1
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
2
|
Olson S, Finley M, Thakur R. An open-source, battery-powered, low-cost, and dual-channel pneumatic pulse generator for microfluidic cell-stretch assays. HARDWAREX 2024; 20:e00595. [PMID: 39483396 PMCID: PMC11525163 DOI: 10.1016/j.ohx.2024.e00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
Cells in the body are regularly subjected to mechanical forces that influence their biological fate in terms of morphology, gene expression, and differentiation. The current gold standard method to replicate these effects in vitro is to culture cells on devices with elastic substrates and to impart mechanical stretch using mechanical or pneumatic pull-push methods. Microfluidic device designs offer several advantages in this context for general uniform and controlled stretching. However, the experimental setups are bulky, not user-friendly, and often involve several components that reside outside of the tissue culture incubator. Given the wide utility of mechanical stimulation in in-vitro research, our aim was to create a turn-key research tool that bioengineers can deploy in their cell-stretch assays, without having to deal with the complexity and nuances of ad hoc experimental setups. Here, we present an open-source, battery-powered, dual-channel cyclic pneumatic pulse generator box that can reside within an incubator and is compatible with custom microfluidic cell stretch devices. Our method depends on generating pressure-vacuum pulses simply using a linear miniature pneumatic air cylinder actuated using a continuous servo motor. To the best our knowledge, this is a first example of a completely battery-powered, standalone system that doesn't have any peripherals residing out of the incubator. We provide a detailed list of different components as well as the step-by-step assembly process. We validate its performance in a cell stretch assay using a commercially available microfluidic chip. Our results show an acute stimulation of cyclic stretching over 8 h on human umbilical vein endothelial cells (HUVECs) resulted in preferential alignment of cells perpendicular to the axis of stretch.
Collapse
Affiliation(s)
- Samuel Olson
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, USA
| | - McKenna Finley
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, USA
| | - Raviraj Thakur
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, USA
| |
Collapse
|
3
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
4
|
Ling S, Blackburn BJ, Jenkins MW, Watanabe M, Ford SM, Lapierre-Landry M, Rollins AM. Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning. BIOMEDICAL OPTICS EXPRESS 2023; 14:1945-1958. [PMID: 37206115 PMCID: PMC10191668 DOI: 10.1364/boe.481657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Wang S, Larina IV. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart. J Cardiovasc Dev Dis 2022; 9:jcdd9080267. [PMID: 36005431 PMCID: PMC9409458 DOI: 10.3390/jcdd9080267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
In vertebrates, the coordinated beat of the early heart tube drives cardiogenesis and supports embryonic growth. How the heart pumps at this valveless stage marks a fascinating problem that is of vital significance for understanding cardiac development and defects. The developing heart achieves its function at the same time as continuous and dramatic morphological changes, which in turn modify its pumping dynamics. The beauty of this muti-time-scale process also highlights its complexity that requires interdisciplinary approaches to study. High-resolution optical imaging, particularly fast, four-dimensional (4D) imaging, plays a critical role in revealing the process of pumping, instructing numerical modeling, and enabling biomechanical analyses. In this review, we aim to connect the investigation of valveless pumping mechanisms with the recent advancements in embryonic cardiodynamic imaging, facilitating interactions between these two areas of study, in hopes of encouraging and motivating innovative work to further understand the early heartbeat.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Correspondence:
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chakraborty S, Allmon E, Sepúlveda MS, Vlachos PP. Haemodynamic dependence of mechano-genetic evolution of the cardiovascular system in Japanese medaka. J R Soc Interface 2021; 18:20210752. [PMID: 34699728 PMCID: PMC8548083 DOI: 10.1098/rsif.2021.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
The progression of cardiac gene expression-wall shear stress (WSS) interplay is critical to identifying developmental defects during cardiovascular morphogenesis. However, mechano-genetics from the embryonic to larval stages are poorly understood in vertebrates. We quantified peak WSS in the heart and tail vessels of Japanese medaka from 3 days post fertilization (dpf) to 14 dpf using in vivo micro-particle image velocimetry flow measurements, and in parallel analysed the expression of five cardiac genes (fgf8, hoxb6b, bmp4, nkx2.5, smyd1). Here, we report that WSS in the atrioventricular canal (AVC), ventricular outflow tract (OFT), and the caudal vessels in medaka peak with inflection points at 6 dpf and 10-11 dpf instead of a monotonic trend. Retrograde flows are captured at the AVC and OFT of the medaka heart for the first time. In addition, all genes were upregulated at 3 dpf and 7 dpf, indicating a possible correlation between the two, with the cardiac gene upregulation preceding WSS increase in order to facilitate cardiac wall remodelling.
Collapse
Affiliation(s)
- Sreyashi Chakraborty
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Pavlos P. Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Foster KM, Papavassiliou DV, O’Rear EA. Elongational Stresses and Cells. Cells 2021; 10:2352. [PMID: 34572002 PMCID: PMC8471242 DOI: 10.3390/cells10092352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 01/03/2023] Open
Abstract
Fluid forces and their effects on cells have been researched for quite some time, especially in the realm of biology and medicine. Shear forces have been the primary emphasis, often attributed as being the main source of cell deformation/damage in devices like prosthetic heart valves and artificial organs. Less well understood and studied are extensional stresses which are often found in such devices, in bioreactors, and in normal blood circulation. Several microfluidic channels utilizing hyperbolic, abrupt, or tapered constrictions and cross-flow geometries, have been used to isolate the effects of extensional flow. Under such flow cell deformations, erythrocytes, leukocytes, and a variety of other cell types have been examined. Results suggest that extensional stresses cause larger deformation than shear stresses of the same magnitude. This has further implications in assessing cell injury from mechanical forces in artificial organs and bioreactors. The cells' greater sensitivity to extensional stress has found utility in mechanophenotyping devices, which have been successfully used to identify pathologies that affect cell deformability. Further application outside of biology includes disrupting cells for increased food product stability and harvesting macromolecules for biofuel. The effects of extensional stresses on cells remains an area meriting further study.
