1
|
Grosu-Bularda A, Vancea CV, Hodea FV, Cretu A, Bordeanu-Diaconescu EM, Dumitru CS, Ratoiu VA, Teodoreanu RN, Lascar I, Hariga CS. Optimizing Peripheral Nerve Regeneration: Surgical Techniques, Biomolecular and Regenerative Strategies-A Narrative Review. Int J Mol Sci 2025; 26:3895. [PMID: 40332790 PMCID: PMC12027958 DOI: 10.3390/ijms26083895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Peripheral nerve injury disrupts the function of the peripheral nervous system, leading to sensory, motor, and autonomic deficits. While peripheral nerves possess an intrinsic regenerative capacity, complete sensory and motor recovery remains challenging due to the unpredictable nature of the healing process, which is influenced by the extent of the injury, age, and timely intervention. Recent advances in microsurgical techniques, imaging technologies, and a deeper understanding of nerve microanatomy have enhanced functional outcomes in nerve repair. Nerve injury initiates complex pathophysiological responses, including Wallerian degeneration, macrophage activation, Schwann cell dedifferentiation, and axonal sprouting. Complete nerve disruptions require surgical intervention to restore nerve continuity and function. Direct nerve repair is the gold standard for clean transections with minimal nerve gaps. However, in cases with larger nerve gaps or when direct repair is not feasible, alternatives such as autologous nerve grafting, vascularized nerve grafts, nerve conduits, allografts, and nerve transfers may be employed. Autologous nerve grafts provide excellent biocompatibility but are limited by donor site morbidity and availability. Vascularized grafts are used for large nerve gaps and poorly vascularized recipient beds, while nerve conduits serve as a promising solution for smaller gaps. Nerve transfers are utilized when neither direct repair nor grafting is possible, often involving re-routing intact regional nerves to restore function. Nerve conduits play a pivotal role in nerve regeneration by bridging nerve gaps, with significant advancements made in material composition and design. Emerging trends in nerve regeneration include the use of 3D bioprinting for personalized conduits, gene therapy for targeted growth factor delivery, and nanotechnology for nanofiber-based conduits and stem cell therapy. Advancements in molecular sciences have provided critical insights into the cellular and biochemical mechanisms underlying nerve repair, leading to targeted therapies that enhance axonal regeneration, remyelination, and functional recovery in peripheral nerve injuries. This review explores the current strategies for the therapeutic management of peripheral nerve injuries, highlighting their indications, benefits, and limitations, while emphasizing the need for tailored approaches based on injury severity and patient factors.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Vladimir Vancea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Andrei Cretu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Eliza-Maria Bordeanu-Diaconescu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Catalina-Stefania Dumitru
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Vladut-Alin Ratoiu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan-Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ioan Lascar
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Acevedo Cintrón JA, Mackinnon SE. Discussion: GalT Knockout Porcine Nerve Xenografts Support Axonal Regeneration in a Rodent Sciatic Nerve Model. Plast Reconstr Surg 2025; 155:101-104. [PMID: 39700246 DOI: 10.1097/prs.0000000000011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
|
3
|
King NC, Tsui JM, Bejar-Chapa M, Marshall MS, Kogosov AS, Fan Y, Hansdorfer MA, Locascio JJ, Randolph MA, Winograd JM. GalT Knockout Porcine Nerve Xenografts Support Axonal Regeneration in a Rodent Sciatic Nerve Model. Plast Reconstr Surg 2025; 155:91-100. [PMID: 38548707 DOI: 10.1097/prs.0000000000011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
BACKGROUND Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold-preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. The authors compared outcomes between autografts and cold-preserved xenografts in a rat sciatic model of nerve gap repair. METHODS Fifty male Lewis rats had a 1-cm sciatic nerve defect repaired using autograft and suture ( n = 10); 1-week or 4-week cold-preserved xenograft and suture ( n = 10 per group); or 1-week or 4-week cold-preserved xenograft and photochemical tissue bonding using a human amnion wrap ( n = 10 per group). Rats with xenografts were given tacrolimus until 4 months postoperatively. At 4 and 7 months, rats were killed and nerve sections were harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the group with 1-week cold-preserved photochemical tissue bonding using a human amnion wrap. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold-preserved groups had significantly lower scores than the 4-week cold-preserved suture group. CONCLUSIONS The results suggest that α1,3-galactosyltransferase knockout nerve xenografts may be viable alternatives to autografts. Further studies of long-gap repair and comparison with acellular nerve allografts are needed. CLINICAL RELEVANCE STATEMENT This proof-of-concept study in the rat sciatic model demonstrates that cold-preserved α1,3-galactosyltransferase knockout porcine xenografts support axonal regeneration and viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.
