1
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
2
|
Rao J, Li H, Zhang H, Xiang X, Ding X, Li L, Geng F, Qi H. Periplaneta Americana (L.) extract activates the ERK/CREB/BDNF pathway to promote post-stroke neuroregeneration and recovery of neurological functions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117400. [PMID: 37952730 DOI: 10.1016/j.jep.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periplaneta americana (L.) (PA) has been used in traditional Chinese medicine for thousands of years for the effect of invigorating blood circulation and removing blood stasis. Modern pharmacological research shown that PA extract exhibits promising effects in promoting wound healing and regeneration, as well as in brain diseases such as Parkinson's disease (PD). However, whether it is effective for neuroregeneration and neurological function recovery after stroke still unknown. AIM OF THE STUDY This study aims to investigate the potential effect of PA extract to promote brain remodeling through the activation of endogenous neurogenesis and angiogenesis, in addition, preliminary exploration of its regulatory mechanism. METHODS Firstly, BrdU proliferation assay and immunofluorescence (IF) staining were used to evaluate the effect of PA extract on the neurogenesis and angiogenesis in vitro and in vivo. Subsequently, the effects of PA extract on brain injury in stroke rats were assessed by TTC and HE. While mNSS score, adhesive removal test, rota-rod test, and morris water maze test were used to assess the impact of PA extract on neurological function in post-stroke rats. Finally, the molecular mechanisms of PA extract regulation were explored by RNA-Seq and western blotting. RESULTS The number of BrdU+ cells in C17.2 cells, NSCs and BMECs dramatically increased, as well as the expression of astrocyte marker protein GFAP and neuronal marker protein Tuj-1 in C17.2 and NSCs. Moreover, PA extract also increased the number of BrdU+DCX+, BrdU+GFAP+, BrdU+CD31+ cells in the SGZ area of transient middle cerebral artery occlusion model (tMCAO) rats. TTC and HE staining revealed that PA extract significantly reduced the infarction volume and ameliorated the pathological damage. Behavioral tests demonstrated that treatment with PA extract reduced the mNSS score and the time required to remove adhesive tape, while increasing the time spent on the rotarod. Additionally, in the morris water maze test, the frequency of crossing platform and the time spent in the platform quadrant increased. Finally, RNA-Seq and Western blot revealed that PA extract increased the expression of p-ERK, p-CREB and BDNF. Importantly, PA extract mediated proliferation and differentiation of C17.2 and NSCs reversed by the ERK inhibitor SCH772984 and the BDNF inhibitor ANA-12, respectively. CONCLUSION Our study demonstrated that PA extract promoted neurogenesis and angiogenesis by activating the CREB/ERK signaling pathway and upregulating BDNF expression, thereby recovering neurological dysfunction in post-stroke.
Collapse
Affiliation(s)
- Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongpu Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Haonan Zhang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xinyu Ding
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan, 610000, China.
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Wintermark P, Lapointe A, Steinhorn R, Rampakakis E, Burhenne J, Meid AD, Bajraktari-Sylejmani G, Khairy M, Altit G, Adamo MT, Poccia A, Gilbert G, Saint-Martin C, Toffoli D, Vachon J, Hailu E, Colin P, Haefeli WE. Feasibility and Safety of Sildenafil to Repair Brain Injury Secondary to Birth Asphyxia (SANE-01): A Randomized, Double-blind, Placebo-controlled Phase Ib Clinical Trial. J Pediatr 2024; 266:113879. [PMID: 38142044 DOI: 10.1016/j.jpeds.2023.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE To test feasibility and safety of administering sildenafil in neonates with neonatal encephalopathy (NE), developing brain injury despite therapeutic hypothermia (TH). STUDY DESIGN We performed a randomized, double-blind, placebo-controlled phase Ib clinical trial between 2016 and 2019 in neonates with moderate or severe NE, displaying brain injury on day-2 magnetic resonance imaging (MRI) despite TH. Neonates were randomized (2:1) to 7-day sildenafil or placebo (2 mg/kg/dose enterally every 12 hours, 14 doses). Outcomes included feasibility and safety (primary outcomes), pharmacokinetics (secondary), and day-30 neuroimaging and 18-month neurodevelopment assessments (exploratory). RESULTS Of the 24 enrolled neonates, 8 were randomized to sildenafil and 3 to placebo. A mild decrease in blood pressure was reported in 2 of the 8 neonates after initial dose, but not with subsequent doses. Sildenafil plasma steady-state concentration was rapidly reached, but decreased after TH discontinuation. Twelve percent of neonates (1/8) neonates died in the sildenafil group and 0% (0/3) in the placebo group. Among surviving neonates, partial recovery of injury, fewer cystic lesions, and less brain volume loss on day-30 magnetic resonance imaging were noted in 71% (5/7) of the sildenafil group and in 0% (0/3) of the placebo group. The rate of death or survival to 18 months with severe neurodevelopmental impairment was 57% (4/7) in the sildenafil group and 100% (3/3) in the placebo group. CONCLUSIONS Sildenafil was safe and well-absorbed in neonates with NE treated with TH. Optimal dosing needs to be established. Evaluation of a larger number of neonates through subsequent phases II and III trials is required to establish efficacy. CLINICAL TRIAL REGISTRATION ClinicalTrials.govNCT02812433.
Collapse
Affiliation(s)
- Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada.
| | - Anie Lapointe
- Department of Neonatology, Sainte-Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Robin Steinhorn
- Department of Pediatrics, University of California San Diego, and Rady Children's Hospital, San Diego, CA
| | | | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - May Khairy
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Gabriel Altit
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Marie-Therese Adamo
- Pharmacy Department, McGill University Health Center, Montreal, Québec, Canada
| | - Alishia Poccia
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare, Mississauga, Ontario, Canada
| | | | - Daniela Toffoli
- Department of Ophthalmology, McGill University, Montreal, Québec, Canada
| | - Julie Vachon
- Member of the Ordre des Psychologues du Quebec, Montreal, Québec, Canada
| | - Elizabeth Hailu
- Division of Newborn Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Patrick Colin
- Patrick Colin Consultant Inc, Montreal, Québec, Canada
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Wang H, Zhang Z, Hongpaisan J. PKCε activator protects hippocampal microvascular disruption and memory defect in 3×Tg-Alzheimer's disease mice with cerebral microinfarcts. Front Aging Neurosci 2023; 15:1272361. [PMID: 38187357 PMCID: PMC10768563 DOI: 10.3389/fnagi.2023.1272361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Background Current evidence suggests that microvessel disease is involved in Alzheimer's disease (AD). Cerebrovascular disease correlates with cardiovascular disease and is complicated in ≈40% of AD patients. The protein kinase C (PKC) ε activator DCPLA can stimulate human antigen (Hu) R that prevents degradation and promotes the translation of mitochondrial Mn-superoxide dismutase (MnSOD) and vascular endothelial growth factor-A (VEGF) mRNAs. Methods To induce brain microinfarcts, we injected triple transgenic (3×Tg) and wild-type (WT) control mice with microbeads (20 μm caliber) into common carotid arteries, with or without the DCPLA-ME (methyl-ester) for 2 weeks. After water maze training, mice at 16 months old were examined for confocal immunohistochemistry at a single cell or microvessel level in the hippocampal CA1 area, important for spatial memory storage, and in the dorsal hippocampus by western blots. Results In 3×Tg mice without cerebral microinfarcts, an accelerating age-related increase in (mild) oxidative stress and hypoxia inducible factor (HIF)-1α, but a reduction in VEGF, mitochondrial transcription factor A (TFAM), and MnSOD were associated with capillary loss. The change was less pronounced in arterioles. However, in 3×Tg mice with cerebral microinfarcts, increasing arteriolar diameter and their wall cells were related with the strong oxidative DNA damage 8-hydroxy-2'-deoxyguanosine (8-OHdG), apoptosis (cleaved caspase 3), and sustained hypoxia (increased HIF-1α and VEGF/PKCε/extracellular signal regulated kinase or ERK pathway). Microocclusion enhanced the loss of the synaptic marker spinophilin, astrocytic number, and astrocyte-vascular coupling areas and demyelination of axons. DCPLA-ME prevented spatial memory defect; strong oxidative stress-related apoptosis; sustained hypoxia (by reducing HIF-1α and VEGF); and exaggerated cell repair in arteriolar walls, pericapillary space dilation, neuro-glial-vascular disruption, and demyelination. Conclusion In conclusion, in 3×Tg mice with cerebral microinfarcts, sustained hypoxia (increased HIF-1α and VEGF signals) is dominant with arteriolar wall thickening, and DCPLA has a protective effect on sustained hypoxia.