Collapse
Affiliation(s)
| | | | - Edgar A. O’Rear
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (K.M.F.); (D.V.P.)
| |
Collapse
|
8
|
Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8020014. [PMID: 33572675 PMCID: PMC7912127 DOI: 10.3390/jcdd8020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The heart is the first functional organ in a developing embryo. Cardiac development continues throughout developmental stages while the heart goes through a serious of drastic morphological changes. Previous animal experiments as well as clinical observations showed that disturbed hemodynamics interfere with the development of the heart and leads to the formation of a variety of defects in heart valves, heart chambers, and blood vessels, suggesting that hemodynamics is a governing factor for cardiogenesis, and disturbed hemodynamics is an important source of congenital heart defects. Therefore, there is an interest to image and quantify the flowing blood through a developing heart. Flow measurement in embryonic fetal heart can be performed using advanced techniques such as magnetic resonance imaging (MRI) or echocardiography. Computational fluid dynamics (CFD) modeling is another approach especially useful when the other imaging modalities are not available and in-depth flow assessment is needed. The approach is based on numerically solving relevant physical equations to approximate the flow hemodynamics and tissue behavior. This approach is becoming widely adapted to simulate cardiac flows during the embryonic development. While there are few studies for human fetal cardiac flows, many groups used zebrafish and chicken embryos as useful models for elucidating normal and diseased cardiogenesis. In this paper, we explain the major steps to generate CFD models for simulating cardiac hemodynamics in vivo and summarize the latest findings on chicken and zebrafish embryos as well as human fetal hearts.
Collapse
|
9
|
Lopez AL, Wang S, Larina IV. Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance. JOURNAL OF BIOPHOTONICS 2020; 13:e202000223. [PMID: 32692902 PMCID: PMC8117926 DOI: 10.1002/jbio.202000223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The mouse embryo is an established model for investigation of regulatory mechanisms controlling cardiac development and congenital heart defects in humans. Since cultured mouse embryos are very sensitive to any manipulations and environmental fluctuations, controlled alterations in mouse embryonic cardiac function are extremely challenging, which is a major hurdle in mammalian cardiac biomechanics research. This manuscript presents first optogenetic manipulation of cardiodynamics and hemodynamics in cultured mouse embryos. Optogenetic pacing was combined with 4D (3D + time) optical coherence tomography structural and Doppler imaging, demonstrating that embryonic hearts under optogenetic pacing can function efficiently and produce strong blood flows. This study demonstrates that the presented method is a powerful tool giving quick, consistent, reversible control over heart dynamics and blood flow under real time visualization, enabling various live cardiac biomechanics studies toward better understanding of normal cardiogenesis and congenital heart defects in humans.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Elahi S, Blackburn BJ, Lapierre-Landry M, Gu S, Rollins AM, Jenkins MW. Semi-automated shear stress measurements in developing embryonic hearts. BIOMEDICAL OPTICS EXPRESS 2020; 11:5297-5305. [PMID: 33014615 PMCID: PMC7510878 DOI: 10.1364/boe.395952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 05/09/2023]
Abstract
Blood-induced shear stress influences gene expression. Abnormal shear stress patterns on the endocardium of the early-stage heart tube can lead to congenital heart defects. To have a better understanding of these mechanisms, it is essential to include shear stress measurements in longitudinal cohort studies of cardiac development. Previously reported approaches are computationally expensive and nonpractical when assessing many animals. Here, we introduce a new approach to estimate shear stress that does not rely on recording 4D image sets and extensive post processing. Our method uses two adjacent optical coherence tomography frames (B-scans) where lumen geometry and flow direction are determined from the structural data and the velocity is measured from the Doppler OCT signal. We validated our shear stress estimate by flow phantom experiments and applied it to live quail embryo hearts where observed shear stress patterns were similar to previous studies.
Collapse
Affiliation(s)
- Sahar Elahi
- Department of Pediatrics, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Shi Gu
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| |
Collapse
|
11
|
Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med 2020; 11:11/493/eaax0290. [PMID: 31118289 PMCID: PMC7331025 DOI: 10.1126/scitranslmed.aax0290] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.
