diseases of the CNS.
Collapse
Affiliation(s)
- Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | |
Collapse
|
13
|
Schwartz M, Shechter R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry 2010; 15:342-54. [PMID: 20332793 DOI: 10.1038/mp.2010.31] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circulating immune cells support hippocampal neurogenesis, spatial memory, expression of brain-derived neurotrophic factor, and resilience to stress. Nevertheless, considering the immune privileged status of the central nervous system (CNS), such cells were assumed to be excluded from the healthy brain. It is evident, however, that the CNS is continuously surveyed by leukocytes, though their function is still a mystery. Coupling this routine leukocyte trafficking with the function attributed to circulating T cells in brain plasticity led us to propose here that CNS immunosurveillance is an integral part of the functioning brain. Anatomical restriction of selected self-recognizing leukocytes to the brain's borders and fluids (cerebrospinal fluid) not only supports the brain's activity, but also controls the potential aggressiveness of such cells. Accordingly, the brain's 'privilege' is its acquisition of a private peripheral immunological niche under its own control, which supports brain function. Immune malfunction may comprise a missing link between a healthy and diseased mind.
Collapse
Affiliation(s)
- M Schwartz
- The Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
14
|
Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009; 10:235-41. [PMID: 19229242 DOI: 10.1038/nrn2591] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration. Accordingly, scar-modulating treatments have become a leading therapeutic goal in the field of spinal cord injury. However, increasing evidence suggests a beneficial role for this scar tissue as part of the endogenous local immune regulation and repair process. How can these opposing effects be reconciled? Perhaps it is all a matter of timing.
Collapse
Affiliation(s)
- Asya Rolls
- Asya Rolls, Ravid Shechter and Michal Schwartz are at the Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
15
|
Hembury A, Mabondzo A. Endothelin-1 reduces p-glycoprotein transport activity in an in vitro model of human adult blood-brain barrier. Cell Mol Neurobiol 2008; 28:915-21. [PMID: 18379872 PMCID: PMC11515797 DOI: 10.1007/s10571-008-9277-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/13/2008] [Indexed: 02/06/2023]
Abstract
AIMS It is a huge challenge to understand the blood-brain barrier (BBB), which is a key element in neuroinflammation associated with many brain diseases. The BBB also regulates the passage of xenobiotics into the central nervous system (CNS), and therefore influences drug efficacy. This may be due to the presence of ATP binding cassette transporters such as P-glycoprotein (Pgp) on the BBB, which are efflux pumps known to transport many drugs. The peptide endothelin 1 (ET-1) is involved in different kinds of CNS diseases and neuroinflammation, and is known to modulate Pgp transport activity. Although there are data from animal models, data from human models are scarce. We evaluated Pgp expression and transport activity in adult human brain microvascular endothelial cells (HBMECs) when exposing an adult human in vitro BBB model to ET-1. METHODS Adult HBMECs were cocultured with human adult glial cells on a Transwells to mimic blood and CNS compartments. These human in vitro BBBs were exposed for 24 h to 100 nM and 10 nM ET-1. Pgp expression was assessed by flow cytometry and its transport activity by measuring radiolabelled digoxin passage. RESULTS After exposure to ET-1, flow cytometry showed no shift of fluorescence intensity for a Pgp specific antibody. The passage of digoxin increased with a significant decrease of Q ratio for 10 nM ET-1. CONCLUSION Our results show that ET-1 has no effect on Pgp expression of adult HBMECs, but does modulate Pgp transport activity.
Collapse
Affiliation(s)
- Alexandra Hembury
- iBiTec-S (Institut de biologie et technologies de Saclay), SPI (Service de Pharmacologie et Immunoanalyse), LEMM (Laboratoire d'Etudes du Métabolisme des Médicaments), CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|