Collapse
Affiliation(s)
| | | | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Wang H, Zhang Z, Sittirattanayeunyong S, Hongpaisan J. Association of Apolipoprotein E4-related Microvascular Disease in the Alzheimer's Disease Hippocampal CA1 Stratum Radiatum. Neuroscience 2023; 526:204-222. [PMID: 37385335 PMCID: PMC10528415 DOI: 10.1016/j.neuroscience.2023.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Current data suggest a hypothesis of vascular pathogenesis for the development and progression of Alzheimer's disease (AD). To investigate this, we studied the association of apolipoprotein E4 (APOE4) gene on microvessels in human autopsy-confirmed AD with and without APOE4, compared with age/sex-matched control (AC) hippocampal CA1 stratum radiatum. AD arterioles (without APOE4 gene) had mild oxidative stress and loss of vascular endothelial growth factor (VEGF) and endothelial cell density, reflecting aging progression. In AD + APOE4, an increase in strong oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), VEGF, and endothelial cell density were associated with increased diameter of arterioles and perivascular space dilation. In cultured human brain microvascular cells (HBMECs), treatment of ApoE4 protein plus amyloid-β (Aβ) oligomers increased superoxide production and the apoptotic marker cleaved caspase 3, sustained hypoxia inducible factor-1α (HIF-1α) stability that was associated with an increase in MnSOD, VEGF, and cell density. This cell over-proliferation was inhibited with the antioxidants N-acetyl cysteine and MnTMPyP, the HIF-1α inhibitor echinomycin, the VEGFR-2 receptor blocker SU1498, the protein kinase C (PKC) ε knock-down (KD) and the extracellular signal-regulated kinase 1/2 (ERK) inhibitor FR180204. The PKCε KD and echinomycin decreased VEGF and/or ERK. In conclusion, AD capillaries and arterioles in hippocampal CA1 stratum radiatum of non-APOE4 carriers are related with aging, while those in APOE4 carriers with AD are related with pathogenesis of cerebrovascular disease.
Collapse
Affiliation(s)
- Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sorawit Sittirattanayeunyong
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Hwang SH, Kim J, Heo C, Yoon J, Kim H, Lee SH, Park HW, Heo MS, Moon HE, Kim C, Paek SH, Jang J. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Acta Biomater 2023; 157:137-148. [PMID: 36460287 DOI: 10.1016/j.actbio.2022.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Generally, brain angiogenesis is a tightly regulated process, which scarcely occurred in the absence of specific pathological conditions. Delivery of exogenous angiogenic factors enables the induction of desired angiogenesis by stimulating neovasculature formation. However, effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. Herein, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs), using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink for printing patches through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition reaction with combining methacrylated hyaluronic acid (HAMA) and vascular-tissue-derived decellularized extracellular matrix (VdECM), and thermal crosslinking of VdECM. 3D printing technology, a useful approach with fabrication versatility with customizable systems and multiple biomaterials, is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by label-free photoacoustic microscopy in vivo. The developed multi-GFs releasing patch may offer a promising therapeutic approach of spatiotemporal drugs releasing such as cerebral ischemia, ischemic heart diseases, diabetes, and even use as vaccines. STATEMENT OF SIGNIFICANCE: Effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. In this study, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs) using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition, and thermal crosslinking. 3D printing technology is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by photoacoustic microscopy in vivo.
Collapse
Affiliation(s)
- Seung Hyeon Hwang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jongbeom Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Se-Hwan Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Man Seung Heo
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Departments of Electrical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Ischemia/Hypoxia Disease Institute, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 2022; 59:4966-4986. [PMID: 35665894 PMCID: PMC10071835 DOI: 10.1007/s12035-022-02890-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.
Collapse
Affiliation(s)
- Adhikarimayum Lakhikumar Sharma
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Guetchyn Millien
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| |
Collapse
|
11
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
12
|
Li F, Gou X, Xu D, Han D, Hou K, Fang W, Li Y. Improvement of tube formation model of cell: Application for acute hypoxia in in vitro study of angiogenesis. Microvasc Res 2021; 140:104297. [PMID: 34890690 DOI: 10.1016/j.mvr.2021.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Angiogenesis caused by acute vascular occlusion occurs in various ischemic diseases. The in vitro tube formation assay by endothelial cells is a rapid, quantitative method for drug discovery on angiogenesis. Tube formation assay on Matrigel has been widely used to identify the angiogenesis, however, there are some problems to limit its application. In this study, we found for the first time that sodium dithionite (SD) could induce endothelial cell tube formation without Matrigel under hypoxia condition. To further verify our findings, the angiogenesis related proteins and mRNA at different time points after tube formation were measured both in primary human large-vessel endothelial cell (HUVECs) and murine microvascular endothelial cell line (Bend.3). In conclusion, compared with traditional tube formation on Matrigel, the novel model exhibits the following advantages: (1) Combination oxygen glucose deprivation with sodium dithionite (OGD-SD) model is operated more easily than traditional tube formation. (2) OGD-SD can be used for not only cell imaging, but also immunofluorescence, protein extraction and gene analysis. (3) OGD-SD is more applicable to acute hypoxia model of endothelial cell in vitro. (4) OGD-SD may be more suitable to identify molecular mechanism of compound that intervenes processes of pro-tube formation, tube formation and tube disconnection.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Kai Hou
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Niu X, Li M, Gao Y, Xu G, Dong X, Chu B, Lv P. DL-3-n-butylphthalide suppressed autophagy and promoted angiogenesis in rats with vascular dementia by activating the Shh/Ptch1 signaling pathway. Neurosci Lett 2021; 765:136266. [PMID: 34571087 DOI: 10.1016/j.neulet.2021.136266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
DL-3-n-butylphthalide (NBP) has neuroprotective effect on chronic cerebral hypoperfusion animals. Here, we explored the role and underlying mechanism of NBP on autophagy and angiogenesis in rats with vascular dementia (VD). Adult male Sprague-Dawley (SD) rats were subjected to permanent bilateral occlusion of the common carotid arteries (2VO) to establish VD model. These rats were randomly divided into five groups: sham, model, NBP120 (120 mg/kg), Shh siRNA (50 nM), and NBP120 + Shh siRNA groups. Our results showed that NBP treatment attenuated memory damage in rats with VD, as demonstrated by Morris water maze tests. Immunofluorescence (IF) assay revealed that NBP induced neuronal process length and neuronal activity in hippocampus, which were reversed by Shh silencing. Furthermore, NBP treatment also reduced the expression of autophagy marker proteins B-cell lymphoma-2 interacting protein 1 (Beclin 1) and microtubule-associated protein 1 light chain 3 (LC3), which were further enhanced by Shh silencing. Meanwhile, NBP promoted the angiogenesis, which was accompanied by upregulated vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-1, and Angiopoietin (Ang) expression in the hippocampus. And Shh siRNA co-treatment blocked the angiogenesis induced by NBP. Altogether, our results established that NBP treatment suppressed autophagy and improved angiogenesis and neurobehavioral recovery in VD rats partly by activating the Shh/Ptch1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China; Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Guodong Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoli Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Bao Chu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
14
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl Stroke Res 2021; 12:905-922. [PMID: 33423214 DOI: 10.1007/s12975-020-00883-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.