Collapse
Affiliation(s)
- Katelynn A Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Mengyao Yu
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Kelsey S Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Reece Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Ka'la D Drayton
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Neal Peterson
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Sandra Ramos-Ortiz
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Alex Drohan
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Breiona J Catching
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Andy Wessels
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Francesca N Delling
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xavier Jeunemaitre
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Christian Dina
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Ryan L Collins
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Harrison Brand
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rupak Mukherjee
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Awgulewitsch
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA.,Faculty of Medicine, Health and Life Sciences School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Willian A da Silveira
- Center for Genomic Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maire Leyne
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ronen Durst
- Cardiology Division, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Roger R Markwald
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | - Albert Hagege
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris, Department of Cardiology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Thierry Le Tourneau
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Peter Kohl
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Eva A Rog-Zielinska
- University Heart Center Freiburg, Bad Krozingen and Faculty of Medicine of the Albert-Ludwigs University Freiburg, Institute for Experimental Cardiovascular Medicine, Elsässerstr 2Q, 79110 Freiburg, Germany
| | - Patrick T Ellinor
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David J Milan
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Leducq Foundation, 265 Franklin Street, Suite 1902, Boston, MA, 02110, USA
| | - Jean-Jacques Schott
- INSERM, CNRS, Univ Nantes, L'Institut du Thorax, Nantes 44093, France.,CHU Nantes, L'Institut du Thorax, Service de Cardiologie, Nantes 44093, France
| | - Nabila Bouatia-Naji
- INSERM, UMR-970, Paris Cardiovascular Research Center, 75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Faculty of Medicine, 75006 Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Zhao Y, Ma Y, Liu J, Yu Y, Wang Y, Ma Z. Phase unwrapping for Doppler spectral domain optical coherence tomography flow measurement. JOURNAL OF BIOPHOTONICS 2020; 13:e201960064. [PMID: 31670909 DOI: 10.1002/jbio.201960064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Doppler optical coherence tomography (OCT) offers additional flow velocity information, which extends the application of OCT. Phase wrapping is the inherent problem that limits measureable range of Doppler OCT. We propose a phase unwrapping method which is suitable for correcting phase in Doppler OCT images. Points (pixels) in flow region are divided into groups according to the radial distance. Points in the same group are supposed to have close velocity. Phase unwrapping algorithm begins at the boundary layer group and is performed sequentially toward the center. Using the proposed criterion, points in a group are separated into two categories, signal points and noise points. Wrapping rounds are determined for signal points phase unwrapping. Mean value of the corrected signal points replaces the noise points for noise reduction. The method is validated with capillary tube flow phantom and in vivo blood flow.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yushu Ma
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yi Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
13
|
Buerck JP, Burke DK, Schmidtke DW, Snyder TA, Papavassiliou D, O'Rear EA. A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices. Sci Rep 2019; 9:19443. [PMID: 31857631 PMCID: PMC6923429 DOI: 10.1038/s41598-019-55924-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.
Collapse
Affiliation(s)
- James P Buerck
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Dustin K Burke
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75083, USA
| | - Trevor A Snyder
- VADovations, 1333 Cornell Parkway, Oklahoma City, OK, 73108, USA.,CorWave, SA, 92110, Clichy, France
| | - Dimitrios Papavassiliou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Edgar A O'Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA. .,Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
14
|
Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Pinard A, Eudes N, Mitchell J, Bajolle F, Grelet M, Okoronkwo J, Bonnet D, Collod-Béroud G, Zaffran S. Analysis of HOXB1 gene in a cohort of patients with sporadic ventricular septal defect. Mol Biol Rep 2018; 45:1507-1513. [PMID: 29923154 DOI: 10.1007/s11033-018-4212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 11/30/2022]
Abstract
Ventricular septal defect (VSD) including outlet VSD of double outlet right ventricle (DORV) and perimembranous VSD are among the most common congenital heart diseases found at birth. HOXB1 encodes a homeodomain transcription factor essential for normal cardiac outflow tract development. The aim of the present study was to investigate the possible genetic effect of sequence variations in HOXB1 on VSD. The coding regions and splice junctions of the HOXB1 gene were sequenced in 57 unrelated VSD patients. As a result, a homozygous c.74_82dup (p.Pro28delinsHisSerAlaPro) variant was identified in one individual with DORV. We also identified five previously reported polymorphisms (rs35114525, rs12946855, rs14534040, rs12939811, and rs7207109) in 18 patients (12 DORV and 6 perimembranous VSD). Our study did not show any pathogenic alterations in the coding region of HOXB1 among patients with VSD. To our knowledge this is the first study investigating the role of HOXB1 in nonsyndromic VSD, which provide more insight on the etiology of this disease.
Collapse
Affiliation(s)
- Amélie Pinard
- Aix Marseille Université, INSERM U1251, MMG, Marseille, France.,Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nathalie Eudes
- Aix Marseille Université, INSERM U1251, MMG, Marseille, France
| | - Julia Mitchell
- Aix Marseille Université, INSERM U1251, MMG, Marseille, France.,Service de Chirurgie des Cardiopathies Congénitales, Hôpital Cardiologique Louis Pradel, Avenue du Doyen Lépine, 69394, Lyon, France
| | - Fanny Bajolle
- Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maude Grelet
- Aix Marseille Université, INSERM U1251, MMG, Marseille, France
| | - Joséphine Okoronkwo
- Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Damien Bonnet
- Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Stéphane Zaffran
- Aix Marseille Université, INSERM U1251, MMG, Marseille, France. .,Faculté de Médecine, Aix Marseille Université, INSERM U1251, Marseille Medical Genetics, 27 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
16
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Abstract
Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.
Collapse
Affiliation(s)
- Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA
| |
Collapse
|
18
|
Hox Genes in Cardiovascular Development and Diseases. J Dev Biol 2016; 4:jdb4020014. [PMID: 29615581 PMCID: PMC5831787 DOI: 10.3390/jdb4020014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects (CHD) are the leading cause of death in the first year of life. Over the past 20 years, much effort has been focused on unraveling the genetic bases of CHD. In particular, studies in human genetics coupled with those of model organisms have provided valuable insights into the gene regulatory networks underlying CHD pathogenesis. Hox genes encode transcription factors that are required for the patterning of the anterior–posterior axis in the embryo. In this review, we focus on the emerging role of anteriorly expressed Hox genes (Hoxa1, Hoxb1, and Hoxa3) in cardiac development, specifically their contribution to patterning of cardiac progenitor cells and formation of the great arteries. Recent evidence regarding the cooperative regulation of heart development by Hox proteins with members of the TALE-class of homeodomain proteins such as Pbx and Meis transcription factors is also discussed. These findings are highly relevant to human pathologies as they pinpoint new genes that increase susceptibility to cardiac anomalies and provide novel mechanistic insights into CHD.
