1
|
Ioannou P, Katsigiannis A, Papakitsou I, Kopidakis I, Makraki E, Milonas D, Filippatos TD, Sourvinos G, Papadogiannaki M, Lydaki E, Chamilos G, Kofteridis DP. Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023; 15:756. [PMID: 36992465 PMCID: PMC10059055 DOI: 10.3390/v15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Patients receiving treatment with B-cell-depleting monoclonal antibodies, such as anti-CD20 monoclonal antibodies, such as rituximab and obinutuzumab, either for hematological disease or another diagnosis, such as a rheumatological disease, are at an increased risk for medical complications and mortality from COVID-19. Since inconsistencies persist regarding the use of convalescent plasma (CP), especially in the vulnerable patient population that has received previous treatment with B-cell-depleting monoclonal antibodies, further studies should be performed in thisdirection. The aim of the present study was to describe the characteristics of patients with previous use of B-cell-depleting monoclonal antibodies and describe the potential beneficial effects of CP use in terms of mortality, ICU admission and disease relapse. In this retrospective cohort study, 39 patients with previous use of B-cell-depleting monoclonal antibodies hospitalized in the COVID-19 department of a tertiary hospital in Greece were recorded and evaluated. The mean age was 66.3 years and 51.3% were male. Regarding treatment for COVID-19, remdesivir was used in 89.7%, corticosteroids in 94.9% and CP in 53.8%. In-hospital mortality was 15.4%. Patients who died were more likely to need ICU admission and also had a trend towards a longer hospital stay, even though the last did not reach statistical significance. Patients treated with CP had a lower re-admission rate for COVID-19 after discharge. Further studies should be performed to identify the role of CP in patients with treatment with B-cell-depleting monoclonal antibodies suffering from COVID-19.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
- COVID-19 Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Ioanna Papakitsou
- COVID-19 Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Ioannis Kopidakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
| | - Eirini Makraki
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
| | - Dimitris Milonas
- COVID-19 Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Theodosios D. Filippatos
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
- COVID-19 Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Marina Papadogiannaki
- Department of Blood Transfusion, University Hospital of Heraklion, 71110 Heraklion, Greece; (M.P.)
| | - Evaggelia Lydaki
- Department of Blood Transfusion, University Hospital of Heraklion, 71110 Heraklion, Greece; (M.P.)
| | - Georgios Chamilos
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
- Microbiology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece (G.C.)
- COVID-19 Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
2
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
3
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Zhang K, Zhao Y, Zhang Z, Zhang M, Wu X, Bian H, Zhu P, Chen Z. Nonclinical safety, tolerance and pharmacodynamics evaluation for meplazumab treating chloroquine-resistant Plasmodium falciparum. Acta Pharm Sin B 2020; 10:1680-1693. [PMID: 33088688 PMCID: PMC7564037 DOI: 10.1016/j.apsb.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Meplazumab is an anti-CD147 humanized IgG2 antibody. The purpose of this study was to characterize the nonclinical safety, tolerance and efficacy evaluation of meplazumab treating chloroquine resistant Plasmodium falciparum. Meplazumab was well tolerated in repeat-dose toxicology studies in cynomolgus monkeys. No observed adverse effect level was 12 mg/kg. No difference between genders in the primary toxicokinetic parameters after repeat intravenous injection of meplazumab. No increased levels of drug exposure and drug accumulation were observed in different gender and dose groups. Meplazumab had a low cross-reactivity rate in various tissues and did not cause hemolysis or aggregation of red blood cells. The biodistribution and excretion results indicated that meplazumab was mainly distributed in the plasma, whole blood, and hemocytes, and excreted in the urine. Moreover, meplazumab effectively inhibited the parasites from invading erythrocytes in humanized mice in a time-dependent manner and the efficacy is superior to that of chloroquine. All these studies suggested that meplazumab is safe and well tolerated in cynomolgus monkeys, and effectively inhibits P. falciparum from invading into human red blood cells. These nonclinical data facilitated the initiation of an ongoing clinical trial of meplazumab for antimalarial therapy.