Collapse
|
16
|
Yang Y, Torbey MT. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. Curr Neuropharmacol 2020; 18:1250-1265. [PMID: 32691713 PMCID: PMC7770645 DOI: 10.2174/1570159x18666200720173316] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| | - Michel T Torbey
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| |
Collapse
|
17
|
Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020; 9:cells9102277. [PMID: 33065974 PMCID: PMC7600611 DOI: 10.3390/cells9102277] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to brain injury or inflammation. During the last decade, there has been a growing interest in the roles that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain disorders. However, the reported results have proven controversial, indicating that a disruption of the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the emerging role of CX3CL1 in animal models of some brain disorders.
Collapse
|
18
|
Jo DH, Kim JH. Toward the Clinical Application of Therapeutic Angiogenesis Against Pediatric Ischemic Retinopathy. J Lipid Atheroscler 2020; 9:268-282. [PMID: 32821736 PMCID: PMC7379088 DOI: 10.12997/jla.2020.9.2.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Therapeutic angiogenesis refers to strategies of inducing angiogenesis to treat diseases involving ischemic conditions. Historically, most attempts and achievements have been related to coronary and peripheral artery diseases. In this review, we propose the clinical application of therapeutic angiogenesis for the treatment of pediatric ischemic retinopathy, including retinopathy of prematurity, familial exudative retinopathy, and NDP-related retinopathy. These diseases are all characterized by the reduction of physiological angiogenesis and the following induction of pathological angiogenesis. Therapeutic angiogenesis, which supplements insufficient physiological angiogenesis, may be a therapeutic approach for ischemic conditions. Various molecules and modalities can be utilized to apply therapeutic angiogenesis for the treatment of ischemic retinopathy, as in coronary and peripheral artery diseases. Experiences with cardiovascular diseases provide a useful reference for the further clinical application of therapeutic angiogenesis in pediatric ischemic retinopathy. Recombinant proteins and gene therapy are powerful tools to deliver angiogenic factors to retinal tissues directly. Furthermore, endothelial progenitor or bone marrow-derived cells can be injected into the vitreous cavity of the eye for therapeutic angiogenesis. Intraocular injections are highly promising for the delivery of therapeutics for therapeutic angiogenesis. We expect that therapeutic angiogenesis will be a breakthrough in the treatment of pediatric ischemic retinopathy.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
20
|
Regenhardt RW, Takase H, Lo EH, Lin DJ. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor Neurol Neurosci 2020; 38:67-92. [PMID: 31929129 PMCID: PMC7442117 DOI: 10.3233/rnn-190978] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stroke is among the most common causes of adult disability worldwide, and its disease burden is shifting towards that of a long-term condition. Therefore, the development of approaches to enhance recovery and augment neural repair after stroke will be critical. Recovery after stroke involves complex interrelated systems of neural repair. There are changes in both structure (at the molecular, cellular, and tissue levels) and function (in terms of excitability, cortical maps, and networks) that occur spontaneously within the brain. Several approaches to augment neural repair through enhancing these changes are under study. These include identifying novel drug targets, implementing rehabilitation strategies, and developing new neurotechnologies. Each of these approaches has its own array of different proposed mechanisms. Current investigation has emphasized both cellular and circuit-based targets in both gray and white matter, including axon sprouting, dendritic branching, neurogenesis, axon preservation, remyelination, blood brain barrier integrity, blockade of extracellular inhibitory signals, alteration of excitability, and promotion of new brain cortical maps and networks. Herein, we review for clinicians recovery after stroke, basic elements of spontaneous neural repair, and ongoing work to augment neural repair. Future study requires alignment of basic, translational, and clinical research. The field continues to grow while becoming more clearly defined. As thrombolysis changed stroke care in the 1990 s and thrombectomy in the 2010 s, the augmentation of neural repair and recovery after stroke may revolutionize care for these patients in the coming decade.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Hajime Takase
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - David J Lin
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
21
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
22
|
Lee S, Chung M, Lee SR, Jeon NL. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro. Biotechnol Bioeng 2019; 117:748-762. [PMID: 31709508 DOI: 10.1002/bit.27224] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023]
Abstract
The human central nervous system (CNS) vasculature expresses a distinctive barrier phenotype, the blood-brain barrier (BBB). As the BBB contributes to low efficiency in CNS pharmacotherapy by restricting drug transport, the development of an in vitro human BBB model has been in demand. Here, we present a microfluidic model of CNS angiogenesis having three-dimensional (3D) lumenized vasculature in concert with perivascular cells. We confirmed the necessity of the angiogenic tri-culture system (brain endothelium in direct interaction with pericytes and astrocytes) to attain essential phenotypes of BBB vasculature, such as minimized vessel diameter and maximized junction expression. In addition, lower vascular permeability is achieved in the tri-culture condition compared to the monoculture condition. Notably, we focussed on reconstituting the functional efflux transporter system, including p-glycoprotein (p-gp), which is highly responsible for restrictive drug transport. By conducting the calcein-AM efflux assay on our 3D perfusable vasculature after treatment of efflux transporter inhibitors, we confirmed the higher efflux property and prominent effect of inhibitors in the tri-culture model. Taken together, we designed a 3D human BBB model with functional barrier properties based on a developmentally inspired CNS angiogenesis protocol. We expect the model to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
Collapse
Affiliation(s)
- Somin Lee
- Program for Bioengineering, Seoul National University, Seoul, Korea
| | - Minhwan Chung
- Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Seung-Ryeol Lee
- Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Noo Li Jeon
- Program for Bioengineering, Seoul National University, Seoul, Korea.,Mechanical Engineering, Seoul National University, Seoul, Korea.,Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea.,Institute of Bioengineering, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur J Med Chem 2019; 183:111695. [PMID: 31541868 DOI: 10.1016/j.ejmech.2019.111695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
As for complex brain diseases involved with multiple pathogenic factors, it is extremely difficult to achieve curative effect by acting on a single target. Multi-approach drugs provide a promising prospect in the treatment of complex brain diseases and have been attracting more and more interest. Enlightened by synergetic effect of combination in traditional herb medicines, forty-two novel cinnamic acid derivatives were designed and synthesized by introducing capsaicin and/or ligustrazine moieties to enhance biological activities in both neurological function and neurovascular protection. Elevated levels of cell viability on human brain microvascular endothelium cell line (HBMEC-2) and human neuroblastoma cell line (SH-SY5Y) against free radical injury were observed in most of compounds. Among them, compound 14a exhibited the most potent activities with a significant EC50 value of 3.26 ± 0.16 μM (HBMEC-2) and 2.41 ± 0.10 μM (SH-SY5Y). Subsequently, the results of morphological staining and flow cytometry analysis experiments on both cell lines showed that 14a had the potential to block apoptosis, maintain cell morphological integrity and protect physiological function of mitochondria. Moreover, 14a displayed specific angiogenesis effect in the chick chorioallantoic membrane (CAM) assay; and the results of RT-PCR suggested that the mechanism for angiogenesis effect was associated with the enhancement of the expressions of VEGFR2 mRNA in chick embryo. Preliminary structure-activity relationship was analyzed. The above evidences suggested that conjunctures gained by combining active ingredients in traditional herb medicines deserved further study and might provide references in discovering dual-effective lead compounds for brain diseases.