Collapse
|
19
|
Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics. J Cardiovasc Dev Dis 2015; 3. [PMID: 27088080 PMCID: PMC4827265 DOI: 10.3390/jcdd3010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS) at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, USA;
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA;
| | - Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2145, Madison, WI 53706, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-419-9310; Fax: +1-503-418-9311
| |
Collapse
|
20
|
McIntosh WH, Ozturk M, Down LA, Papavassiliou DV, O'Rear EA. Hemodynamics of the renal artery ostia with implications for their structural development and efficiency of flow. Biorheology 2015; 52:257-68. [PMID: 26639358 DOI: 10.3233/bir-15069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Energy losses at tube or blood vessel orifices depend on the extent of flare as measured by the dimensionless ratio of the fillet radius of curvature to diameter (r/D). OBJECTIVE The goal of this study was to assess the effect of ostial fillet radii on energy losses at the aorta-renal artery junctions since as much as a quarter of cardiac output passes through the kidneys. METHOD Pressure loss coefficients K for the renal artery ostia as a function of r/D have been determined for representative anatomical variants using finite volume simulations. Estimates of fillet radii in humans from image analysis were employed in simulations for comparison of loss coefficients. RESULTS Values for K drop 45% as r/D increases over the range 0-1.3. Image analysis indicates that the ostia are not symmetric in humans with (r/D)superior much larger than (r/D)inferior. Simulations show the loss coefficient depends almost entirely on the superior fillet radius. CONCLUSIONS Superior fillet radii for both renal arteries are similar to the optimal value to reduce energy losses while the inferior radii are not. Ostial asymmetry may have been induced by higher levels of shear stress present on the superior portion of a developing symmetric ostium of small r/D.
Collapse
Affiliation(s)
- William H McIntosh
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA
| | - Mesude Ozturk
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA
| | - Linden A Down
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA.,Bioengineering Program, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA
| | - Dimitrios V Papavassiliou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA
| | - Edgar A O'Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA.,Bioengineering Program, University of Oklahoma, 100 E. Boyd SEC T301, Norman, OK, 73019, USA
| |
Collapse
|
21
|
Guo J, Sachs F, Meng F. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 2014; 20:986-99. [PMID: 24205787 PMCID: PMC3924807 DOI: 10.1089/ars.2013.5708] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SIGNIFICANCE Three signaling systems, chemical, electrical, and mechanical, ubiquitously contribute to cellular activities. There is limited information on the mechanical signaling system because of a lack of tools to measure stress in specific proteins. Although significant advances in methodologies such as atomic force microscopy and laser tweezers have achieved great success in single molecules and measuring the mean properties of cells and tissues, they cannot deal with specific proteins in live cells. RECENT ADVANCES To remedy the situation, we developed a family of genetically encoded optical force sensors to measure the stress in structural proteins in living cells. The sensors can be incorporated into specific proteins and are not harmful in transgenic animals. The chimeric proteins distribute and function as their wild-type counterparts, and local stress can be read out from changes in Förster resonance energy transfer (FRET). CRITICAL ISSUES Our original sensor used two mutant green fluorescence proteins linked by an alpha helix that served as a linking spring. Ever since, we have improved the probe design in a number of ways. For example, we replaced the helical linker with more common elastic protein domains to better match the compliance of the wild-type hosts. We greatly improved sensitivity by using the angular dependence of FRET rather than the distance dependence as the transduction mechanism, because that has nearly 100% efficiency at rest and nearly zero when stretched. FUTURE DIRECTIONS These probes enable researchers to investigate the roles of mechanical force in cellular activities at the level of single molecules, cells, tissues, and whole animals.
Collapse
Affiliation(s)
- Jun Guo
- 1 Department of Biochemistry, Nanjing Medical University , Nanjing, People's Republic of China
| | | | | |
Collapse
|
22
|
Peterson LM, Gu S, Jenkins MW, Rollins AM. Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT. BIOMEDICAL OPTICS EXPRESS 2014; 5:499-514. [PMID: 24575344 PMCID: PMC3920880 DOI: 10.1364/boe.5.000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/19/2023]
Abstract
Doppler OCT (DOCT) can provide blood flow velocity information which is valuable for investigation of microvascular structure and function. However, DOCT is only sensitive to motion parallel with the imaging beam, so that knowledge of flow direction is needed for absolute velocity determination. Here, absolute volumetric flow is calculated by integrating velocity components perpendicular to the B-scan plane. These components are acquired using two illumination beams with a predetermined angular separation, produced by a delay encoded technique. This technology enables rapid pulsatile flow measurement from single B-scans without the need for 3-D volumetric data or knowledge of blood vessel orientation.