Collapse
Affiliation(s)
- Nicholas C King
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Jane M Tsui
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Maria Bejar-Chapa
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Michael S Marshall
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Ann S Kogosov
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Yingfang Fan
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
- Wellman Center for Photomedicine, Massachusetts General Hospital
| | - Marek A Hansdorfer
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Joseph J Locascio
- Massachusetts General Research Institute, Harvard Catalyst Biostatistical Consulting Group, Harvard Medical School
| | - Mark A Randolph
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| | - Jonathan M Winograd
- From the Peripheral Nerve Research Laboratory, Division of Plastic and Reconstructive Surgery
| |
Collapse
|
4
|
Kim JP, Heo SC, Lee DH, Bae JS, Shin YK, Son SH, Park IY, Kim HW, Lee JH, Kim KW. Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study. J Orthop Surg Res 2024; 19:859. [PMID: 39702298 DOI: 10.1186/s13018-024-05343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery. METHODS Sixty-five male Lewis rats were divided into five groups of 13, each with a 10-mm sciatic nerve gap. Group I received an autograft, whereas Groups II and III received allografts pretreated with cryopreservation and cold preservation, respectively. Groups IV and V were also implanted with cryo- and cold-preserved allografts, but were treated with a low dose of FK506. Motor regeneration was assessed at 20 weeks by the measurement of ankle contracture, compound muscle action potential, maximal isometric tetanic force, wet muscle weight of the tibialis anterior, peroneal nerve histomorphometry, and immunohistochemistry of the reconstructed sciatic nerve. RESULTS Similar motor recovery was observed between the autografts and both types of allografts. The groups treated with FK506 showed improved recovery, particularly in terms of ankle angle and tibialis anterior muscle weight. Histomorphometry revealed a superior myelinated fiber area and nerve ratio in the cold-preserved allograft group, while Group II displayed a less well-organized morphology. CONCLUSION This study demonstrates that cold- or cryopreserved nerve allografts represent effective alternatives to autografts for peripheral nerve reconstruction, with low-dose FK506 enhancing motor recovery without necessitating immunosuppression. LEVEL OF EVIDENCE I Basic Science Level I.
Collapse
Affiliation(s)
- Jong Pil Kim
- Department of Orthopaedic Surgery, Naeunpil Hospital, Cheonan, Republic of Korea
| | - Soon Chul Heo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dae Hee Lee
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Jun Sang Bae
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - Young Kwang Shin
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Su Hyeok Son
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Il Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.
| |
Collapse
|
5
|
Wang S, Wen X, Fan Z, Ding X, Wang Q, Liu Z, Yu W. Research advancements on nerve guide conduits for nerve injury repair. Rev Neurosci 2024; 35:627-637. [PMID: 38517315 DOI: 10.1515/revneuro-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/23/2024]
Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Collapse
Affiliation(s)
- Shoushuai Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xinggui Wen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zheyuan Fan
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xiangdong Ding
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Qianqian Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zhongling Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| |
Collapse
|
6
|
Serra PL, Giannaccare G, Cuccu A, Bolognesi F, Biglioli F, Marcasciano M, Tarabbia F, Pagliara D, Figus A, Boriani F. Insights on the Choice and Preparation of the Donor Nerve in Corneal Neurotization for Neurotrophic Keratopathy: A Narrative Review. J Clin Med 2024; 13:2268. [PMID: 38673540 PMCID: PMC11050919 DOI: 10.3390/jcm13082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The article introduces neurotrophic keratopathy (NK), a condition resulting from corneal denervation due to various causes of trigeminal nerve dysfunctions. Surgical techniques for corneal neurotization (CN) have evolved, aiming to restore corneal sensitivity. Initially proposed in 1972, modern approaches offer less invasive options. CN can be performed through a direct approach (DCN) directly suturing a sensitive nerve to the affected cornea or indirectly (ICN) through a nerve auto/allograft. Surgical success relies on meticulous donor nerve selection and preparation, often involving multidisciplinary teams. A PubMed research and review of the relevant literature was conducted regarding the surgical approach, emphasizing surgical techniques and the choice of the donor nerve. The latter considers factors like sensory integrity and proximity to the cornea. The most used are the contralateral or ipsilateral supratrochlear (STN), and the supraorbital (SON) and great auricular (GAN) nerves. Regarding the choice of grafts, the most used in the literature are the sural (SN), the lateral antebrachial cutaneous nerve (LABCN), and the GAN nerves. Another promising option is represented by allografts (acellularized nerves from cadavers). The significance of sensory recovery and factors influencing surgical outcomes, including nerve caliber matching and axonal regeneration, are discussed. Future directions emphasize less invasive techniques and the potential of acellular nerve allografts. In conclusion, CN represents a promising avenue in the treatment of NK, offering tailored approaches based on patient history and surgical expertise, with new emerging techniques warranting further exploration through basic science refinements and clinical trials.