Collapse
|
24
|
Park JM, Kim YJ. [Effect of Ghrelin on Memory Impairment in a Rat Model of Vascular Dementia]. J Korean Acad Nurs 2019; 49:317-328. [PMID: 31266928 DOI: 10.4040/jkan.2019.49.3.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study was to identify the effect of ghrelin on memory impairment in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. METHODS Randomized controlled groups and the posttest design were used. We established the representative animal model of vascular dementia caused by bilateral common carotid artery occlusion and administered 80 μg/kg ghrelin intraperitoneally for 4 weeks. First, behavioral studies were performed to evaluate spatial memory. Second, we used molecular biology techniques to determine whether ghrelin ameliorates the damage to the structure and function of the white matter and hippocampus, which are crucial to learning and memory. RESULTS Ghrelin improved the spatial memory impairment in the Y-maze and Morris water maze test. In the white matter, demyelination and atrophy of the corpus callosum were significantly decreased in the ghrelin-treated group. In the hippocampus, ghrelin increased the length of hippocampal microvessels and reduced the microvessels pathology. Further, we confirmed angiogenesis enhancement through the fact that ghrelin treatment increased vascular endothelial growth factor (VEGF)-related protein levels, which are the most powerful mediators of angiogenesis in the hippocampus. CONCLUSION We found that ghrelin affected the damaged myelin sheaths and microvessels by increasing angiogenesis, which then led to neuroprotection and improved memory function. We suggest that further studies continue to accumulate evidence of the effect of ghrelin. Further, we believe that the development of therapeutic interventions that increase ghrelin may contribute to memory improvement in patients with vascular dementia.
Collapse
Affiliation(s)
- Jong Min Park
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
25
|
Weisenburger-Lile D, Dong Y, Yger M, Weisenburger G, Polara GF, Chaigneau T, Ochoa RZ, Marro B, Lapergue B, Alamowitch S, Elbim C. Harmful neutrophil subsets in patients with ischemic stroke: Association with disease severity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e571. [PMID: 31355307 PMCID: PMC6624098 DOI: 10.1212/nxi.0000000000000571] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Objective To better understand the functional state of circulating neutrophils in patients with ischemic stroke (IS) for planning future clinical trials. Methods We analyzed by flow cytometry activation state of circulating neutrophils and the distribution of neutrophil peripheral subsets in 41 patients with acute IS less than 6 hours before admission and compared them with 22 age-matched healthy controls. Results Our results demonstrated continuous basal hyperactivation of circulating neutrophils during acute IS, characterized by lower l-selectin expression and higher CD11b expression at the cell surface, increased ROS production by neutrophils, and greater circulating levels of neutrophil elastase. Neutrophil hyperactivation was associated with deregulation of the equilibrium between apoptotic and necrotic. Patients also had higher percentages than controls of the overactive senescent (CXCR4bright/CD62Ldim) neutrophil subset and increased percentage of neutrophils with a reverse transendothelial migration (CD54highCXCR1low) phenotype. Importantly, neutrophil alterations were associated with the clinical severity of the stroke, evaluated by its NIH Stroke Scale score. Conclusion Altogether, our results indicate that during acute IS, the inflammatory properties of circulating neutrophils rise, associated with the expansion of harmful neutrophil subsets. These changes in neutrophil homeostasis, associated with disease severity, may play an instrumental role by contributing to systemic inflammation and to the blood-brain barrier breakdown. Our findings highlight new potential therapeutic approaches of stroke by rebalancing the ratio of senescent to immunosuppressive neutrophils or decreasing reverse neutrophil transmigration or both.
Collapse
Affiliation(s)
- David Weisenburger-Lile
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Yuan Dong
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Marion Yger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Gaëlle Weisenburger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Giulia Frasca Polara
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Thomas Chaigneau
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Riccardo Zapata Ochoa
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Beatrice Marro
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Bertrand Lapergue
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Sonia Alamowitch
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Carole Elbim
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| |
Collapse
|
26
|
Zhou PT, Wang LP, Qu MJ, Shen H, Zheng HR, Deng LD, Ma YY, Wang YY, Wang YT, Tang YH, Tian HL, Zhang ZJ, Yang GY. Dl-3-N-butylphthalide promotes angiogenesis and upregulates sonic hedgehog expression after cerebral ischemia in rats. CNS Neurosci Ther 2019; 25:748-758. [PMID: 30784219 PMCID: PMC6515698 DOI: 10.1111/cns.13104] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dl-3-N-butylphthalide (NBP), a small molecule drug used clinically in the acute phase of ischemic stroke, has been shown to improve functional recovery and promote angiogenesis and collateral vessel circulation after experimental cerebral ischemia. However, the underlying molecular mechanism is unknown. AIMS To explore the potential molecular mechanism of angiogenesis induced by NBP after cerebral ischemia. RESULTS NBP treatment attenuated body weight loss, reduced brain infarct volume, and improved neurobehavioral outcomes during focal ischemia compared to the control rats (P < 0.05). NBP increased the number of CD31+ microvessels, the number of CD31+ /BrdU+ proliferating endothelial cells, and the functional vascular density (P < 0.05). Further study demonstrated that NBP also promoted the expression of vascular endothelial growth factor and angiopoietin-1 (P < 0.05), which was accompanied by upregulated sonic hedgehog expression in astrocytes in vivo and in vitro. CONCLUSION NBP treatment promoted the expression of vascular endothelial growth factor and angiopoietin-1, induced angiogenesis, and improved neurobehavioral recovery. These effects were associated with increased sonic hedgehog expression after NBP treatment. Our results broadened the clinical application of NBP to include the later phase of ischemia.