Collapse
|
23
|
Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: total cavopulmonary connection treatments. ScientificWorldJournal 2013; 2013:131597. [PMID: 24385870 PMCID: PMC3872434 DOI: 10.1155/2013/131597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/06/2013] [Indexed: 11/27/2022] Open
Abstract
Total cavopulmonary connection (TCPC), a typical kind of Fontan procedure, is commonly used in the treatment of a functional single ventricle. The palliative cardiothoracic procedure is performed by connecting the superior vena cava and the inferior vena cava to the pulmonary arteries. Due to the difficulty of direct study in vivo, in this paper, computational fluid dynamics (CFD) was introduced to estimate the outcomes of patient-specific TCPC configuration. We mainly focused on the influence of blood pulsation and respiration. Fast Fourier transforms method was employed to separate the measured flow conditions into the rate of breath and heart beat. Blood flow performance around the TCPC connection was investigated by analyzing the results of time-varying energy losses, blood flow distribution rate, local pressure, and wall shear stress distributions. It was found that the value of energy loss including the influence of respiration was 1.5 times higher than the value of energy loss disregarding respiratory influences. The results indicated that the hemodynamic outcomes of TCPC treatment are obviously influenced by respiration. The influence of respiration plays an important role in estimating the results of TCPC treatment and thus should be included as one of the important conditions of computational haemodynamic analysis.
Collapse
|
24
|
Peterson LM, McPheeters M, Barwick L, Gu S, Rollins AM, Jenkins MW. Altering embryonic cardiac dynamics with optical pacing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1382-5. [PMID: 23366157 DOI: 10.1109/embc.2012.6346196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several studies have shown that altering blood flow early in development leads to congenital heart defects. In these studies the perturbations to hemodynamics were very gross manipulations (vessel ligation, conotruncal banding, etc.) that would be inappropriate for probing the delicate mechanisms responsible for mechanically-transduced signaling. Also, these perturbations lacked feedback from a monitoring system to determine the exact degree of alteration and the location of its effect. Here, we employed optical pacing (OP) to alter the heart rate in quail embryos and optical coherence tomography (OCT) to measure the resultant shear forces on the endocardium. OP is a new technique utilizing pulsed 1.851 µm infrared laser light to noninvasively capture the heart rate to the pulse frequency of the laser without the use of exogenous agents. To measure shear stress on the endocardium, we extended our previous OCT algorithms to enable the production of 4-D shear maps. 4-D shear maps allowed observation of the spatial and temporal distribution of shear stress. Employing both OCT and OP, we were able to develop perturbation protocols that increase regurgitant flow and greatly modify the oscillatory shear index (OSI) in a region of the heart tube where future valves will develop. Regurgitant flow has been linked with valve development and precise perturbations may allow one to determine the role of hemodynamics in valvulogenesis.
Collapse
Affiliation(s)
- L M Peterson
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
25
|
Pekkan K, Keller BB. Guest Editorial: Special Issue on Fetal Hemodynamics : Developmental Fetal Cardiovascular Biomechanics in the 21st Century: Another Tipping Point. Cardiovasc Eng Technol 2013; 4:231-233. [PMID: 29637505 DOI: 10.1007/s13239-013-0152-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kerem Pekkan
- Pediatric Cardiovascular Fluid Mechanics Laboratory, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA, 15219, USA. .,Mechanical Engineering Department, Koç University, Rumeli feneri Yolu, Istanbul, 34450, Turkey.
| | - Bradley B Keller
- Department of Pediatrics, University of Louisville, 302 East Muhammad Ali Blvd, Louisville, KY, 40202, USA
| |
Collapse
|
26
|
Wang L, Fu C, Fan H, Du T, Dong M, Chen Y, Jin Y, Zhou Y, Deng M, Gu A, Jing Q, Liu T, Zhou Y. miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development 2013; 140:2755-64. [PMID: 23698347 DOI: 10.1242/dev.092825] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiciliated cells (MCCs) possess multiple motile cilia and are distributed throughout the vertebrate body, performing important physiological functions by regulating fluid movement in the intercellular space. Neither their function during organ development nor the molecular mechanisms underlying multiciliogenesis are well understood. Although dysregulation of members of the miR-34 family plays a key role in the progression of various cancers, the physiological function of miR-34b, especially in regulating organ formation, is largely unknown. Here, we demonstrate that miR-34b expression is enriched in kidney MCCs and the olfactory placode in zebrafish. Inhibiting miR-34b function using morpholino antisense oligonucleotides disrupted kidney proximal tubule convolution and the proper distribution of distal transporting cells and MCCs. Microarray analysis of gene expression, cilia immunostaining and a fluid flow assay revealed that miR-34b is functionally required for the multiciliogenesis of MCCs in the kidney and olfactory placode. We hypothesize that miR-34b regulates kidney morphogenesis by controlling the movement and distribution of kidney MCCs and fluid flow. We found that cmyb was genetically downstream of miR-34b and acted as a key regulator of multiciliogenesis. Elevated expression of cmyb blocked membrane docking of centrioles, whereas loss of cmyb impaired centriole multiplication, both of which resulted in defects in the formation of ciliary bundles. Thus, miR-34b serves as a guardian to maintain the proper level of cmyb expression. In summary, our studies have uncovered an essential role for miR-34b-Cmyb signaling during multiciliogenesis and kidney morphogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Stem Cell Biology and State Key Laboratory of Medical Genomics and Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, and Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K. Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS One 2013; 8:e60271. [PMID: 23555940 PMCID: PMC3605337 DOI: 10.1371/journal.pone.0060271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/25/2013] [Indexed: 02/01/2023] Open
Abstract
Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.