Collapse
Affiliation(s)
- Pietro Luciano Serra
- Plastic Surgery Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari University Hospital Trust, 07100 Sassari, Italy;
- Plastic Surgery and Microsurgery Unit, Department of Surgical Sciences, Faculty of Medicine and Surgery, University Hospital “Duilio Casula”, University of Cagliari, 09124 Cagliari, Italy; (A.F.); (F.B.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Alberto Cuccu
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Federico Bolognesi
- Department of Maxillo-Facial Surgery, Santi Paolo e Carlo Hospital, University of Milan, 20122 Milan, Italy; (F.B.); (F.B.); (F.T.)
| | - Federico Biglioli
- Department of Maxillo-Facial Surgery, Santi Paolo e Carlo Hospital, University of Milan, 20122 Milan, Italy; (F.B.); (F.B.); (F.T.)
| | - Marco Marcasciano
- Plastic and Reconstructive Surgery Unit, Division of Plastic and Reconstructive Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
- Unit of Plastic and Reconstructive Surgery, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Filippo Tarabbia
- Department of Maxillo-Facial Surgery, Santi Paolo e Carlo Hospital, University of Milan, 20122 Milan, Italy; (F.B.); (F.B.); (F.T.)
| | - Domenico Pagliara
- Plastic-Reconstructive and Lymphedema Microsurgery Center, Mater Olbia Hospital, 07026 Olbia, Italy;
| | - Andrea Figus
- Plastic Surgery and Microsurgery Unit, Department of Surgical Sciences, Faculty of Medicine and Surgery, University Hospital “Duilio Casula”, University of Cagliari, 09124 Cagliari, Italy; (A.F.); (F.B.)
| | - Filippo Boriani
- Plastic Surgery and Microsurgery Unit, Department of Surgical Sciences, Faculty of Medicine and Surgery, University Hospital “Duilio Casula”, University of Cagliari, 09124 Cagliari, Italy; (A.F.); (F.B.)
| |
Collapse
|
7
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
8
|
Umansky D, Elzinga K, Midha R. Surgery for mononeuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:227-249. [PMID: 38697743 DOI: 10.1016/b978-0-323-90108-6.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Advancement in microsurgical techniques and innovative approaches including greater use of nerve and tendon transfers have resulted in better peripheral nerve injury (PNI) surgical outcomes. Clinical evaluation of the patient and their injury factors along with a shift toward earlier time frame for intervention remain key. A better understanding of the pathophysiology and biology involved in PNI and specifically mononeuropathies along with advances in ultrasound and magnetic resonance imaging allow us, nowadays, to provide our patients with a logical and sophisticated approach. While functional outcomes are constantly being refined through different surgical techniques, basic scientific concepts are being advanced and translated to clinical practice on a continuous basis. Finally, a combination of nerve transfers and technological advances in nerve/brain and machine interfaces are expanding the scope of nerve surgery to help patients with amputations, spinal cord, and brain lesions.
