1
|
Nwawka OK, Adriaensen M, Andreisek G, Drakonaki EE, Lee KS, Lutz AM, Martinoli C, Nacey N, Symanski JS. Imaging of Peripheral Nerves: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025:1-16. [PMID: 38775432 DOI: 10.2214/ajr.24.31064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Peripheral nerve imaging provides information that can be critical to the diagnosis, staging, and management of peripheral neuropathies. MRI and ultrasound are the imaging modalities of choice for clinical evaluation of the peripheral nerves given their high soft-tissue contrast and high resolution, respectively. This AJR Expert Panel Narrative Review describes MRI- and ultrasound-based techniques for peripheral nerve imaging; highlights considerations for imaging in the settings of trauma, entrapment syndromes, diffuse inflammatory neuropathies, and tumor; and discusses image-guided nerve interventions, focusing on nerve blocks and ablation.
Collapse
Affiliation(s)
- O Kenechi Nwawka
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021
| | - Miraude Adriaensen
- Department of Medical Imaging, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Gustav Andreisek
- Institute of Radiology, Cantonal Hospital Munsterlingen, Munsterlingen, Switzerland
- Institute of Diagnostic and Interventional Radiology, University of Zurich, Zurich, Switzerland
| | - Elena E Drakonaki
- Department of Anatomy, University of Crete School of Medicine, Heraklion, Greece
- Department of MSK Imaging, Diagnostic and Interventional Ultrasound Practice, Heraklion, Greece
| | - Kenneth S Lee
- Department of Radiology, University of Wisconsin, Madison, WI
| | - Amelie M Lutz
- Institute of Radiology, Cantonal Hospital Munsterlingen, Munsterlingen, Switzerland
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Carlo Martinoli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Nicholas Nacey
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA
| | - John S Symanski
- Department of Radiology, University of Wisconsin, Madison, WI
| |
Collapse
|
2
|
Beste NC, Jende J, Kronlage M, Kurz F, Heiland S, Bendszus M, Meredig H. Automated peripheral nerve segmentation for MR-neurography. Eur Radiol Exp 2024; 8:97. [PMID: 39186183 PMCID: PMC11347527 DOI: 10.1186/s41747-024-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves. METHODS A neural segmentation network was trained to segment the sciatic nerve and its proximal branches on the MRN scans of the right and left upper leg of 35 healthy individuals, resulting in 70 training examples, via 5-fold cross-validation (CV). The model performance was evaluated on an independent test set of one-sided MRN scans of 60 healthy individuals. RESULTS Mean Dice similarity coefficient (DSC) in CV was 0.892 (95% confidence interval [CI]: 0.888-0.897) with a mean Jaccard index (JI) of 0.806 (95% CI: 0.799-0.814) and mean Hausdorff distance (HD) of 2.146 (95% CI: 2.184-2.208). For the independent test set, DSC and JI were lower while HD was higher, with a mean DSC of 0.789 (95% CI: 0.760-0.815), mean JI of 0.672 (95% CI: 0.642-0.699), and mean HD of 2.118 (95% CI: 2.047-2.190). CONCLUSION The deep learning-based segmentation model showed a good performance for the task of nerve segmentation. Future work will focus on extending training data and including individuals with peripheral neuropathies in training to enable advanced peripheral nerve disease characterization. RELEVANCE STATEMENT The results will serve as a baseline to build upon while developing an automated quantitative MRN feature analysis framework for application in routine reading of MRN examinations. KEY POINTS Quantitative measures enhance MRN interpretation, requiring complex and challenging nerve segmentation. We present a deep learning-based segmentation model with good performance. Our results may serve as a baseline for clinical automated quantitative MRN segmentation.