Collapse
Affiliation(s)
- William J. Kowalski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yajuan Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Patrick
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Joseph P. Tinney
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rugonyi S. Strain-induced tissue growth laws: applications to embryonic cardiovascular development. JOURNAL OF APPLIED MECHANICAL ENGINEERING 2013; Suppl 11:001. [PMID: 25364643 PMCID: PMC4212269 DOI: 10.4172/2168-9873.s11-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hemodynamic conditions play an essential role in the cardiovascular system, with abnormal blood flow conditions leading to growth and remodeling of cardiovascular walls. During embryonic development, altered hemodynamic conditions lead to congenital heart disease, which affects about 1% of newborn babies in developed countries. However, the mechanisms by which hemodynamic conditions affect cardiovascular development have not been fully elucidated. In this paper, we propose a model of cardiac growth in response to hemodynamic conditions, in which growth is modulated by a combination of wall strains and wall shear stresses. This is in contrast to previous models that proposed stress-induced growth laws. Because during embryonic development blood pressure increases over time, and this increase in blood pressure produces an increase in wall stresses, stress-induced growth laws would require time-dependent parameters. While blood pressure increases during development, cardiovascular walls become stiffer and thicker, and thus we postulate that instead strains experienced by cells remain approximately the same during development. This assumption motivated our cardioavascular model of strain-induced growth in response to hemodynamic conditions, which we implemented using finite element methods. Model simulations show that the proposed model results in tissue growth that is physiologically reasonable. Further, our analyses demonstrate that mechanical coupling - that results from residual stresses originating from differential tissue growth - may play a more important role in the modulation of cardiovascular tissue growth and remodeling than currently acknowledged.
Collapse
Affiliation(s)
- Sandra Rugonyi
- Oregon Health & Science University, Biomedical Engineering, 3303 SW Bond Ave., Mail Code: CH13B, Portland, OR 97239, Telephone: 1-503-418-9310,
| |
Collapse
|
29
|
Wolfe RP, Leleux J, Nerem RM, Ahsan T. Effects of shear stress on germ lineage specification of embryonic stem cells. Integr Biol (Camb) 2013; 4:1263-73. [PMID: 22968330 DOI: 10.1039/c2ib20040f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanobiology to date has focused on differentiated cells or progenitors, yet the effects of mechanical forces on early differentiation of pluripotent stem cells are still largely unknown. To study the effects of cellular deformation, we utilize a fluid flow bioreactor to apply steady laminar shear stress to mouse embryonic stem cells (ESCs) cultured on a two dimensional surface. Shear stress was found to affect pluripotency, as well as germ specification to the mesodermal, endodermal, and ectodermal lineages, as indicated by gene expression of OCT4, T-BRACHY, AFP, and NES, respectively. The ectodermal and mesodermal response to shear stress was dependent on stress magnitude (ranging from 1.5 to 15 dynes cm(-2)). Furthermore, increasing the duration from one to four days resulted in a sustained increase in T-BRACHY and a marked suppression of AFP. These changes in differentiation occurred concurrently with the activation of Wnt and estrogen pathways, as determined by PCR arrays for signalling molecules. Together these studies show that the mechanical microenvironment may be an important regulator during early differentiation events, including gastrulation. This insight furthers understanding of normal and pathological events during development, as well as facilitates strategies for scale up production of stem cells for clinical therapies.
Collapse
Affiliation(s)
- Russell P Wolfe
- Tulane University Department of Biomedical Engineering, 500 Lindy Boggs, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
30
|
Peterson LM, Jenkins MW, Gu S, Barwick L, Watanabe M, Rollins AM. 4D shear stress maps of the developing heart using Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2012; 3:3022-32. [PMID: 23162737 PMCID: PMC3493225 DOI: 10.1364/boe.3.003022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 05/19/2023]
Abstract
Accurate imaging and measurement of hemodynamic forces is vital for investigating how physical forces acting on the embryonic heart are transduced and influence developmental pathways. Of particular importance is blood flow-induced shear stress, which influences gene expression by endothelial cells and potentially leads to congenital heart defects through abnormal heart looping, septation, and valvulogenesis. However no imaging tool has been available to measure shear stress on the endocardium volumetrically and dynamically. Using 4D structural and Doppler OCT imaging, we are able to accurately measure the blood flow in the heart tube in vivo and to map endocardial shear stress throughout the heart cycle under physiological conditions for the first time. These measurements of the shear stress patterns will enable precise titration of experimental perturbations and accurate correlation of shear with the expression of molecules critical to heart development.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Lee Barwick
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland,
Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, USA
| |
Collapse
|
31
|
Liu A, Yin X, Shi L, Li P, Thornburg KL, Wang R, Rugonyi S. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 2012; 7:e40869. [PMID: 22844414 PMCID: PMC3402486 DOI: 10.1371/journal.pone.0040869] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/18/2012] [Indexed: 11/28/2022] Open
Abstract
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xin Yin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kent L. Thornburg
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
32
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
33
|
|
34
|
de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slaugenhaupt SA, Hagège A, Chester AH, Markwald RR, Norris RA. Atrioventricular valve development: new perspectives on an old theme. Differentiation 2012; 84:103-16. [PMID: 22579502 DOI: 10.1016/j.diff.2012.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/19/2022]
Abstract
Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.