Collapse
Affiliation(s)
- Daniel Umansky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| | - Kate Elzinga
- Division of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Zheng S, Wei H, Cheng H, Qi Y, Gu Y, Ma X, Sun J, Ye F, Guo F, Cheng C. Advances in nerve guidance conduits for peripheral nerve repair and regeneration. AMERICAN JOURNAL OF STEM CELLS 2023; 12:112-123. [PMID: 38213640 PMCID: PMC10776341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Peripheral nerve injury (PNI) can cause partial or total motor and sensory nerve function, leading to physical disability and nerve pain that severely affects patients' quality of life. Autologous nerve transplantation is currently the clinically recognized gold standard, but due to its inherent limitations, researchers have been searching for alternative treatments. Nerve guidance conduits (NGCs) have attracted much attention as a favorable alternative to promote the repair and regeneration of damaged peripheral nerves. In this review, we provide an overview of the anatomy of peripheral nerves, peripheral nerve injury and repair, and current treatment methods. Importantly, different design strategies of NGCs used for the treatment of PNI and their applications in PNI repair are highlighted. Finally, an outlook on the future development and challenges of NGCs is presented.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hong Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yanru Qi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yajun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Fangfang Guo
- Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| |
Collapse
|
10
|
Wang S, Wang Y, Chen B, Zhao M, Song G, Wang J, Xu J. Preparation and performance study of multichannel PLA artificial nerve conduits. Biomed Mater 2023; 18:065001. [PMID: 37582380 DOI: 10.1088/1748-605x/acf0ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Compared with single-channel nerve conduits, multichannel artificial nerve conduits are more beneficial for repairing damaged peripheral nerves of long-distance nerve defects. Multichannel nerve conduits can be fabricated by the mold method and the electrospinning method but with disadvantages such as low strength and large differences in batches, while the braiding method can solve this problem. In this study, polylactic acid yarns were used as the braiding yarn, and the number of spindles during braiding was varied to achieve 4, 5, 6, 7 and 8 multichannel artificial nerve conduits. A mathematical model of the number of braiding yarn spindles required to meet certain size specification parameters of the multichannel conduit was established. The cross-sectional morphology and mechanical properties of the conduits were characterized by scanning electron microscopy observation and mechanical testing; the results showed that the multichannel structure was well constructed; the tensile strength of the multichannel conduit was more than 30 times that of the rabbit tibial nerve. The biocompatibility of the conduit was tested; thein vitrocell culture results proved that the braided multichannel nerve conduits were nontoxic to Schwann cells, and the cell adhesion and proliferation were optimal in the 4-channel conduit among the multichannel conduits, which was close to the single-channel conduit.
Collapse
Affiliation(s)
- Shanlong Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Yuyu Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Biling Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Mingda Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Gongji Song
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215127, People's Republic of China
| | - Jianmei Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215127, People's Republic of China
| |
Collapse
|
11
|
Koplay TG, Yildiran G, Dursunoglu D, Aktan M, Duman S, Akdag O, Karamese M, Tosun Z. The Effects of Adipose-Derived Mesenchymal Stem Cells and Adipose-Derived Mesenchymal Stem Cell-Originating Exosomes on Nerve Allograft Regeneration: An Experimental Study in Rats. Ann Plast Surg 2023; 90:261-266. [PMID: 36796049 DOI: 10.1097/sap.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Nerve regeneration has been the subject of many studies because of its complex mechanism and functional outcome. Mesenchymal stem cells and exosomes are promising factors in regeneration in many areas. Reconstruction of nerve defects is a controversial issue, and nerve allografts are promising alternatives with many advantages. In this study, it is aimed to evaluate the nerve regeneration in cellularized and decellularized nerve allografts and whether it is possible to accelerate this process with adipose-derived mesenchymal stem cells (ad MSC) or ad MSC-originating exosomes. METHOD This study was performed with 36 Lewis and 18 Brown Norway isogenic male rats aged 10 to 12 weeks and weighing 300 to 350 g. The Lewis rats were divided into 6 groups. Nerve allografts at a length of 12 mm that were obtained from the Brown Norway rats' proximal portion of both sciatic nerve branching points were coapted as cellularized in group A and decellularized in group B to the sciatic nerve defects of the Lewis rats. Group A received oral tacrolimus (0.2 mg/kg) for 30 days. Perineural saline (A1-B1), ad MSC (A2-B2), or ad MSC-originating exosomes (A3-B3) were applied to these groups. Walking track analysis, pinch-prick test and electromyelography were applied at the 8th and 16th weeks following surgery. Nerves were examined histopathologically at the 16th week. RESULTS Between cellularized groups, better results were shown in A3 about axon-myelin regeneration/organization (P = 0.001), endoneural connective tissue (P = 0.005), and inflammation (P = 0.004). Better results were shown in the B2 and B3 groups electromyelographicaly about latency period (P = 0.033) and action potential (P = 0.008) at late period, and histomorphologicaly at vascularization (P = 0.012). DISCUSSION It is argued that regeneration is accelerated with decellularization of nerve allografts by removing the chondroidin sulfate proteoglycans. The positive effects of stem cells are derived by exosomes without the cell-related disadvantages. In this study, better results were obtained by decellularization and perineural application of ad MSC and/or ad MSC exosome.