Collapse
Affiliation(s)
- Nedim Christoph Beste
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Johann Jende
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Moritz Kronlage
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Felix Kurz
- DKFZ German Cancer Research Center, Heidelberg, Germany
| | - Sabine Heiland
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hagen Meredig
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Lyu S, Zhang M, Yu J, Zhu J, Zhang B, Gao L, Jin D, Chen Q. Application of radiomics model based on ultrasound image features in the prediction of carpal tunnel syndrome severity. Skeletal Radiol 2024; 53:1389-1397. [PMID: 38289532 DOI: 10.1007/s00256-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVE The aim of our study is to develop and validate a radiomics model based on ultrasound image features for predicting carpal tunnel syndrome (CTS) severity. METHODS This retrospective study included 237 CTS hands (106 for mild symptom, 68 for moderate symptom and 63 for severe symptom). There were no statistically significant differences among the three groups in terms of age, gender, race, etc. The data set was randomly divided into a training set and a test set in a ratio of 7:3. Firstly, a senior musculoskeletal ultrasound expert measures the cross-sectional area of median nerve (MN) at the scaphoid-pisiform level. Subsequently, a recursive feature elimination (RFE) method was used to identify the most discriminative radiomic features of each MN at the entrance of the carpal tunnel. Eventually, a random forest model was employed to classify the selected features for prediction. To evaluate the performance of the model, the confusion matrix, receiver operating characteristic (ROC) curves, and F1 values were calculated and plotted correspondingly. RESULTS The prediction capability of the radiomics model was significantly better than that of ultrasound measurements when 10 robust features were selected. The training set performed perfect classification with 100% accuracy for all participants, while the testing set performed accurate classification of severity for 76.39% of participants with F1 values of 80.00, 63.40, and 84.80 for predicting mild, moderate, and severe CTS, respectively. Comparably, the F1 values for mild, moderate, and severe CTS predicted based on the MN cross-sectional area were 76.46, 57.78, and 64.00, respectively.. CONCLUSION This radiomics model based on ultrasound images has certain value in distinguishing the severity of CTS, and was slightly superior to using only MN cross-sectional area for judgment. Although its diagnostic efficacy was still inferior to that of neuroelectrophysiology. However, this method was non-invasive and did not require additional costs, and could provide additional information for clinical physicians to develop diagnosis and treatment plans.
Collapse
Affiliation(s)
- Shuyi Lyu
- Department of Ultrasound, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
- Department of Ultrasound, Zhenhai Hospital of Traditional Chinese Medicine, No.51, Huancheng W Rd, Zhenhai District, Ningbo, 315200, Zhejiang, People's Republic of China
| | - Meiwu Zhang
- Department of Ultrasound, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
| | - Jianjun Yu
- Department of Neuroelectrophysiology, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
| | - Jiazhen Zhu
- Department of Radiology, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
| | - Baisong Zhang
- Department of Ultrasound, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
| | - Libo Gao
- Department of Ultrasound, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
| | - Dingkelei Jin
- Department of Ultrasound, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China
- Hangzhou Medical College, Binjiang District, Hangzhou, 310051, People's Republic of China
| | - Qiaojie Chen
- Department of Orthopaedics, Haishu District, Ningbo NO.2 Hospital, No. 41, Northwest Street, Ningbo, Zhejiang, 315010, People's Republic of China.
| |
Collapse
|
4
|
Bourke G, Wade RG, van Alfen N. Updates in diagnostic tools for diagnosing nerve injury and compressions. J Hand Surg Eur Vol 2024; 49:668-680. [PMID: 38534079 DOI: 10.1177/17531934241238736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Predicting prognosis after nerve injury and compression can be challenging, even for the experienced clinician. Although thorough clinical assessment can aid diagnosis, we cannot always be precise about long-term functional recovery of either motor or sensory nerves. To evaluate the severity of nerve injury, surgical exploration remains the gold standard, particularly after iatrogenic injury and major nerve injury from trauma, such as brachial plexus injury. Recently, advances in imaging techniques (ultrasound, magnetic resonance imaging [MRI] and MR neurography) along with multimodality assessment, including electrodiagnostic testing, have allowed us to have a better preoperative understanding of nerve continuity and prediction of nerve health and possible recovery. This article outlines the current and potential roles for clinical assessment, exploratory surgery, electrodiagnostic testing ultrasound and MRI in entrapment neuropathies, inflammatory neuritis and trauma. Emphasis is placed on those modalities that are improving in diagnostic accuracy of nerve assessment before any surgical intervention.