Collapse
Affiliation(s)
- Annemarieke de Vlaming
- Department of Regenerative Medicine and Cell Biology, School of Medicine, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomech Model Mechanobiol 2012; 11:1057-73. [PMID: 22307681 DOI: 10.1007/s10237-012-0373-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/13/2012] [Indexed: 01/13/2023]
Abstract
In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects. Arrested migration and rotation of the embryonic outflow tract during late stages of cardiac looping has been shown to produce both outflow tract and several arch abnormalities. Here, we investigate how changes in flow distribution due to a perturbation in the angular orientation of the embryonic outflow tract impact the morphogenesis and growth of the aortic arches. Using a combination of in vivo arch morphometry with fluorescent dye injection and hemodynamics-driven bioengineering optimization-based vascular growth modeling, we demonstrate that outflow tract orientation significantly changes during development and that the associated changes in hemodynamic load can dramatically influence downstream aortic arch patterning. Optimization reveals that balancing energy expenditure with diffusive capacity leads to multiple arch vessel patterns as seen in the embryo, while minimizing energy alone led to the single arch configuration seen in the mature arch of aorta. Our model further shows the critical importance of the orientation of the outflow tract in dictating morphogenesis to the adult single arch and accurately predicts arch IV as the dominant mature arch of aorta. These results support the hypothesis that abnormal positioning of the outflow tract during early cardiac morphogenesis may lead to congenital defects of the great vessels due to altered hemodynamic loading.
Collapse
|
36
|
Geyer SH, Weninger WJ. Some mice feature 5th pharyngeal arch arteries and double-lumen aortic arch malformations. Cells Tissues Organs 2012; 196:90-8. [PMID: 22287557 DOI: 10.1159/000330789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2011] [Indexed: 01/21/2023] Open
Abstract
A 5th pair of pharyngeal arch arteries (PAAs) has never been identified with certainty in mice. Murines in general are considered to not develop a 5th pair. If true, the significance of the mouse as a model for researching the genesis of malformations of the great intrathoracic arteries is limited. We aimed to investigate whether mouse embryos develop a 5th pair of PAAs and to identify malformations known to be caused by defective remodelling of the 5th PAAs. We employed the high-resolution episcopic microscopy method for creating digital volume data and three-dimensional (3D) computer models of the great intrathoracic arteries of 30 mouse embryos from days 12-12.5 post conception and 180 mouse fetuses from days 14.5 and 15.5 post conception. The 3D models of the fetuses were screened for the presence of a double-lumen aortic arch malformation. We identified such a malformation in 1 fetus. The 3D models of the embryos were analysed for the presence of 5th PAAs. Six of the 30 embryos (20%) showed a 5th PAA bilaterally, and an additional 9 (30%) showed a 5th PAA unilaterally. Our results prove that some mice do develop a 5th pair of PAAs. They also show that malformations which occur rarely in humans and result from defective remodelling of the left 5th PAA can be identified in mice as well. Thus, the mouse does represent an excellent model for researching the mechanisms driving PAA remodelling and the genesis of malformations of the great intrathoracic arteries.
Collapse
Affiliation(s)
- Stefan H Geyer
- Integrative Morphology Group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
37
|
Liu A, Nickerson A, Troyer A, Yin X, Cary R, Thornburg K, Wang R, Rugonyi S. Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. COMPUTERS & STRUCTURES 2011; 89:855-867. [PMID: 21572557 PMCID: PMC3091009 DOI: 10.1016/j.compstruc.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wall shear stresses (WSS) exerted by blood flow on cardiac tissues modulate growth and development of the heart. To study the role of hemodynamic conditions on cardiac morphogenesis, here, we present a methodology that combines imaging and finite element modeling to quantify the in vivo blood flow dynamics and WSS in the cardiac outflow tract (OFT) of early chicken embryos (day 3 out of 21-day incubation period). We found a distinct blood flow field and heterogeneous distribution of WSS in the chicken embryonic heart OFT, which have physiological implications for OFT morphogenesis.
Collapse
Affiliation(s)
- Aiping Liu
- Division of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Role for Primary Cilia as Flow Detectors in the Cardiovascular System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:87-119. [DOI: 10.1016/b978-0-12-386037-8.00004-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Jenkins MW, Duke AR, Gu S, Chiel HJ, Fujioka H, Watanabe M, Jansen ED, Rollins AM. Optical pacing of the embryonic heart. NATURE PHOTONICS 2010; 4:623-626. [PMID: 21423854 PMCID: PMC3059323 DOI: 10.1038/nphoton.2010.166] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Light has been used to noninvasively alter the excitability of both neural and cardiac tissue 1-10. Recently, pulsed laser light has been shown to be capable of eliciting action potentials in peripheral nerves and in cultured cardiomyocytes 7-10. Here, we demonstrate for the first time optical pacing (OP) of an intact heart in vivo. Pulsed 1.875 μm infrared laser light was employed to lock the heart rate to the pulse frequency of the laser. A laser Doppler velocimetry (LDV) signal was used to verify the pacing. At low radiant exposures, embryonic quail hearts were reliably paced in vivo without detectable damage to the tissue, indicating that OP has great potential as a tool to study embryonic cardiac dynamics and development. In particular, OP can be utilized to control the heart rate, and thereby alter stresses and mechanically transduced signaling.
Collapse
Affiliation(s)
- M. W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - A. R. Duke
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - S. Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - H. J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - H. Fujioka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - M. Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106
| | - E. D. Jansen
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - A. M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Correspondence: Andrew M. Rollins, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, Tel: 216 368-1917;
| |
Collapse
|
40
|
Culver JC, Dickinson ME. The effects of hemodynamic force on embryonic development. Microcirculation 2010; 17:164-78. [PMID: 20374481 DOI: 10.1111/j.1549-8719.2010.00025.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blood vessels have long been known to respond to hemodynamic force, and several mechanotransduction pathways have been identified. However, only recently have we begun to understand the effects of hemodynamic force on embryonic development. In this review, we will discuss specific examples illustrating the role of hemodynamic force during the development of the embryo, with particular focus on the development of the vascular system and the morphogenesis of the heart. We will also discuss the important functions served by mechanotransduction and hemodynamic force during placentation, as well as in regulating the maintenance and division of embryonic, hematopoietic, neural, and mesenchymal stem cells. Pathological misregulation of mechanosensitive pathways during pregnancy and embryonic development may contribute to the occurrence of cardiovascular birth defects, as well as to a variety of other diseases, including preeclampsia. Thus, there is a need for future studies focusing on better understanding the physiological effects of hemodynamic force during embryonic development and their role in the pathogenesis of disease.