Collapse
Affiliation(s)
- Tugba Gun Koplay
- From the Department of Plastic Reconstructive and Aesthetic Surgery, Konya City Hospital
| | | | - Duygu Dursunoglu
- Department of Histology and Embriology, Selcuk University Medical Faculty
| | - Murad Aktan
- Department of Histology and Embriology, Necmettin Erbakan University Medical Faculty
| | - Selcuk Duman
- Department of Histology and Embriology, Necmettin Erbakan University Medical Faculty
| | - Osman Akdag
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| | - Mehtap Karamese
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| | - Zekeriya Tosun
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| |
Collapse
|
12
|
Supra R, Agrawal DK. Peripheral Nerve Regeneration: Opportunities and Challenges. JOURNAL OF SPINE RESEARCH AND SURGERY 2023; 5:10-18. [PMID: 36873243 PMCID: PMC9983644 DOI: 10.26502/fjsrs0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Peripheral nerve injury has detrimental effects on the quality of life for patients and is a worldwide issue with high rates of morbidity. Research on the molecular mechanisms of nerve injury, microsurgical techniques, and advances in stem cell research have led to substantial progress in the field of translational neurophysiology. Current research on peripheral nerve regeneration aims to accelerate peripheral nerve development through pluripotent stem cells and potential use of smart exosomes, pharmacological agents, and bioengineering of nerve conduits. In this article critically reviewed and summarized various methods used for peripheral nerve regeneration and highlight the opportunities and challenges that come along with these strategies.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Pomona, California
| |
Collapse
|
13
|
Yonezawa H, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Morinaga S, Asano Y, Saito S, Tada K, Nojima T, Tsuchiya H. Do Liquid Nitrogen-treated Tumor-bearing Nerve Grafts Have the Capacity to Regenerate, and Do They Pose a Risk of Local Recurrence? A Study in Rats. Clin Orthop Relat Res 2022; 480:2442-2455. [PMID: 35976198 PMCID: PMC10540061 DOI: 10.1097/corr.0000000000002336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/01/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Under most circumstances, the resection of soft tissue sarcomas of the extremities can be limb-sparing, function-preserving oncologic resections with adequate margins. However, en bloc resection may require resection of the major peripheral nerves, causing poor function in the extremities. Although liquid nitrogen treatment has been used to sterilize malignant bone tumors, its use in the preparation of nerve grafts has, to our knowledge, not been reported. Hence, this study aimed to investigate the tumor recurrence and function after peripheral nerve reconstruction using liquid nitrogen-treated tumor-bearing nerves in a rat model. QUESTIONS/PURPOSES (1) Do liquid nitrogen-treated frozen autografts have regeneration capabilities? (2) Do liquid nitrogen-treated tumor-bearing nerves cause any local recurrences in vivo in a rat model? METHODS Experiment 1: Twelve-week-old female Wistar rats, each weighing 250 g to 300 g, were used. A 10-mm-long section of the right sciatic nerve was excised; the prepared nerve grafts were bridge-grafted through end-to-end suturing. The rats were grouped as follows: an autograft group, which underwent placement of a resected sciatic nerve after it was sutured in the reverse orientation, and a frozen autograft group, which underwent bridging of the nerve gap using a frozen autograft. The autograft was frozen in liquid nitrogen, thawed at room temperature, and then thawed in distilled water before application. The third group was a resection group in which the nerve gap was not reconstructed. Twenty-four rats were included in each group, and six rats per group were evaluated at 4, 12, 24, and 48 weeks postoperatively. To assess nerve regeneration after reconstruction using the frozen nerve graft in the nontumor rat model, we evaluated the sciatic functional index, tibialis anterior muscle wet weight ratio, electrophysiologic parameters (amplitude and latency), muscle fiber size (determined with Masson trichrome staining), lower limb muscle volume, and immunohistochemical findings (though neurofilament staining and S100 protein produced solely and uniformly by Schwann cells associated with axons). Lower limb muscle volume was calculated via CT before surgery (0 weeks) and at 4, 8, 12, 16, 20, 24, 32, 40, and 48 weeks after surgery. Experiment 2: Ten-week-old female nude rats (F344/NJcl-rnu/rnu rats), each weighing 100 g to 150 g, were injected with HT1080 (human fibrosarcoma) cells near the bilateral sciatic nerves. Two weeks after injection, the tumor grew to a 10-mm-diameter mass involving the sciatic nerves. Subsequently, the tumor was resected