Collapse
Affiliation(s)
- Pan-Ting Zhou
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Jie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hui Shen
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Ran Zheng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Dong Deng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Ma
- Department of Neurology, School of Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yong-Ting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Qu M, Pan J, Wang L, Zhou P, Song Y, Wang S, Jiang L, Geng J, Zhang Z, Wang Y, Tang Y, Yang GY. MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:15-25. [PMID: 30825669 PMCID: PMC6393705 DOI: 10.1016/j.omtn.2019.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
Studies demonstrate that microRNA-126 plays a critical role in promoting angiogenesis. However, its effects on angiogenesis following ischemic stroke are unclear. Here, we explored the effect of microRNA-126-3p and microRNA-126-5p on angiogenesis and neurogenesis after brain ischemia. We demonstrated that both microRNA (miRNA)-126-3p and microRNA-126-5p increased the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with the scrambled miRNA control (p < 0.05). Transferring microRNA-126 into a mouse middle cerebral artery occlusion model via lentivirus, we found that microRNA-126 overexpression increased the number of CD31+/BrdU+ (5-bromo-2'-deoxyuridine-positive) proliferating endothelial cells and DCX+/BrdU+ neuroblasts in the ischemic mouse brain, improved neurobehavioral outcomes (p < 0.05), and reduced brain atrophy volume (p < 0.05) compared with control mice. Western blot results showed that AKT and ERK signaling pathways were activated in the lentiviral-microRNA-126-treated group (p < 0.05). Both PCR and western blot results demonstrated that tyrosine-protein phosphatase non-receptor type 9 (PTPN9) was decreased in the lentiviral-microRNA-126-treated group (p < 0.05). Dual-luciferase gene reporter assay also showed that PTPN9 was the direct target of microRNA-126-3p and microRNA-126-5p in the ischemic brain. We demonstrated that microRNA-126-3p and microRNA-126-5p promoted angiogenesis and neurogenesis in ischemic mouse brain, and further improved neurobehavioral outcomes. Our mechanistic study further showed that microRNA-126 mediated angiogenesis through directly inhibiting its target PTPN9 and activating AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jiaji Pan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Panting Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shuhong Wang
- Department of Geriatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Lu Jiang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieli Geng
- Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
28
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
29
|
Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol 2018; 304:30-40. [DOI: 10.1016/j.expneurol.2018.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
|
30
|
Song J, Nan D, He Q, Yang L, Guo H. Astrocyte activation and capillary remodeling in modified bilateral common carotid artery occlusion mice. Microcirculation 2018; 24. [PMID: 28261893 DOI: 10.1111/micc.12366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The cerebral ischemia leads to brain dysfunction with neuron degeneration and responses from astrocytes and vessels. The aim of this study was to study the changes of astrocyte and microvessel in modified BCCAO mice. METHODS Adult transgenic Tie2-GFP mice were subjected to modified BCCAO operation and cranial window implantation. CBF and neurological injury were examined after ischemia. Astrocytes and vessels were investigated by two-photon laser-scanning microscope and confocal laser-scanning microscope in vivo. RESULTS The CBF decreased to approximately 40% of the baseline in the ischemic mice (P<.05). The neuron damage was explicit after the cerebral ischemia (P<.05), while no significant impairment of the motor and cognitive function was detected (P>.05). The density of astrocyte and volume of the astrocyte soma was increased significantly after ischemia (P<.01). Meanwhile, the mean distance between the penetrating artery and the nearest astrocyte soma decreased significantly (P<.01). Besides, the increased diameter of capillary and change of vessel arrangement were observed. CONCLUSION The cerebral ischemia was successfully induced by this modified BCCAO model. Astrocyte activation and the capillary remodeling, including dilution of capillary and tortuosity, were observed in this model.
Collapse
Affiliation(s)
- Jiangman Song
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Di Nan
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Lu Yang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Huailian Guo
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Sen A, Hongpaisan J. Hippocampal microvasculature changes in association with oxidative stress in Alzheimer's disease. Free Radic Biol Med 2018; 120:192-203. [PMID: 29572097 DOI: 10.1016/j.freeradbiomed.2018.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial dysfunction is a primary phenotype of aging, and microvascular (MV) lesion is mainly associated with Alzheimer's disease (AD). Here we have studied the correlation of MV wall thickness and CA1 pyramidal neuronal pathology in autopsy-confirmed AD brains. Both hyaline (h-MV) and increased cell number (c-MV) associated MV wall thickening was found in age-matched control (AC) hippocampus without significant change in Aβ level (Braak stages 0-III). AC neurons neighboring the h-MV showed lower levels of oxidative DNA/RNA damage and Aβ precursor protein (APP), while the neurons around c-MV showed higher oxidative DNA/RNA damage with increased APP expression. Neurons in AC hippocampus without MV wall thickening (thin wall) showed increased DNA/RNA damage and APP levels compared to AC cases with h-MV and c-MV walls. In the AD hippocampus neurons neighboring h-MV walls showed increased levels of Aβ and decreased number of dendritic spines (at Braak stages IV-VI). C-MV neighboring neurons in the AD cases showed higher levels of DNA/RNA damage with increased APP at stages II - III, followed by lower levels of oxidative DNA/RNA damage, decreased APP and increased Aβ levels with loss of dendritic spines at stages IV-VI. Prolonged treatment of primary human fetal hippocampal neurons with tert-butyl hydroperoxide (TBHP) induced oxidative DNA damage with a sustained increase in APP. Aβ increased rapidly and then decreased overtime. Short-term TBHP treated neurons showed lower levels of superoxide (O2• -) without significant DNA damage. Short-term TBHP treatment induced a gradual decrease in APP but an increase in Aβ levels over time. In conclusion this study indicates that AD hippocampus at Braak stages II-III are characterized by strong oxidative DNA/RNA damage with increased APP in neurons associated with c-MV, while stages IV-VI are characterized by a slow increase in Aβ in neurons neighboring both h-MV and c-MV.