Collapse
Affiliation(s)
- Gráinne Bourke
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Ryckie G Wade
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Nens van Alfen
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Centre for Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Wu WT, Lin CY, Shu YC, Shen PC, Lin TY, Chang KV, Özçakar L. The Potential of Ultrasound Radiomics in Carpal Tunnel Syndrome Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3280. [PMID: 37892101 PMCID: PMC10606315 DOI: 10.3390/diagnostics13203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy for which ultrasound imaging has recently emerged as a valuable diagnostic tool. This meta-analysis aims to investigate the role of ultrasound radiomics in the diagnosis of CTS and compare it with other diagnostic approaches. Methods: We conducted a comprehensive search of electronic databases from inception to September 2023. The included studies were assessed for quality using the Quality Assessment Tool for Diagnostic Accuracy Studies. The primary outcome was the diagnostic performance of ultrasound radiomics compared to radiologist evaluation for diagnosing CTS. Results: Our meta-analysis included five observational studies comprising 840 participants. In the context of radiologist evaluation, the combined statistics for sensitivity, specificity, and diagnostic odds ratio were 0.78 (95% confidence interval (CI), 0.71 to 0.83), 0.72 (95% CI, 0.59 to 0.81), and 9 (95% CI, 5 to 15), respectively. In contrast, the ultrasound radiomics training mode yielded a combined sensitivity of 0.88 (95% CI, 0.85 to 0.91), a specificity of 0.88 (95% CI, 0.84 to 0.92), and a diagnostic odds ratio of 58 (95% CI, 38 to 87). Similarly, the ultrasound radiomics testing mode demonstrated an aggregated sensitivity of 0.85 (95% CI, 0.78 to 0.89), a specificity of 0.80 (95% CI, 0.73 to 0.85), and a diagnostic odds ratio of 22 (95% CI, 12 to 41). Conclusions: In contrast to assessments by radiologists, ultrasound radiomics exhibited superior diagnostic performance in detecting CTS. Furthermore, there was minimal variability in the diagnostic accuracy between the training and testing sets of ultrasound radiomics, highlighting its potential as a robust diagnostic tool in CTS.
Collapse
Affiliation(s)
- Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan
| | - Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.L.); (Y.-C.S.)
| | - Yi-Chung Shu
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.L.); (Y.-C.S.)
| | - Peng-Chieh Shen
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 26546, Taiwan; (P.-C.S.); (T.-Y.L.)
| | - Ting-Yu Lin
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 26546, Taiwan; (P.-C.S.); (T.-Y.L.)
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan
- Center for Regional Anesthesia and Pain Medicine, Wang-Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
| | - Levent Özçakar
- Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara 06100, Turkey;
| |
Collapse
|
6
|
Mohammadi A, Torres-Cuenca T, Mirza-Aghazadeh-Attari M, Faeghi F, Acharya UR, Abbasian Ardakani A. Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi-Center Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2257-2268. [PMID: 37159483 DOI: 10.1002/jum.16244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator-dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep-radiomics features. METHODS We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep-radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep-radiomics features were fed to 9 common machine-learning algorithms to choose the best-performing classifier. The 2 best-performing AI models were then externally validated. RESULTS Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively. CONCLUSION Our proposed AI models fed with deep-radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.
Collapse
Affiliation(s)
- Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Thomas Torres-Cuenca
- Department of Physical Medicine and Rehabilitation, National University of Colombia, Bogotá, Colombia
| | - Mohammad Mirza-Aghazadeh-Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fariborz Faeghi
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Queensland, Australia
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Ali Abbasian Ardakani
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lyu S, Zhang M, Zhang B, Yu J, Zhu J, Gao L, Yang L, Zhang Y. Application of ultrasound images-based radiomics in carpal tunnel syndrome: Without measuring the median nerve cross-sectional area. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1198-1204. [PMID: 37313858 DOI: 10.1002/jcu.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE By constructing a prediction model of carpal tunnel syndrome (CTS) based on ultrasound images, it can automatically and accurately diagnose CTS without measuring the median nerve cross-sectional area (CSA). METHODS A total of 268 wrists ultrasound images of 101 patients diagnosed with CTS and 76 controls in Ningbo NO.2 Hospital from December 2021 to August 2022 were retrospectively analyzed. The radiomics method was used to construct the Logistic model through the steps of feature extraction, feature screening, reduction, and modeling. The area under the receiver operating characteristic curve was calculated to evaluate the performance of the model, and the diagnostic efficiency of the radiomics model was compared with two radiologists with different experience. RESULTS The 134 wrists in the CTS group included 65 mild CTS, 42 moderate CTS, and 17 severe CTS. In the CTS group, 28 wrists median nerve CSA were less than the cut-off value, 17 wrists were missed by Dr. A, 26 wrists by Dr. B, and only 6 wrists were missed by radiomics model. A total of 335 radiomics features were extracted from each MN, of which 10 features were significantly different between compressed and normal nerves, and were used to construct the model. The area under curve (AUC) value, sensitivity, specificity, and accuracy of the radiomics model in the training set and testing set were 0.939, 86.17%, 87.10%, 86.63%, and 0.891, 87.50%, 80.49%, and 83.95%, respectively. The AUC value, sensitivity, specificity, and accuracy of the two doctors in the diagnosis of CTS were 0.746, 75.37%, 73.88%, 74.63% and 0.679, 68.66%, 67.16%, and 67.91%, respectively. The radiomics model was superior to the two-radiologist diagnosis, especially when there was no significant change in CSA. CONCLUSION Radiomics based on ultrasound images can quantitatively analyze the subtle changes in the median nerve, and can automatically and accurately diagnose CTS without measuring CSA, especially when there was no significant change in CSA, which was better than radiologists.