with the sciatic nerves, and tumor-bearing sciatic nerves were obtained. After liquid nitrogen treatment, the frozen tumor-bearing nerve graft was trimmed to a 5-mm-long tissue and implanted into another F344/NJcl-rnu/rnu rat, in which a 5-mm-long section of the sciatic nerve was resected to create a nerve gap. Experiment 2 was performed with 12 rats; six rats were evaluated at 24 and 48 weeks postoperatively. To assess nerve regeneration and tumor recurrence after nerve reconstruction using frozen tumor-bearing nerve grafts obtained from the nude rat with human fibrosarcoma involving the sciatic nerve, the sciatic nerve's function and histologic findings were evaluated in the same way as in Experiment 1. RESULTS Experiment 1: The lower limb muscle volume decreased once at 4 weeks in the autograft and frozen autograft groups and gradually increased thereafter. The tibialis anterior muscle wet weight ratio, sciatic functional index, muscle fiber size, and electrophysiologic evaluation showed higher nerve regeneration potential in the autograft and frozen autograft groups than in the resection group. The median S100-positive areas (interquartile range [IQR]) in the autograft group were larger than those in the frozen autograft group at 12 weeks (0.83 [IQR 0.78 to 0.88] versus 0.57 [IQR 0.53 to 0.61], difference of medians 0.26; p = 0.04) and at 48 weeks (0.86 [IQR 0.83 to 0.99] versus 0.74 [IQR 0.69 to 0.81], difference of median 0.12; p = 0.03). Experiment 2: Lower limb muscle volume decreased at 4 weeks and gradually increased thereafter. The median muscle fiber size increased from 0.89 (IQR 0.75 to 0.90) at 24 weeks to 1.20 (IQR 1.08 to 1.34) at 48 weeks (difference of median 0.31; p< 0.01). The median amplitude increased from 0.60 (IQR 0.56 to 0.67) at 24 weeks to 0.81 (IQR 0.76 to 0.90) at 48 weeks (difference of median 0.21; p < 0.01). Despite tumor involvement and freezing treatment, tumor-bearing frozen grafts demonstrated nerve regeneration activity, with no local recurrence observed at 48 weeks postoperatively in nude rats. CONCLUSION Tumor-bearing frozen nerve grafts demonstrated nerve regeneration activity, and there was no tumor recurrence in rats in vivo. CLINICAL RELEVANCE A frozen nerve autograft has a similar regenerative potential to that of a nerve autograft. Although the findings in a rat model do not guarantee efficacy in humans, if they are substantiated by large-animal models, clinical trials will be needed to evaluate the efficacy of tumor-bearing frozen nerve grafts in humans.
Collapse
Affiliation(s)
- Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sei Morinaga
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yohei Asano
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shiro Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kaoru Tada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Nojima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
14
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
15
|
Jeong Y, Choi W, Kim JH, Eun S. Histomorphometric Analysis of Femoral and Sciatic Nerve Regeneration in a Rat Hindlimb Allotransplantation Model. Transplant Proc 2022; 54:503-506. [DOI: 10.1016/j.transproceed.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
|
16
|
Siemionow M, Strojny MM, Kozlowska K, Brodowska S, Grau-Kazmierczak W, Cwykiel J. Application of Human Epineural Conduit Supported with Human Mesenchymal Stem Cells as a Novel Therapy for Enhancement of Nerve Gap Regeneration. Stem Cell Rev Rep 2021; 18:642-659. [PMID: 34787795 PMCID: PMC8930890 DOI: 10.1007/s12015-021-10301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Various therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1rnu): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 106 hMSC. Assessments included: functional tests: toe-spread and pinprick, regeneration assessment by immunofluorescence staining: HLA-1, HLA-DR, NGF, GFAP, Laminin B, S-100, VEGF, vWF and PKH26 labeling; histomorphometric analysis of myelin thickness, axonal density, fiber diameter and myelinated nerve fibers percentage; Gastrocnemius Muscle Index (GMI) and muscle fiber area ratio. Best sensory and motor function recovery, as well as GMI and muscle fiber area ratio, were observed in the autograft group, and were comparable to the hEC with hMSC group (p = 0.038). Significant improvements of myelin thickness (p = 0.003), fiber diameter (p = 0.0296), and percentage of myelinated fibers (p < 0.0001) were detected in hEC group supported with hMSC compared to hEC with saline controls. At 12-weeks after nerve gap repair, hEC combined with hMSC revealed increased expression of neurotrophic and proangiogenic factors, which corresponded with improvement of function comparable with the autograft control. Application of our novel hEC supported with hMSC provides a potential alternative to the autograft nerve repair.