Collapse
Affiliation(s)
- Abhik Sen
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jarin Hongpaisan
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
32
|
Chen SC, Huang M, He QW, Zhang Y, Opoku EN, Yang H, Jin HJ, Xia YP, Hu B. Administration of sonic hedgehog protein induces angiogenesis and has therapeutic effects after stroke in rats. Neuroscience 2017; 352:285-295. [DOI: 10.1016/j.neuroscience.2017.03.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
|
33
|
Yin W, Clare K, Zhang Q, Volkow ND, Du C. Chronic cocaine induces HIF-VEGF pathway activation along with angiogenesis in the brain. PLoS One 2017; 12:e0175499. [PMID: 28448515 PMCID: PMC5407832 DOI: 10.1371/journal.pone.0175499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/26/2017] [Indexed: 11/19/2022] Open
Abstract
Cocaine induces vasoconstriction in cerebral vessels, which with repeated use can result in transient ischemic attacks and cerebral strokes. However, the neuroadaptations that follow cocaine's vasoconstricting effects are not well understood. Here, we investigated the effects of chronic cocaine exposure (2 and 4 weeks) on markers of vascular function and morphology in the rat brain. For this purpose we measured nitric oxide (NO) concentration in plasma, brain neuronal nitric oxide synthase (nNOS or NOS1), HIF-1α, and VEGF expression in different brain regions, i.e., middle prefrontal cortex, somatosensory cortex, nucleus accumbens, and dorsal striatum, using ELISA or Western blot. Additionally, microvascular density in these brain regions was measured using immunofluorescence microscopy. We showed that chronic cocaine significantly affected NOS1, HIF-1α and VEGF expression, in a region- and cocaine treatment-time- dependent manner. Cerebral microvascular density increased significantly in parallel to these neurochemical changes. Furthermore, significant correlations were detected between VEGF expression and microvascular density in cortical regions (middle prefrontal cortex and somatosensory cortex), but not in striatal regions (nucleus accumbens and dorsal striatum). These results suggest that following chronic cocaine use, as cerebral ischemia developed, NOS1, the regulatory protein to counteract blood vessel constriction, was upregulated; meanwhile, the HIF-VEGF pathway was activated to increase microvascular density (i.e., angiogenesis) and thus restore local blood flow and oxygen supply. These physiological responses were triggered presumably as an adaptation to minimize ischemic injury caused by cocaine. Therefore, effectively promoting such physiological responses may provide novel and effective therapeutic solutions to treat cocaine-induced cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Wei Yin
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Kevin Clare
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Qiujia Zhang
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States of America
| | - Congwu Du
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
34
|
Soleimannejad K, Rahmani A, Hatefi M, Khataminia M, Hafezi Ahmadi MR, Asadollahi K. Effects of Nigella sativa Extract on Markers of Cerebral Angiogenesis after Global Ischemia of Brain in Rats. J Stroke Cerebrovasc Dis 2017; 26:1514-1520. [PMID: 28396188 DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/15/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduction of permanent or transient cerebral blood flow may lead to some structural and functional changes of the brain, causing high mortality and morbidity. The aim of this experimental study was to investigate the effects of hydroalcoholic extract of Nigella sativa (NS) on markers of cerebral angiogenesis in rats induced by global brain ischemia. METHODS Thirty-two male Wistar rats (250 ± 20 g) were randomly divided into 4 groups: group 1, control group receiving only normal saline; group 2, sham group undergoing surgery and stroke induction without treatment; and groups 3 and 4 treated with 10 and 20 mg/kg NS, respectively, after induction of stroke. Global ischemia was induced by ligation of the right carotid artery for 20 minutes. RESULTS According to the results of this study, brain edema and infarct volume were significantly decreased in the group treated with 20 mg/kg NS compared with the group treated with 10 mg/kg NS (P < .05). Global ischemia caused a significant reduction in gene expression of vasoactive endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF) in the sham group compared with the control group (P < .05), but NS groups, in led to a significant increase in gene expression of VEGF and HIF compared with the sham group (P < .05). In addition, the activity level of matrix metallopeptidase-9 was decreased among NS groups compared with the control group (P < .05). CONCLUSIONS Application of NS extract among rats with brain ischemia is associated with increase of VEGF and HIF as angiogenic markers and inhibition of matrix metallopeptidase-9 activities.
Collapse
Affiliation(s)
- Koroush Soleimannejad
- Department of Cardiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Asghar Rahmani
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Hatefi
- Department of Neurosurgery, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Khataminia
- Department of Pharmacology, Faculty of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Khairollah Asadollahi
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
35
|
Yazdani A, Khoja Z, Johnstone A, Dale L, Rampakakis E, Wintermark P. Sildenafil Improves Brain Injury Recovery following Term Neonatal Hypoxia-Ischemia in Male Rat Pups. Dev Neurosci 2016; 38:251-263. [DOI: 10.1159/000448327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control. Both groups were randomized to oral sildenafil or vehicle twice daily for 7 consecutive days. Gait analysis was performed on P27. At P30, the rats were sacrificed, and their brains were extracted. The surfaces of both hemispheres were measured on hematoxylin and eosin-stained brain sections. Mature neurons and endothelial cells were quantified near the infarct boundary zone using immunohistochemistry. HI caused significant gait impairment and a reduction in the size of the left hemisphere. Treatment with sildenafil led to an improvement in the neurological deficits as measured by gait analysis, as well as an improvement in the size of the left hemisphere. Sildenafil, especially at higher doses, also caused a significant increase in the number of neurons near the infarct boundary zone. In conclusion, sildenafil administered after neonatal HI may improve brain injury recovery by promoting neuronal populations.
Collapse
|
36
|
Anti-Inflammation of Natural Components from Medicinal Plants at Low Concentrations in Brain via Inhibiting Neutrophil Infiltration after Stroke. Mediators Inflamm 2016; 2016:9537901. [PMID: 27688603 PMCID: PMC5027307 DOI: 10.1155/2016/9537901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation after stroke consists of activation of microglia/astrocytes in situ and infiltration of blood-borne leukocytes, resulting in brain damage and neurological deficits. Mounting data demonstrated that most natural components from medicinal plants had anti-inflammatory effects after ischemic stroke through inhibiting activation of resident microglia/astrocytes within ischemic area. However, it is speculated that this classical activity cannot account for the anti-inflammatory function of these natural components in the cerebral parenchyma, where they are detected at very low concentrations due to their poor membrane permeability and slight leakage of BBB. Could these drugs exert anti-inflammatory effects peripherally without being delivered across the BBB? Factually, ameliorating blood-borne neutrophil recruitment in peripheral circulatory system has been proved to reduce ischemic damage and improve outcomes. Thus, it is concluded that if drugs could achieve effective concentrations in the cerebral parenchyma, they can function via crippling resident microglia/astrocytes activation and inhibiting neutrophil infiltration, whereas the latter will be dominating when these drugs localize in the brain at a low concentration. In this review, the availability of some natural components crossing the BBB in stroke will be discussed, and how these drugs lead to improvements in stroke through inhibition of neutrophil rolling, adhesion, and transmigration will be illustrated.
Collapse
|
37
|
He B, Yao Q, Liang Z, Lin J, Xie Y, Li S, Wu G, Yang Z, Xu P. The Dose of Intravenously Transplanted Bone Marrow Stromal Cells Determines the Therapeutic Effect on Vascular Remodeling in a Rat Model of Ischemic Stroke. Cell Transplant 2016; 25:2173-2185. [PMID: 27480476 DOI: 10.3727/096368916x692627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The therapeutic benefits of bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation for ischemic stroke have been extensively demonstrated. However, studies on the optimal cell dose for intravenous administration are still limited. This study aimed to determine an appropriate cell dose for BM-MSC intravenous transplantation and to investigate the effect of cell dose on vascular remodeling in a rat model of ischemic stroke. BM-MSCs at doses of 5104 (low-dose group), 5105 (medium-dose group), and 2106 (high-dose group) were intravenously injected into rats at 72 h after ischemia. The therapeutic efficacy of BM-MSCs was evaluated by measuring infarct volume, vascular diameters, capillary area in the peri-infarct zone, level of basic fibroblast growth factor (bFGF) in the peri-infarct zone, and serum vascular endothelial growth factor (VEGF) level at 7 days after ischemia. Compared with the low-dose and control groups, medium-dose and high-dose BM-MSC transplantation significantly reduced the volume of the infarct area, enlarged the diameters of pial vessels and the basilar artery, and increased the capillary area in the peri-infarct zone of the cerebral cortex. Furthermore, transplanted BM-MSCs elevated the expressions of bFGF in the peri-infarct zone and the serum VEGF level. Administration of 5105 BM-MSCs is an appropriate cell dose for ischemic stroke therapy in rats. These findings may be helpful for designing future clinical trials.