Collapse
Affiliation(s)
- Shuyi Lyu
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
- Department of Ultrasound, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo, People's Republic of China
| | - Meiwu Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Baisong Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Jianjun Yu
- Department of Neuroelectrophysiology, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Jiazhen Zhu
- Department of Multi-Disciplinary Diagnosis and Treatment, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Libo Gao
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Liu Yang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Yan Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
- Department of Ultrasound, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo, People's Republic of China
| |
Collapse
|
8
|
Hashiba J, Yokota H, Abe K, Sekiguchi Y, Ikeda S, Sugiyama A, Kuwabara S, Uno T. Ultrasound-based radiomic analysis of the peripheral nerves for differentiation between CIDP and POEMS syndrome. Acta Radiol 2023; 64:2627-2635. [PMID: 37376758 DOI: 10.1177/02841851231181680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Demyelinating peripheral neuropathy is characteristic of both polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome and chronic inflammatory demyelinating polyneuropathy (CIDP). We hypothesized that the different pathogeneses underlying these entities would affect the sonographic imaging features. PURPOSE To investigate whether ultrasound (US)-based radiomic analysis could extract features to describe the differences between CIDP and POEMS syndrome. MATERIAL AND METHODS In this retrospective study, we evaluated nerve US images from 26 with typical CIDP and 34 patients with POEMS syndrome. Cross-sectional area (CSA) and echogenicity of the median and ulnar nerves were evaluated in each US image of the wrist, forearm, elbow, and mid-arm. Radiomic analysis was performed on these US images. All radiomic features were examined using receiver operating characteristic analysis. Optimal features were selected using a three-step feature selection method and were inputted into XGBoost to build predictive machine-learning models. RESULTS The CSAs were more enlarged in patients with CIDP than in those with POEMS syndrome without significant differences, except for that of the ulnar nerve at the wrist. Nerve echogenicity was significantly more heterogeneous in patients with CIDP than in those with POEMS syndrome. The radiomic analysis yielded four features with the highest area under the curve (AUC) value of 0.83. The machine-learning model showed an AUC of 0.90. CONCLUSION US-based radiomic analysis has high AUC values in differentiating POEM syndrome from CIDP. Machine-learning algorithms further improved the discriminative ability.