Collapse
Affiliation(s)
- Maria Siemionow
- Poznan University of Medical Sciences, Poznan, Poland. .,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
| | - Marcin Michal Strojny
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katarzyna Kozlowska
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Yan X, Wang J, He Q, Xu H, Tao J, Koral K, Li K, Xu J, Wen J, Huang Z, Xu P. PDLLA/ β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY. MATERIALS SCIENCE EDITION 2021; 36:600-606. [PMID: 34483596 PMCID: PMC8403253 DOI: 10.1007/s11595-021-2450-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 06/13/2023]
Abstract
Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft. Compared with NGCs made of single material, composite NGCs have a greater development prospect. Our previous research has confirmed that poly(D, L-lactic acid)/β-tricalcium phosphate/hyaluronic acid/chitosan/nerve growth factor (PDLLA/β-TCP/HA/CHS/NGF) NGCs have excellent physical and chemical properties, which can slowly release NGF and support cell adhesion and proliferation. In this study, PDLLA/β-TCP/HA/CHS/NGF NGCs were prepared and used to bridge a 10 mm sciatic nerve defect in 200-250 g Sprague-Dawley (SD) rat to verify the performance of the NGCs in vivo. Substantial improvements in nerve regeneration were observed after using the PDLLA/β-TCP/HA/CHS/NGF NGCs based on gross post-operation observation, triceps wet weight analysis and nerve histological assessment. In vivo studies illustrate that the PDLLA/β-TCP/HA/CHS/NGF sustained-release NGCs can effectively promote peripheral nerve regeneration, and the effect is similar to that of autograft.
Collapse
Affiliation(s)
- Xiumei Yan
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jing Wang
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, 518029 China
| | - Qundi He
- Wuhan Mafangshan Middle School, Wuhan, 430070 China
| | - Haixing Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Kebi Li
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jingyi Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Jing Wen
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Zhijun Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| | - Peihu Xu
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 China
| |
Collapse
|
18
|
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020; 106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Peripheral nerves can sustain injuries due to loss of structure and/or function of peripheral nerves because of accident, trauma and other causes, which leads to partial or complete loss of sensory, motor, and autonomic functions and neuropathic pain. Even with the extensive knowledge on the pathophysiology and regeneration mechanisms of peripheral nerve injuries (PNI), reliable treatment methods that ensure full functional recovery are scant. Nerve autografting is the current gold standard for treatment of PNI. Given the limitations of autografts including donor site morbidity and limited supply, alternate treatment methods are being pursued by the researchers. Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts. The anatomy of peripheral nerves, classification of PNI, and current treatment methods are briefly yet succinctly reviewed. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods adopted is presented in this work. Much progress had been made in all the aspects of making an NGC, including the design, materials and fabrication techniques. The advent of advanced technologies such as additive manufacturing and 3D bioprinting could be beneficial in easing the production of patient-specific NGCs. NGCs with supporting cells or stem cells, NGCs loaded with neurotropic factors and drugs, and 4D printed NGCs are some of the futuristic areas of interest. STATEMENT OF SIGNIFICANCE: Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts in the treatment of peripheral nerve injuries. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods (including Additive Manufacturing) adopted is presented in this work.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, UAE; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA.