Collapse
|
38
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
39
|
Dell'Osso L, Del Grande C, Gesi C, Carmassi C, Musetti L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr Dis Treat 2016; 12:1687-703. [PMID: 27468233 PMCID: PMC4946830 DOI: 10.2147/ndt.s106479] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Grande
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Musetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Meng YC, Ding ZY, Wang HQ, Ning LP, Wang C. Effect of microRNA-155 on angiogenesis after cerebral infarction of rats through AT1R/VEGFR2 pathway. ASIAN PAC J TROP MED 2015; 8:829-35. [DOI: 10.1016/j.apjtm.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
|
41
|
Shaikh H, Lechpammer M, Jensen FE, Warfield SK, Hansen AH, Kosaras B, Shevell M, Wintermark P. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis? Transl Stroke Res 2015; 6:224-33. [PMID: 25620793 DOI: 10.1007/s12975-015-0387-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
Abstract
Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.
Collapse
Affiliation(s)
- Henna Shaikh
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shen J, Zhu Y, Yu H, Fan ZX, Xiao F, Wu P, Zhang QH, Xiong XX, Pan JW, Zhan RY. Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia. J Zhejiang Univ Sci B 2014; 15:272-80. [PMID: 24599691 DOI: 10.1631/jzus.b1300166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Buyang Huanwu decoction (BYHWD), a traditional Chinese herbal prescription, has been widely used clinically to treat stroke in China for hundreds of years; however, the mechanisms of this drug for stroke treatment are still unclear. This study aims to observe the cerebral angiogenesis effects of BYHWD on chronic brain injury after focal cerebral ischemia in rats and to explore its possible mechanisms. The ischemia was induced by occlusion of the right middle cerebral artery for 90 min. BYHWD (12.5 and 25.0 g/(kg ∙ d), equivalent to the dry weight of the raw materials) was orally administered twice a day beginning 2 h after surgery. BYHWD significantly attenuated the neurological dysfunction, infarct volume, and brain atrophy after ischemia. There was a significant increase in the microvessel density, as assessed by immunofluorescence CD31, and a significant increase in angiopoietin-1 (Ang-1) in the penumbra areas of the rats was shown by immunohistochemical staining and Western blotting. The results indicate that the neurorestorative effects of BYHWD are associated with angiogenesis and the enhancement of the expressions of Ang-1 on chronic brain injury after focal cerebral ischemia.
Collapse
Affiliation(s)
- Jian Shen
- Brain Medicine Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu K, Wu Y, Zhang Q, Xie H, Liu G, Guo Z, Li F, Jia J, Kuang S, Hu R. Enriched environment induces angiogenesis and improves neural function outcomes in rat stroke model. J Neurol Sci 2014; 347:275-80. [PMID: 25455300 DOI: 10.1016/j.jns.2014.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 12/18/2022]
Abstract
Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective benefits in animal models, including enhancing functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the improvement of damaged neural function and the induction of angiogenesis. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Neurological status scores were used to evaluate neural function on postoperative days 2, 7, and 14. A beam-walking task was used to test the recovery of motor behavior on postoperative days 2, 5, 10, and 15. We also used a Morris water maze task to examine whether EE protected learning and memory performance. The specific marker of angiogenesis of CD31 was examined by western blot. Angiogenesis around the peri-infarction region was assayed by laser scanning confocal microscopy (LSCM) after 14 days of EE exposure starting 24h after ischemia. Neurological status scores of animals in the EE group were significantly higher than those in the standard housing condition (SC) control group from the seventh day after ischemic. EE accelerated the recovery of motor coordination and integration and also improved learning and memory performance after cerebral ischemia. Furthermore, EE increased CD31 levels and promoted angiogenesis of cortex in the peri-infarction region compared to the SC group. Neural function outcomes are positively correlated with post-ischemia angiogenesis. These findings suggest that EE plays an important role in the recovery of damaged neural function via regulation of angiogenesis after ischemia.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai 200436, China; Department of Sports Medicine and Rehabilitation, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, 200040, China.
| | - Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Hongyu Xie
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Gang Liu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai 200436, China
| | - Zhenzhen Guo
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Fang Li
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, 200040, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Department of Sports Medicine and Rehabilitation, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenyi Kuang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruiping Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Sports Medicine and Rehabilitation, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Bi JJ, Yi L. Effects of integrins and integrin αvβ3 inhibitor on angiogenesis in cerebral ischemic stroke. ACTA ACUST UNITED AC 2014; 34:299-305. [PMID: 24939290 DOI: 10.1007/s11596-014-1274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/26/2014] [Indexed: 12/31/2022]
Abstract
Integrins such as αvβ3, α5β1 play a key role in angiogenesis regulation, invasion and metastasis, inflammation, wound healing, etc. The up-regulation of integrin αvβ3 after cerebral ischemic stroke can promote angiogenesis, which in turn improves functional recovery. In addition, the integrin αvβ3 inhibitor can block the blood-brain barrier (BBB) leakage induced by vascular endothelial growth factor (VEGF) and also can reduce inflammatory reaction, decrease the deposition of fibrinogen. Other studies showed that integrin αvβ3 is not essential in revascularization. Therefore, the effect of integrin αvβ3 in the whole process of brain function recovery merits further study.
Collapse
Affiliation(s)
- Jia-Jia Bi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
45
|
Qin W, Li Z, Luo S, Wu R, Pei Z, Huang R. Exogenous fractalkine enhances proliferation of endothelial cells, promotes migration of endothelial progenitor cells and improves neurological deficits in a rat model of ischemic stroke. Neurosci Lett 2014; 569:80-4. [PMID: 24704182 DOI: 10.1016/j.neulet.2014.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/18/2022]
Abstract
Fractalkine/CX3CL1, also called neurotactin, has been described as an angiogenic agent, and its expression is up-regulated in the penumbra after ischemia. This study was conducted to investigate the neovascular potential of fractalkine on rat models of transient middle cerebral artery occlusion (MCAO). Rats receiving intracerebroventricular injections of fractalkine were found to have improved neurological deficits, reduced cerebral infarct size and increased neuron survival for both doses (100ng and 1μg). Fractalkine exerted angiogenic effects that showed dose-dependent higher vascular densities in the peri-infarct area. Furthermore, exogenous fractalkine increased the proliferation of endothelial cells in a dose-dependent manner and enhanced the migration of endothelial progenitor cells at the higher dose (1μg) in ischemic penumbra. In conclusion, intracerebroventricular administration of fractalkine reduces ischemic damage by promoting neuroprotection and by inducing endothelial cell proliferation and endothelial progenitor cell migration, thereby enhancing neovascularization in the peri-infarct region.
