1
|
Zhou X, Jia X, Chen Y, Song B. Computed Tomography and Magnetic Resonance Imaging in Liver Iron Overload: From Precise Quantification to Prognosis Assessment. Biomedicines 2024; 12:2456. [PMID: 39595022 PMCID: PMC11592092 DOI: 10.3390/biomedicines12112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Liver iron overload is associated with conditions such as hereditary hemochromatosis, thalassemia major, and chronic liver diseases. The liver-related outcomes, patient outcomes, and treatment recommendations of these patients differ depending on the cause and extent of iron overload. Accurate quantification of the liver iron concentration (LIC) is critical for effective patient management. This review focuses on the application of computed tomography (CT) and magnetic resonance imaging (MRI) for the precise quantification and prognostic assessment of liver iron overload. In recent years, the use of dual-energy CT and the emergence of MRI-based sequences (such as UTE, QSM, Dixon, and CSE technologies) have significantly increased the potential for noninvasive liver iron quantification. However, the establishment of internationally standardized imaging parameters, postprocessing procedures, and reporting protocols is urgently needed for better management of patients with liver iron overload.
Collapse
Affiliation(s)
- Xinrui Zhou
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Jia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (X.Z.); (X.J.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
2
|
Luo C, Peng F, Xu F, Tang C, Zhang Y, Huang C, Liang L, Ning X, Peng P. Assessing the accuracy of CMRtools software for diagnosing liver iron overload in thalassemia patients: influencing factors and optimisation strategies. Front Med (Lausanne) 2024; 11:1424294. [PMID: 39371340 PMCID: PMC11449772 DOI: 10.3389/fmed.2024.1424294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Background CMRtools is a software package that can be used to measure T2* values to diagnose liver iron overload, however, its accuracy in terms is affected by multiple factors, including goodness-of-fit (R2 value), the number of echo time (TE) images, and the liver iron concentration (LIC). To investigate the effects of the R2 value, the number of TE images, and the LIC on the accuracy of CMRtools software for measuring T2* values to diagnose liver iron overload (LIO). Materials and methods CMRtools software was used to measure liver T2* values among 108 thalassemia patients via the truncation method, and the R2 values, the number of TE images, and T2* values were recorded. These values were subsequently converted into liver iron concentration (LICT) values. The LICF (derived from MRI-R2/FerriScan) was used as a reference, and the diagnostic accordance rate (DAR) was compared between R2 value subgroups, between TE image number subgroups, and between LIC subgroups. Results The greater the R2 value was, the greater the standardized DAR (SDAR) was (p < 0.05). The SDAR are not identical between each TE image number subgroup (p > 0.05). However, the relationship between TE image number subgroups and SDAR was analysed using Spearman's correlation, and it was found to be positively correlated (rs = 0.729, p = 0.017). The SDAR are not identical between each LIC subgroup (p > 0.05), furthermore, the relationship between LIC subgroup and SDAR was found irrelevant (p = 0.747). Conclusion The accuracy of CMRtools software for diagnosing LIO in patients with thalassemia can be improved by artificially controlling the number of TE images to be fitted and selecting higher R2 values.
Collapse
Affiliation(s)
- Chaotian Luo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengming Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning, China
| | - Yanyan Zhang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaojie Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojing Ning
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Pinto VM, Forni GL. Management of Iron Overload in Beta-Thalassemia Patients: Clinical Practice Update Based on Case Series. Int J Mol Sci 2020; 21:E8771. [PMID: 33233561 PMCID: PMC7699680 DOI: 10.3390/ijms21228771] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Thalassemia syndromes are characterized by the inability to produce normal hemoglobin. Ineffective erythropoiesis and red cell transfusions are sources of excess iron that the human organism is unable to remove. Iron that is not saturated by transferrin is a toxic agent that, in transfusion-dependent patients, leads to death from iron-induced cardiomyopathy in the second decade of life. The availability of effective iron chelators, advances in the understanding of the mechanism of iron toxicity and overloading, and the availability of noninvasive methods to monitor iron loading and unloading in the liver, heart, and pancreas have all significantly increased the survival of patients with thalassemia. Prolonged exposure to iron toxicity is involved in the development of endocrinopathy, osteoporosis, cirrhosis, renal failure, and malignant transformation. Now that survival has been dramatically improved, the challenge of iron chelation therapy is to prevent complications. The time has come to consider that the primary goal of chelation therapy is to avoid 24-h exposure to toxic iron and maintain body iron levels within the normal range, avoiding possible chelation-related damage. It is very important to minimize irreversible organ damage to prevent malignant transformation before complications set in and make patients ineligible for current and future curative therapies. In this clinical case-based review, we highlight particular aspects of the management of iron overload in patients with beta-thalassemia syndromes, focusing on our own experience in treating such patients. We review the pathophysiology of iron overload and the different ways to assess, quantify, and monitor it. We also discuss chelation strategies that can be used with currently available chelators, balancing the need to keep non-transferrin-bound iron levels to a minimum (zero) 24 h a day, 7 days a week and the risk of over-chelation.