Collapse
Affiliation(s)
- Jun Hashiba
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukari Sekiguchi
- Department of Neurology, JR Tokyo General Hospital, Tokyo, Japan
| | - Shinobu Ikeda
- Devision of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Findlay MC, Yost S, Bauer SZ, Cole KL, Henson JC, Lucke-Wold B, Mehkri Y, Abou-Al-Shaar H, Plute T, Friedman L, Richards T, Wiggins R, Karsy M. Application of Radiomics to the Differential Diagnosis of Temporal Bone Skull Base Lesions: A Pilot Study. World Neurosurg 2023; 172:e540-e554. [PMID: 36702242 DOI: 10.1016/j.wneu.2023.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Temporal bone skull base pathologies represent a complex differential because they can be radiographically obscure and difficult to diagnose without biopsy. Radiomics involves the use of mathematical quantification of imaging data beyond simple intensity, size, and location to inform diagnosis and prognosis. We examined the feasibility of using radiomic parameters to help predict temporal bone tumor type. METHODS A total of 117 radiomic parameters were analyzed from 5 magnetic resonance imaging sequences (T1 without contrast, T1 with contrast, T2, fluid-attenuated inversion recovery, apparent diffusion coefficient [ADC]) for each tumor. Statistical analysis was used to delineate known primary, metastatic/secondary, and lymphoma lesions using radiomics. RESULTS The mean tumor volumes for the 14 primary, 12 secondary, and 8 lymphoma lesions were 2.98 ± 2.11, 3.28 ± 2.31, and 12.16 ± 7.1 cm3, respectively (P = 0.2). No significant differences in mean intensity values for any sequence helped distinguish tumors (P > 0.05), but 6 radiomic parameters were significantly correlated with diagnostic accuracy. Discriminant analysis using a stepwise algorithm generated a model where radiomic parameters for T1 cluster prominence, ADC dependence nonuniformity, T1 with contrast zone percentage, and ADC informational measure of correlation 2 achieved the best predictive model (P = 0.0001). These significant characteristics were often indirect measures of tumor heterogeneity on different magnetic resonance imaging sequences. CONCLUSIONS These data suggest that quantitative measures of tumor heterogeneity can be discriminatory of pathology and might be integrated into clinical workflow. Although this pilot study requires further validation, these data support the exploration of radiomics in temporal bone radiographic diagnostics.
Collapse
Affiliation(s)
| | - Samantha Yost
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Sawyer Z Bauer
- Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Kyril L Cole
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - J Curran Henson
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tritan Plute
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lindley Friedman
- Division of the Natural Sciences and Mathematics, Bates College, Lewiston, Maine, USA
| | - Tyler Richards
- Department of Neuroradiology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Richard Wiggins
- Department of Neuroradiology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
10
|
Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography. Cancers (Basel) 2022; 14:cancers14092132. [PMID: 35565261 PMCID: PMC9102628 DOI: 10.3390/cancers14092132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The assessment of breast lesions through mammographic images is currently challenging, especially in dense breasts. Contrast-enhanced mammography has been shown to overcome the limitations of standard mammography but it greatly depends on the interpretative skills of the physician. The aim of this study was to evaluate the potentialities of statistical and artificial intelligence algorithms as a tool for helping the radiologists in the interpretation of images. The most remarkable results were achieved in discriminating benign from malignant lesions and in the identification of the presence of the hormone receptor. A tool to support the physician’s decision-making process may be designed starting from simple logistic regression and tree-based algorithms. This type of tool may help the radiologist in assessing the investigated breast and in choosing the appropriate follow-up without resorting to histology. Abstract Purpose: To evaluate radiomics features in order to: differentiate malignant versus benign lesions; predict low versus moderate and high grading; identify positive or negative hormone receptors; and discriminate positive versus negative human epidermal growth factor receptor 2 related to breast cancer. Methods: A total of 182 patients with known breast lesions and that underwent Contrast-Enhanced Mammography were enrolled in this retrospective study. The reference standard was pathology (118 malignant lesions and 64 benign lesions). A total of 837 textural metrics were extracted by manually segmenting the region of interest from both craniocaudally (CC) and mediolateral oblique (MLO) views. Non-parametric Wilcoxon–Mann–Whitney test, receiver operating characteristic, logistic regression and tree-based machine learning algorithms were used. The Adaptive Synthetic Sampling balancing approach was used and a feature selection process was implemented. Results: In univariate analysis, the classification of malignant versus benign lesions achieved the best performance when considering the original_gldm_DependenceNonUniformity feature extracted on CC view (accuracy of 88.98%). An accuracy of 83.65% was reached in the classification of grading, whereas a slightly lower value of accuracy (81.65%) was found in the classification of the presence of the hormone receptor; the features extracted were the original_glrlm_RunEntropy and the original_gldm_DependenceNonUniformity, respectively. The results of multivariate analysis achieved the best performances when using two or more features as predictors for classifying malignant versus benign lesions from CC view images (max test accuracy of 95.83% with a non-regularized logistic regression). Considering the features extracted from MLO view images, the best test accuracy (91.67%) was obtained when predicting the grading using a classification-tree algorithm. Combinations of only two features, extracted from both CC and MLO views, always showed test accuracy values greater than or equal to 90.00%, with the only exception being the prediction of the human epidermal growth factor receptor 2, where the best performance (test accuracy of 89.29%) was obtained with the random forest algorithm. Conclusions: The results confirm that the identification of malignant breast lesions and the differentiation of histological outcomes and some molecular subtypes of tumors (mainly positive hormone receptor tumors) can be obtained with satisfactory accuracy through both univariate and multivariate analysis of textural features extracted from Contrast-Enhanced Mammography images.