Collapse
Affiliation(s)
- Wenjing Qin
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Zhendong Li
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China.
| | - Shijian Luo
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Rui Wu
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Zhong Pei
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruxun Huang
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
46
|
Zhu L, Bai X, Wang S, Hu Y, Wang T, Qian L, Jiang L. Recombinant human erythropoietin augments angiogenic responses in a neonatal rat model of cerebral unilateral hypoxia-ischemia. Neonatology 2014; 106:143-8. [PMID: 24969821 DOI: 10.1159/000362262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recombinant human erythropoietin (rh-EPO) has been used as a drug to treat premature infant anemia for over a decade. In addition to its erythropoietic effect, rh-EPO has also been reported to have protective effects against brain injury. OBJECTIVES Our aim was to evaluate the levels of angiogenesis-related cells (CD34+ cells) and angiogenic factors (vascular endothelial growth factor, VEGF, and angiopoietin-1, Ang-1) in a neonatal rat model of cerebral unilateral hypoxia-ischemia (HI) and to identify the effects of rh-EPO on angiogenic responses. METHODS Postnatal day 3 (PD3) rats underwent permanent ligation of the right common carotid artery followed by 6% O2 for 4 h (HI) or sham operation and normoxic exposure (sham). Immediately after HI, the rats received a single intraperitoneal injection of rh-EPO (5 U/g) or saline. Angiogenesis-related cells (CD34+ cells) and angiogenic factors (VEGF and Ang-1) were examined on PD5, 7, 10 and 14. RESULTS Compared with the sham rats, the number of CD34+ cells in HI rats increased from PD5 to 7 but decreased from PD10 to 14. VEGF and Ang-1 mRNA levels both increased from PD5 to 14. CD34+ cells, VEGF and Ang-1 were all upregulated in rh-EPO-treated rats compared with HI rats. CONCLUSIONS In the present study, we show the angiogenic effects of rh-EPO in a rat model of neonatal cerebral unilateral HI. Our results highlight the powerful therapeutic potential of rh-EPO treatment of HI premature brain for the enhancement of angiogenic responses.
Collapse
Affiliation(s)
- Lihua Zhu
- Research Center for Learning Science, Clinical Medical College, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cerebral angiogenesis is an important process for physiological events such as brain development, but it also occurs in pathological conditions such as stroke. Defined as the generation of new blood vessels from preexisting vasculature, angiogenesis after ischemic stroke is important to limit the subsequent neuronal injury and death, as well as contribute to neurorepair. However, current therapies for ischemic stroke are largely focused on reestablishing uninterrupted blood flow, an important but inherently risky proposition. Furthermore, these therapies can have limited efficacy due to narrow therapeutic windows, and in the case of mechanical clot removal, are invasive procedures. Therefore, better stroke therapies are needed. Since the brain possesses mechanisms, including angiogenesis, to attempt self-repair after injury, it may prove beneficial to look at how such mechanisms are regulated to identify potential targets for new and improved stroke therapies. Perlecan domain V (DV), an endogenous extracellular matrix protein fragment, may represent one such therapeutic target. Key to its appeal is that perlecan DV is endogenously and persistently generated in the brain after stroke and has significant angio-modulatory properties. These, and other properties, have been therapeutically manipulated to improve experimental stroke outcomes, suggesting that DV could represent a promising new stroke therapy. Here we discuss a novel approach to studying DV-mediated angiogenesis in vitro using a coculture model.
Collapse
|
48
|
Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, Yang GY. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol 2013; 115:138-56. [PMID: 24291532 DOI: 10.1016/j.pneurobio.2013.11.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/18/2022]
Abstract
The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA.
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai 200030, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yosuke Akamatsu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA; Department of Neurological Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Chih Cheng Lee
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA; SFVAMC, San Francisco, CA 94121, USA
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael T Lawton
- Department of Neurological Surgery, UCSF, San Francisco, CA 94121, USA
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai 200030, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
49
|
Rennie K, Haukenfrers J, Ribecco-Lutkiewicz M, Ly D, Jezierski A, Smith B, Zurakowski B, Martina M, Gruslin A, Bani-Yaghoub M. Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol 2013; 91:271-86. [DOI: 10.1139/bcb-2013-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a need for improved therapy for acquired brain injury, which has proven resistant to treatment by numerous drugs in clinical trials and continues to represent one of the leading causes of disability worldwide. Research into cell-based therapies for the treatment of brain injury is growing rapidly, but the ideal cell source has yet to be determined. Subpopulations of cells found in amniotic fluid, which is readily obtained during routine amniocentesis, can be easily expanded in culture, have multipotent differentiation capacity, are non-tumourigenic, and avoid the ethical complications associated with embryonic stem cells, making them a promising cell source for therapeutic purposes. Beneficial effects of amniotic fluid cell transplantation have been reported in various models of nervous system injury. However, evidence that amniotic fluid cells can differentiate into mature, functional neurons in vivo and incorporate into the existing circuitry to replace lost or damaged neurons is lacking. The mechanisms by which amniotic fluid cells improve outcomes after experimental nervous system injury remain unclear. However, studies reporting the expression and release of neurotrophic, angiogenic, and immunomodulatory factors by amniotic fluid cells suggest they may provide neuroprotection and (or) stimulate endogenous repair and remodelling processes in the injured nervous system. In this paper, we address recent research related to the neuronal differentiation of amniotic fluid-derived cells, the therapeutic efficacy of these cells in animal models of nervous system injury, and the possible mechanisms mediating the positive outcomes achieved by amniotic fluid cell transplantation.
Collapse
Affiliation(s)
- Kerry Rennie
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Julie Haukenfrers
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Maria Ribecco-Lutkiewicz
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Dao Ly
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Anna Jezierski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Brandon Smith
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Bogdan Zurakowski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Marzia Martina
- Synaptic Therapies and Devices, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Andrée Gruslin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| |
Collapse
|
50
|
Dao M, Tate CC, McGrogan M, Case CC. Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med 2013; 11:81. [PMID: 23531336 PMCID: PMC3615967 DOI: 10.1186/1479-5876-11-81] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
Background Angiogenesis is a critical part of the endogenous repair process in brain injury and disease, and requires at least two sequential steps. First, angiogenic sprouting of endothelial cells occurs, which entails the initial proliferation of endothelial cells and remodeling of the surrounding extracellular matrix. Second, vessel stabilization is necessary to prevent vascular regression, which relies on vascular smooth muscle recruitment to surround the young vessels. Marrow stromal cells (MSCs) have been shown to promote revascularization after hindlimb ischemia, cardiac ischemia, and stroke. SB623 cells are derived from marrow stromal cells by transfection with a Notch1 intracellular domain (NICD)-expressing plasmid and are known to elicit functional improvement in experimental stroke. These cells are currently used in human clinical testing for treatment of chronic stroke. In the current study, the angiogenic property of SB623 cells was investigated using cell-based assays. Methods Angiogenic paracrine factors secreted by SB623 cells and the parental MSCs were identified using the Qantibody Human Angiogenesis Array. To measure the angiogenic activity of conditioned medium from SB623 cells and MSCs, endothelial tube formation in the human umbilical vein endothelial cell (HUVEC) assay and endothelial cell sprouting and branching in the rodent aortic ring assay were quantified. To validate the angiogenic contribution of VEGF in conditioned medium, endothelial cells and aortic rings were treated with SU5416, which inhibits VEGFR2 at low dose. Results Conditioned medium from SB623 cells promoted survival and proliferation of endothelial cells under serum-deprived conditions and supports HUVEC vascular tube formation. In a rodent aortic ring assay, there was enhanced endothelial sprouting and branching in response to SB623-derived conditioned medium. SU5416 treatment partially reversed the effect of conditioned medium on endothelial cell survival and proliferation while completely abrogate HUVEC tube formation and endothelial cell sprouting and branching in aortic ring assays. Conclusions These data indicate that SB623 cell-secreted angiogenic factors promoted several aspects of angiogenesis, which likely contribute to promoting recovery in the injured brain.
Collapse
Affiliation(s)
- Mo Dao
- SanBio Inc. , 231 South Whisman Road, Mountain View, CA, USA
| | | | | | | |
Collapse
|