Collapse
Key Words
- ADA, anti-drug antibody
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Antimalarial therapy
- CD147
- Efficacy
- FFPE, formalin-fixed paraffin-embedded
- Fab, variable region of monoclonal antibody
- Fc, crystalline region of monoclonal antibody
- HPLC, high-performance liquid chromatography
- HRP, horseradish peroxidase
- IR, inhibition rate
- Meplazumab
- NOG mice, NOD/Shi-scid/IL-2Rγ null mice
- Nonclinical
- PBS, phosphate buffered saline
- PC50, median parasite clearance time
- Plasmodium falciparum
- Pr, parasitemia
- RAP2, rhoptry-associated protein 2
- RBCs, red blood cells
- RH5, reticulocyte-binding protein homolog 5
- RO, receptor occupancy
- SD rats, Sprague–Dawley rats
- Safety
- TCA, trichloroacetic acid
- Tolerance
- WHO, World Health Organization
- huRBCs, human red blood cells
- mAbs, monoclonal antibodies
Collapse
|
5
|
Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, López-Guillermo A, Fitzgibbon J. Follicular lymphoma. Nat Rev Dis Primers 2019; 5:83. [PMID: 31831752 DOI: 10.1038/s41572-019-0132-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Follicular lymphoma (FL) is a systemic neoplasm of the lymphoid tissue displaying germinal centre (GC) B cell differentiation. FL represents ~5% of all haematological neoplasms and ~20-25% of all new non-Hodgkin lymphoma diagnoses in western countries. Tumorigenesis starts in precursor B cells and becomes full-blown tumour when the cells reach the GC maturation step. FL is preceded by an asymptomatic preclinical phase in which premalignant B cells carrying a t(14;18) chromosomal translocation accumulate additional genetic alterations, although not all of these cells progress to the tumour phase. FL is an indolent lymphoma with largely favourable outcomes, although a fraction of patients is at risk of disease progression and adverse outcomes. Outcomes for FL in the rituximab era are encouraging, with ~80% of patients having an overall survival of >10 years. Patients with relapsed FL have a wide range of treatment options, including several chemoimmunotherapy regimens, phosphoinositide 3-kinase inhibitors, and lenalidomide plus rituximab. Promising new treatment approaches include epigenetic therapeutics and immune approaches such as chimeric antigen receptor T cell therapy. The identification of patients at high risk who require alternative therapies to the current standard of care is a growing need that will help direct clinical trial research. This Primer discusses the epidemiology of FL, its molecular and cellular pathogenesis and its diagnosis, classification and treatment.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy.
| | - Sandrine Roulland
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Anas Younes
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Pierpont TM, Limper CB, Richards KL. Past, Present, and Future of Rituximab-The World's First Oncology Monoclonal Antibody Therapy. Front Oncol 2018; 8:163. [PMID: 29915719 PMCID: PMC5994406 DOI: 10.3389/fonc.2018.00163] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a chimeric mouse/human monoclonal antibody (mAb) therapy with binding specificity to CD20. It was the first therapeutic antibody approved for oncology patients and was the top-selling oncology drug for nearly a decade with sales reaching $8.58 billion in 2016. Since its initial approval in 1997, it has improved outcomes in all B-cell malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. Despite widespread use, most mechanistic data have been gathered from in vitro studies while the roles of the various response mechanisms in humans are still largely undetermined. Polymorphisms in Fc gamma receptor and complement protein genes have been implicated as potential predictors of differential response to rituximab, but have not yet shown sufficient influence to impact clinical decisions. Unlike most targeted therapies developed today, no known biomarkers to indicate target engagement/tumor response have been identified, aside from reduced tumor burden. The lack of companion biomarkers beyond CD20 itself has made it difficult to predict which patients will respond to any given anti-CD20 antibody. In the past decade, two new anti-CD20 antibodies have been approved: ofatumumab, which binds a distinct epitope of CD20, and obinutuzumab, a mAb derived from rituximab with modifications to the Fc portion and to its glycosylation. Both are fully humanized and have biological activity that is distinct from that of rituximab. In addition to these new anti-CD20 antibodies, another imminent change in targeted lymphoma treatment is the multitude of biosimilars that are becoming available as rituximab's patent expires. While the widespread use of rituximab itself will likely continue, its biosimilars will increase global access to the therapy. This review discusses current research into mechanisms and potential biomarkers of rituximab response, as well as its biosimilars and the newer CD20 binding mAb therapies. Increased ability to assess the effectiveness of rituximab in an individual patient, along with the availability of alternative anti-CD20 antibodies will likely lead to dramatic changes in how we use CD20 antibodies going forward.
Collapse
Affiliation(s)
- Timothy M. Pierpont
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Candice B. Limper
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Kristy L. Richards
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|