Collapse
|
11
|
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol 2022; 40:919-929. [PMID: 35344132 DOI: 10.1007/s11604-022-01271-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiomics and radiogenomics are two words that recur often in language of radiologists, nuclear doctors and medical physicists especially in oncology field. Radiomics is the technique of medical images analysis to extract quantitative data that are not detected by human eye. METHODS This article is a narrative review on Radiomics in Medical Imaging. In particular, the review exposes the process, the limitations related to radiomics, and future prospects are discussed. RESULTS Several studies showed that radiomics is very promising. However, there were some critical issues: poor standardization and generalization of radiomics results, data-quality control, repeatability, reproducibility, database balancing and issues related to model overfitting. CONCLUSIONS Radiomics procedure should made considered all pitfalls and challenges to obtain robust and reproducible results that could be generalized in other patients cohort.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy.
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Silvia Pradella
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
12
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
13
|
Fusco R, Di Bernardo E, Piccirillo A, Rubulotta MR, Petrosino T, Barretta ML, Mattace Raso M, Vallone P, Raiano C, Di Giacomo R, Siani C, Avino F, Scognamiglio G, Di Bonito M, Granata V, Petrillo A. Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions. Curr Oncol 2022; 29:1947-1966. [PMID: 35323359 PMCID: PMC8947713 DOI: 10.3390/curroncol29030159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. Methods: Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. Results: Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Conclusions: Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.
Collapse
Affiliation(s)
- Roberta Fusco
- Medical Oncolody Division, Igea SpA, 80013 Naples, Italy; (R.F.); (E.D.B.)
| | - Elio Di Bernardo
- Medical Oncolody Division, Igea SpA, 80013 Naples, Italy; (R.F.); (E.D.B.)
| | - Adele Piccirillo
- Department of Electrical Engineering and Information Technologies, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Maria Luisa Barretta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Mauro Mattace Raso
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Concetta Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| | - Raimondo Di Giacomo
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Claudio Siani
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Franca Avino
- Senology Surgical Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.D.G.); (C.S.); (F.A.)
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (G.S.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (G.S.); (M.D.B.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
- Correspondence: ; Tel.: +39-081-590-714; Fax: +39-081-590-3825
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (M.R.R.); (T.P.); (M.L.B.); (M.M.R.); (P.V.); (C.R.); (A.P.)
| |
Collapse
|
14
|
Martín-Noguerol T, Barousse R, Luna A, Socolovsky M, Górriz JM, Gómez-Río M. New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners. Neuroradiology 2022; 64:875-886. [PMID: 35212785 DOI: 10.1007/s00234-022-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE To perform a review of the physical basis of DTI and DCE-MRI applied to Peripheral Nerves (PNs) evaluation with the aim of providing readers the main concepts and tools to acquire these types of sequences for PNs assessment. The potential added value of these advanced techniques for pre-and post-surgical PN assessment is also reviewed in diverse clinical scenarios. Finally, a brief introduction to the promising applications of Artificial Intelligence (AI) for PNs evaluation is presented. METHODS We review the existing literature and analyze the latest evidence regarding DTI, DCE-MRI and AI for PNs assessment. This review is focused on a practical approach to these advanced sequences providing tips and tricks for implementing them into real clinical practice focused on imaging postprocessing and their current clinical applicability. A summary of the potential applications of AI algorithms for PNs assessment is also included. RESULTS DTI, successfully used in central nervous system, can also be applied for PNs assessment. DCE-MRI can help evaluate PN's vascularization and integrity of Blood Nerve Barrier beyond the conventional gadolinium-enhanced MRI sequences approach. Both approaches have been tested for PN assessment including pre- and post-surgical evaluation of PNs and tumoral conditions. AI algorithms may help radiologists for PN detection, segmentation and characterization with promising initial results. CONCLUSION DTI, DCE-MRI are feasible tools for the assessment of PN lesions. This manuscript emphasizes the technical adjustments necessary to acquire and post-process these images. AI algorithms can also be considered as an alternative and promising choice for PN evaluation with promising results.