Collapse
Affiliation(s)
- James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Ryckebüsch L, Bertrand N, Mesbah K, Bajolle F, Niederreither K, Kelly RG, Zaffran S. Decreased levels of embryonic retinoic acid synthesis accelerate recovery from arterial growth delay in a mouse model of DiGeorge syndrome. Circ Res 2010; 106:686-94. [PMID: 20110535 DOI: 10.1161/circresaha.109.205732] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/velocardiofacial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract of the heart and anomalies of pharyngeal arch-derived structures including arteries of the head and neck, laryngeal-tracheal cartilage, and thymus/parathyroid. Wild-type levels of T-box transcription factor (Tbx)1 and RA signaling are required for normal pharyngeal arch artery development. Recent studies have shown that reduction of RA or loss of Tbx1 alters the contribution of second heart field (SHF) progenitor cells to the elongating heart tube. OBJECTIVE Here we tested whether Tbx1 and the RA signaling pathway interact during the deployment of the SHF and formation of the mature aortic arch. METHODS AND RESULTS Molecular markers of the SHF, neural crest and smooth muscle cells, were analyzed in Raldh2;Tbx1 compound heterozygous mutants. Our results revealed that the SHF and outflow tract develop normally in Raldh2(+/-);Tbx1(+/-) embryos. However, we found that decreased levels of RA accelerate the recovery from arterial growth delay observed in Tbx1(+/-) mutant embryos. This compensation coincides with the differentiation of smooth muscle cells in the 4th pharyngeal arch arteries, and is associated with severity of neural crest cell migration defects observed in these mutants. CONCLUSIONS Our data suggest that differences in levels of embryonic RA may contribute to the variability in great artery anomalies observed in DGS/VCFS patients.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- INSERM UMR S910, Université de la Méditerranée, Faculté de Médecine, 27 Bd. Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Kaplan AD, Jaffa AJ, Timor IE, Elad D. Hemodynamic Analysis of Arterial Blood Flow in the Coiled Umbilical Cord. Reprod Sci 2009; 17:258-68. [DOI: 10.1177/1933719109351596] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Aaron D. Kaplan
- Department of Biomedical Engineering, School of Engineering, Columbia University, New York
| | - Ariel J. Jaffa
- Ultrasound Unit in Obstetrics and Gynecology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Ilan E. Timor
- Division of Obstetric and Gynecologic Ultrasound, Department of Obstetrics and Gynecology, New York University Medical Center, New York
| | - David Elad
- Department of Biomedical Engineering, School of Engineering, Columbia University, New York,
| |
Collapse
|
43
|
Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 2009; 37:1069-81. [PMID: 19337838 DOI: 10.1007/s10439-009-9682-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/17/2009] [Indexed: 12/20/2022]
Abstract
Morphogenesis of the "immature symmetric embryonic aortic arches" into the "mature and asymmetric aortic arches" involves a delicate sequence of cell and tissue migration, proliferation, and remodeling within an active biomechanical environment. Both patient-derived and experimental animal model data support a significant role for biomechanical forces during arch development. The objective of the present study is to quantify changes in geometry, blood flow, and shear stress patterns (WSS) during a period of normal arch morphogenesis. Composite three-dimensional (3D) models of the chick embryo aortic arches were generated at the Hamburger-Hamilton (HH) developmental stages HH18 and HH24 using fluorescent dye injection, micro-CT, Doppler velocity recordings, and pulsatile subject-specific computational fluid dynamics (CFD). India ink and fluorescent dyes were injected into the embryonic ventricle or atrium to visualize right or left aortic arch morphologies and flows. 3D morphology of the developing great vessels was obtained from polymeric casting followed by micro-CT scan. Inlet aortic arch flow and cerebral-to-lower body flow split was obtained from 20 MHz pulsed Doppler velocity measurements and literature data. Statistically significant variations of the individual arch diameters along the developmental timeline are reported and correlated with WSS calculations from CFD. CFD simulations quantified pulsatile blood flow distribution from the outflow tract through the aortic arches at stages HH18 and HH24. Flow perfusion to all three arch pairs are correlated with the in vivo observations of common pharyngeal arch defect progression. The complex spatial WSS and velocity distributions in the early embryonic aortic arches shifted between stages HH18 and HH24, consistent with increased flow velocities and altered anatomy. The highest values for WSS were noted at sites of narrowest arch diameters. Altered flow and WSS within individual arches could be simulated using altered distributions of inlet flow streams. Thus, inlet flow stream distributions, 3D aortic sac and aortic arch geometries, and local vascular biologic responses to spatial variations in WSS are all likely to be important in the regulation of arch morphogenesis.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Pries AR, Mulvany MJ, Bakker ENTP. MBEC special issue on microcirculation "engineering principles of vascular networks". Med Biol Eng Comput 2008; 46:407-9. [PMID: 18414914 DOI: 10.1007/s11517-008-0340-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
|