Collapse
Affiliation(s)
- Valeria Maria Pinto
- Centro della Microcitemia e delle Anemie Congenite Ente Ospedaliero Ospedali Galliera, Via Volta 6, 16128 Genoa, Italy;
| | | |
Collapse
|
4
|
Evaluation of liver iron overload with R2* relaxometry with versus without fat suppression: both are clinically accurate but there are differences. Eur Radiol 2020; 30:5826-5833. [PMID: 32535737 DOI: 10.1007/s00330-020-07010-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess clinically relevant difference in hepatic iron quantification using R2* relaxometry with (FS) and without (non-FS) fat saturation for the evaluation of patients with suspected hepatic iron overload. METHODS We prospectively enrolled 134 patients who underwent 1.5-T MRI R2* relaxometry with FS and non-FS gradient echo sequences (12 echoes, initial TE = 0.99 ms). Proton density fat fraction for the quantification of steatosis was assessed. Linear regression analyses and Bland-Altman plots including Lin's concordance correlation coefficient were performed for correlation of FS R2* with non-FS R2*. Patients were grouped into 4 severity classes of iron overload (EASL based), and agreement was evaluated by contingency tables and the proportion of overall agreement. RESULTS A total of 41.8% of patients showed hepatic iron overload; 67.9% had concomitant steatosis; and 58.2% revealed no iron overload of whom 60.3% had steatosis. The mean R2* value for all FS data was 102.86 1/s, for non-FS 108.16 1/s. Linear regression resulted in an R-squared value of 0.99 (p < 0.001); Bland-Altman plot showed a mean R2* difference of 5.26 1/s (SD 17.82). The concordance correlation coefficient was only slightly lower for patients with steatosis compared with non-steatosis (0.988 vs. 0.993). The overall agreement between FS and non-FS R2* measurements was 94.8% using either method to classify patients according to severity of iron storage. No correlation between R2* and proton density fat fraction was found for both methods. CONCLUSION R2* relaxometry showed an excellent overall agreement between FS and non-FS acquisition. Both variants can therefore be used in daily routine. However, clinically relevant differences might result when switching between the two methods or during patient follow-up, when fat content changes over time. We therefore recommend choosing a method and keeping it straight in the context of follow-up examinations. KEY POINTS • Both variants of R2* relaxometry (FS and non-FS) may be used in daily routine. • Clinically relevant differences might result when switching between the two methods or during patient follow-up, when fat content changes over time. • It seems advisable choosing one method and keeping it straight in the context of follow-up examinations.
Collapse
|
5
|
Menacho K, Abdel-Gadir A, Moon JC, Fernandes JL. T2* Mapping Techniques: Iron Overload Assessment and Other Potential Clinical Applications. Magn Reson Imaging Clin N Am 2020; 27:439-451. [PMID: 31279448 DOI: 10.1016/j.mric.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T2* mapping techniques has evolved significantly since their introduction in the early 2000s and a significant amount of evidence has been gathered to support their clinical routine use for iron overload assessment. This article focuses on the most important aspects of how to perform T2* imaging, from acquisition, to postprocessing, to analyzing the data with clinical concentration. Newer techniques have made T2* mapping more robust and accurate, allowing a broader use of this technique for noncontrast ischemia imaging based on blood oxygen levels, in addition to evaluation of intramyocardial hemorrhage and microvascular obstruction.
Collapse
Affiliation(s)
- Katia Menacho
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit, Institute of Cardiovascular Science, University College London, St Bartholomew's Hospital, 2nd Floor, King George V Block, West Smithfiled, London EC1A 7BE, UK
| | - Amna Abdel-Gadir
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E6BT, UK; Barts Heart Centre, St Bartholomew's Hospital, 2nd Floor, King George V Block, London EC1A 7BE, UK
| | - James C Moon
- The Cardiovascular Magnetic Resonance Imaging Unit, The Inherited Cardiovascular Diseases Unit, Barts Heart Centre, St Bartholomew's Hospital, 2nd Floor, King George V Block, West Smithfield, London EC1A 7BE, UK
| | - Juliano Lara Fernandes
- Jose Michel Kalaf Research Institute, Radiologia Clinica de Campinas, Av Jose de Souza Campos 840, Campinas, São Paulo 13092-100, Brazil.
| |
Collapse
|
6
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Henninger B, Alustiza J, Garbowski M, Gandon Y. Practical guide to quantification of hepatic iron with MRI. Eur Radiol 2019; 30:383-393. [PMID: 31392478 PMCID: PMC6890593 DOI: 10.1007/s00330-019-06380-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023]
Abstract
Abstract Our intention is to demystify the MR quantification of hepatic iron (i.e., the liver iron concentration) and give you a step-by-step approach by answering the most pertinent questions. The following article should be more of a manual or guide for every radiologist than a classic review article, which just summarizes the literature. Furthermore, we provide important background information for professional communication with clinicians. The information regarding the physical background is reduced to a minimum. After reading this article, you should be able to perform adequate MR measurements of the LIC with 1.5-T or 3.0-T scanners. Key Points • MRI is widely accepted as the primary approach to non-invasively determine liver iron concentration (LIC). • This article is a guide for every radiologist to perform adequate MR measurements of the LIC. • When using R2* relaxometry, some points have to be considered to obtain correct measurements—all explained in this article.