Collapse
Affiliation(s)
| | - Rafael Barousse
- Peripheral Nerve and Plexus Department, Centro Rossi, Sánchez de Loria 117, C1173 AAC, Buenos Aires, Argentina
| | - Antonio Luna
- MRI unit, Radiology Department, HT Medica, Carmelo Torres 2, 23007, Jaén, Spain
| | - Mariano Socolovsky
- Nerve & Plexus Surgery Program, Division of Neurosurgery, Hospital de Clínicas, University of Buenos Aires School of Medicine, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Avenida de Fuente Nueva, s/n, 18071, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, CB21TN, UK
| | - Manuel Gómez-Río
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain.,IBS Granada Bio-Health Research Institute, Av. de Madrid, 15, 18012, Granada, Spain
| |
Collapse
|
15
|
Campbell WW, Landau M. Treatment and Management of Segmental Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11101796. [PMID: 34679494 PMCID: PMC8534713 DOI: 10.3390/diagnostics11101796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evaluation of the efficacy of different therapies is of paramount importance for the patients and the clinicians in oncology, and it is usually possible by performing imaging investigations that are interpreted, taking in consideration different response evaluation criteria. In the last decade, texture analysis (TA) has been developed in order to help the radiologist to quantify and identify parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye, that can be correlated with different endpoints, including cancer prognosis. The aim of this work is to analyze the impact of texture in the prediction of response and in prognosis stratification in oncology, taking into consideration different pathologies (lung cancer, breast cancer, gastric cancer, hepatic cancer, rectal cancer). Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This paper contains a narrative report and a critical discussion of radiomics approaches related to cancer prognosis in different fields of diseases.
Collapse
|
17
|
Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D, Desideri I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers (Basel) 2021; 13:3590. [PMID: 34298803 PMCID: PMC8303203 DOI: 10.3390/cancers13143590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Neoadjuvant radiotherapy is currently used mainly in locally advanced rectal cancer and sarcoma and in a subset of non-small cell lung cancer and esophageal cancer, whereas in other diseases it is under investigation. The evaluation of the efficacy of the induction strategy is made possible by performing imaging investigations before and after the neoadjuvant therapy and is usually challenging. In the last decade, texture analysis (TA) has been developed to help the radiologist to quantify and identify the parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye. The aim of this narrative is to review the impact of TA on the prediction of response to neoadjuvant radiotherapy and or chemoradiotherapy. MATERIALS AND METHODS Key references were derived from a PubMed query. Hand searching and ClinicalTrials.gov were also used. RESULTS This paper contains a narrative report and a critical discussion of radiomics approaches in different fields of neoadjuvant radiotherapy, including esophageal cancer, lung cancer, sarcoma, and rectal cancer. CONCLUSIONS Radiomics can shed a light on the setting of neoadjuvant therapies that can be used to tailor subsequent approaches or even to avoid surgery in the future. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Luca Boldrini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy;
| | - Ilaria Morelli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Carlotta Becherini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| |
Collapse
|
18
|
Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli A, Patrone R, Ferrante M, Cozzi D, Grassi R, Grassi R, Izzo F, Petrillo A. Radiomics in hepatic metastasis by colorectal cancer. Infect Agent Cancer 2021; 16:39. [PMID: 34078424 PMCID: PMC8173908 DOI: 10.1186/s13027-021-00379-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Radiomics is an emerging field and has a keen interest, especially in the oncology field. The process of a radiomics study consists of lesion segmentation, feature extraction, consistency analysis of features, feature selection, and model building. Manual segmentation is one of the most critical parts of radiomics. It can be time-consuming and suffers from variability in tumor delineation, which leads to the reproducibility problem of calculating parameters and assessing spatial tumor heterogeneity, particularly in large or multiple tumors. Radiomic features provides data on tumor phenotype as well as cancer microenvironment. Radiomics derived parameters, when associated with other pertinent data and correlated with outcomes data, can produce accurate robust evidence based clinical decision support systems. The principal challenge is the optimal collection and integration of diverse multimodal data sources in a quantitative manner that delivers unambiguous clinical predictions that accurately and robustly enable outcome prediction as a function of the impending decisions. Methods The search covered the years from January 2010 to January 2021. The inclusion criterion was: clinical study evaluating radiomics of liver colorectal metastases. Exclusion criteria were studies with no sufficient reported data, case report, review or editorial letter. Results We recognized 38 studies that assessed radiomics in mCRC from January 2010 to January 2021. Twenty were on different tpics, 5 corresponded to most criteria; 3 are review, or letter to editors; so 10 articles were included. Conclusions In colorectal liver metastases radiomics should be a valid tool for the characterization of lesions, in the stratification of patients based on the risk of relapse after surgical treatment and in the prediction of response to chemotherapy treatment.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Roberta Fusco
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy.
| | - Maria Luisa Barretta
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Carmine Picone
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Andrea Belli
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Renato Patrone
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Marilina Ferrante
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Diletta Cozzi
- Division of Radiology, "Azienda Ospedaliera Universitaria Careggi", Florence, Italy
| | - Roberta Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy.,Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| |
Collapse
|
19
|
Faeghi F, Ardakani AA, Acharya UR, Mirza-Aghazadeh-Attari M, Abolghasemi J, Ejtehadifar S, Mohammadi A. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists' assessment. Eur J Radiol 2021; 136:109518. [PMID: 33434859 DOI: 10.1016/j.ejrad.2020.109518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Ultrasonography is the most common imaging modality used to diagnose carpal tunnel syndrome (CTS). Recently artificial intelligence algorithms have been used to diagnose musculoskeletal diseases accurately without human errors using medical images. In this work, a computer-aided diagnosis (CAD) system is developed using radiomics features extracted from median nerves (MN) to diagnose CTS accurately. METHOD This study is performed on 228 wrists from 65 patients and 57 controls, with an equal number of control and CTS wrists. Nerve conduction study (NCS) is considered as the gold standard in this study. Two radiologists used two guides to evaluate and categorize the pattern and echogenicity of MNs. Radiomics features are extracted from B-mode ultrasound images (Ultrasomics), and the robust features are fed into support vector machine classifier for automated classification. The diagnostic performances of two radiologists and the CAD system are evaluated using ROC analysis. RESULTS The agreement of two radiologists was excellent for both guide 1 and 2. The honey-comb pattern clearly appeared in control wrists (based on guide 1). In addition, CTS wrists indicated significantly lower number of fascicles in MNs (based on guide 2). The area under ROC curve (AUC) of the radiologist 1 and 2 are 0.658 and 0.667 based on guide 1 and 0.736 and 0.721 based on guide 2, respectively. The CAD system indicated higher performance than two radiologists with AUC of 0.926. CONCLUSION The proposed CAD system shows the benefit of using ultrasomics features and can assist radiologists to diagnose CTS accurately.
Collapse
Affiliation(s)
- Fariborz Faeghi
- Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Abbasian Ardakani
- Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - U Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; Department of Biomedical Engineering, Singapore University of Social Sciences, Singapore.
| | | | - Jamileh Abolghasemi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ejtehadifar
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran.
| | - Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran.
| |
Collapse
|
20
|
Capobianco E, Dominietto M. From Medical Imaging to Radiomics: Role of Data Science for Advancing Precision Health. J Pers Med 2020; 10:jpm10010015. [PMID: 32121633 PMCID: PMC7151556 DOI: 10.3390/jpm10010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Treating disease according to precision health requires the individualization of therapeutic solutions as a cardinal step that is part of a process that typically depends on multiple factors. The starting point is the collection and assembly of data over time to assess the patient’s health status and monitor response to therapy. Radiomics is a very important component of this process. Its main goal is implementing a protocol to quantify the image informative contents by first mining and then extracting the most representative features. Further analysis aims to detect potential disease phenotypes through signs and marks of heterogeneity. As multimodal images hinge on various data sources, and these can be integrated with treatment plans and follow-up information, radiomics is naturally centered on dynamically monitoring disease progression and/or the health trajectory of patients. However, radiomics creates critical needs too. A concise list includes: (a) successful harmonization of intra/inter-modality radiomic measurements to facilitate the association with other data domains (genetic, clinical, lifestyle aspects, etc.); (b) ability of data science to revise model strategies and analytics tools to tackle multiple data types and structures (electronic medical records, personal histories, hospitalization data, genomic from various specimens, imaging, etc.) and to offer data-agnostic solutions for patient outcomes prediction; (c) and model validation with independent datasets to ensure generalization of results, clinical value of new risk stratifications, and support to clinical decisions for highly individualized patient management.
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, FL 33146, USA
- Correspondence:
| | | |
Collapse
|