Collapse
Affiliation(s)
- Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Jose Alustiza
- Osatek, Donostia Universitary Hospital, P. Dr. Beguiristain 109, 20014, Donostia/San Sebastian, Spain
| | - Maciej Garbowski
- Department of Haematology, Cancer Institute, University College London, Paul O'Gorman Bld, 72 Huntley St, London, WC1E 6BT, UK
| | - Yves Gandon
- CHU Rennes, Inserm, LTSI - UMR_S 1099, University of Rennes, F-35000, Rennes, France
| |
Collapse
|
8
|
Yatmark P, Huaijantug S, Teerapan W, Svasti S, Fucharoen S, Morales NP. MRI imaging and histopathological study of brain iron overload of β-thalassemic mice. Magn Reson Imaging 2019; 61:267-272. [PMID: 31128226 DOI: 10.1016/j.mri.2019.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 11/26/2022]
Abstract
Brain iron overload is chronic and slow progressing and plays an important role in the pathogenesis of neurodegenerative disorders. Magnetic resonance imaging (MRI) is a useful noninvasive tool for determining liver iron content, but it has not been proven to be adequate for evaluating brain iron overload. We evaluated the usefulness of MRI-derived parameters to determine brain iron concentration in β-thalassemic mice and the effects of the membrane permeable iron chelator, deferiprone. Sixteen β-thalassemic mice underwent 1.5T MRI of the brain that included a multiecho T2*-weighted sequence. Brain T2* values ranged from 28 to 31ms for thalassemic mice. For the iron overloaded thalassemic mice, brain T2* values decreased, ranging from 8 to 12ms, which correlated with the iron overload status of the animals. In addition, brain T2* values increased in the group with the treatment of deferiprone, ranging from 18 to 24ms. Our results may be useful to understand brain pathology in iron overload. Moreover, data could lead to an earlier diagnosis, assist in following disease progression, and demonstrate the benefits of iron chelation therapy.
Collapse
Affiliation(s)
- Paranee Yatmark
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakorn Pathom, Thailand.
| | - Somkiat Huaijantug
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakorn Pathom, Thailand
| | - Wuttiwong Teerapan
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Saovaros Svasti
- Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom, Thailand
| | - Suthat Fucharoen
- Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom, Thailand
| | | |
Collapse
|
9
|
Abstract
MRI is a key tool in the current management of patients with thalassemia. Given its capability of assessing iron overload in different organs noninvasively and without contrast, it has significant advantages over other metrics, including serum ferritin. Liver iron concentration can be measured either with relaxometry methods T2*/T2 or signal intensity ratio techniques. Myocardial iron can be assessed in the same examination through T2* imaging. In this review, we focus on showing how MRI evaluates iron in both organs and the clinical applications as well as practical approaches to using this tool by clinicians taking care of patients with thalassemia.
Collapse
|
10
|
Jhaveri KS, Kannengiesser SA, Ward R, Kuo K, Sussman MS. Prospective Evaluation of an R2* Method for Assessing Liver Iron Concentration (LIC) Against FerriScan: Derivation of the Calibration Curve and Characterization of the Nature and Source of Uncertainty in the Relationship. J Magn Reson Imaging 2018; 49:1467-1474. [DOI: 10.1002/jmri.26313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kartik S. Jhaveri
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, and Women's College Hospital; University of Toronto; Toronto ON Canada
| | | | - Richard Ward
- Division of Medical Oncology & Hematology, University Health Network; University of Toronto; Toronto ON Canada
| | - Kevin Kuo
- Division of Medical Oncology & Hematology, University Health Network; University of Toronto; Toronto ON Canada
| | - Marshall S. Sussman
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, and Women's College Hospital; University of Toronto; Toronto ON Canada
| |
Collapse
|
11
|
Yan F, He N, Lin H, Li R. Iron deposition quantification: Applications in the brain and liver. J Magn Reson Imaging 2018; 48:301-317. [PMID: 29897645 DOI: 10.1002/jmri.26161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Iron has long been implicated in many neurological and other organ diseases. It is known that over and above the normal increases in iron with age, in certain diseases there is an excessive iron accumulation in the brain and liver. MRI is a noninvasive means by which to image the various structures in the brain in three dimensions and quantify iron over the volume of the object of interest. The quantification of iron can provide information about the severity of iron-related diseases as well as quantify changes in iron for patient follow-up and treatment monitoring. This article provides an overview of current MRI-based methods for iron quantification, specifically for the brain and liver, including: signal intensity ratio, R2 , R2*, R2', phase, susceptibility weighted imaging and quantitative susceptibility mapping (QSM). Although there are numerous approaches to measuring iron, R2 and R2* are currently preferred methods in imaging the liver and QSM has become the preferred approach for imaging iron in the brain. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:301-317.
Collapse
Affiliation(s)
- Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|