| |
Collapse
|
19
|
Kaya H, Sabah D, Keçeci B, Küçük L, Erbaş O, Oltulu F, Yiğittürk G, Taskiran D. Comparison of the Effects of Extracorporeal Irradiation and Liquid Nitrogen on Nerve Recovery in a Rat Model. J INVEST SURG 2020; 34:773-783. [DOI: 10.1080/08941939.2019.1691686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hüseyin Kaya
- Department of Orthopedics and Traumatology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Dündar Sabah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Burçin Keçeci
- Department of Orthopedics and Traumatology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Levent Küçük
- Department of Orthopedics and Traumatology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Dilek Taskiran
- Department of Physiology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
20
|
Madison RD, Robinson GA. Muscle-Derived Extracellular Vesicles Influence Motor Neuron Regeneration Accuracy. Neuroscience 2019; 419:46-59. [PMID: 31454553 DOI: 10.1016/j.neuroscience.2019.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles are lipid bilayer-enclosed extracellular structures. Although the term extracellular vesicles is quite inclusive, it generally refers to exosomes (<200 nm), and microvesicles (~100-1000 nm). Such vesicles are resistant to degradation and can contain proteins, lipids, and nucleic acids. Although it was previously thought that the primary purpose of such vesicles was to rid cells of unwanted components, it is now becoming increasingly clear that they can function as intercellular messengers, sometimes operating over long distances. As such, there is now intense interest in extracellular vesicles in fields as diverse as immunology, cell biology, cancer, and more recently, neuroscience. The influence that such extracellular vesicles might exert on peripheral nerve regeneration is just beginning to be investigated. In the current studies we show that muscle-derived extracellular vesicles significantly influence the anatomical accuracy of motor neuron regeneration in the rat femoral nerve. These findings suggest a basic cellular mechanism by which target end-organs could guide their own reinnervation following nerve injury.
Collapse
Affiliation(s)
- Roger D Madison
- Research Service of the Veterans Affairs Medical Center, Durham, NC 27705, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Grant A Robinson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Li L, He WT, Qin BG, Liu XL, Yang JT, Gu LQ. Comparison between direct repair and human acellular nerve allografting during contralateral C7 transfer to the upper trunk for restoration of shoulder abduction and elbow flexion. Neural Regen Res 2019; 14:2132-2140. [PMID: 31397352 PMCID: PMC6788224 DOI: 10.4103/1673-5374.262600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct repair can only be performed in some selected cases, and partial procedures still require autografts, which are the gold standard for repairing neurologic defects. As symptoms often occur after autografting, human acellular nerve allografts have been used to avoid concomitant symptoms. This study investigated the quality of shoulder abduction and elbow flexion following direct repair and acellular allografting to evaluate issues requiring attention for brachial plexus injury repair. Fifty-one brachial plexus injury patients in the surgical database were eligible for this retrospective study. Patients were divided into two groups according to different surgical methods. Direct repair was performed in 27 patients, while acellular nerve allografts were used to bridge the gap between the contralateral C7 nerve root and upper trunk in 24 patients. The length of the harvested contralateral C7 nerve root was measured intraoperatively. Deltoid and biceps muscle strength, and degrees of shoulder abduction and elbow flexion were examined according to the British Medical Research Council scoring system; meaningful recovery was defined as M3–M5. Lengths of anterior and posterior divisions of the contralateral C7 in the direct repair group were 7.64 ± 0.69 mm and 7.55 ± 0.69 mm, respectively, and in the acellular nerve allografts group were 6.46 ± 0.58 mm and 6.43 ± 0.59 mm, respectively. After a minimum of 4-year follow-up, meaningful recoveries of deltoid and biceps muscles in the direct repair group were 88.89% and 85.19%, respectively, while they were 70.83% and 66.67% in the acellular nerve allografts group. Time to C5/C6 reinnervation was shorter in the direct repair group compared with the acellular nerve allografts group. Direct repair facilitated the restoration of shoulder abduction and elbow flexion. Thus, if direct coaptation is not possible, use of acellular nerve allografts is a suitable option. This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Sun Yat-sen University, China (Application ID: [2017] 290) on November 14, 2017.
Collapse
Affiliation(s)
- Liang Li
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Ting He
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ben-Gang Qin
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Tao Yang
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Qiang Gu
- Department of Orthopedic Trauma and Microsurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Trejo JL. Advances in the Ongoing Battle against the Consequences of Peripheral Nerve Injuries. Anat Rec (Hoboken) 2018; 301:1606-1613. [DOI: 10.1002/ar.23936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- JosÉ L. Trejo
- Department of Translational Neuroscience; Cajal Institute, CSIC; Madrid Spain
| |
Collapse
|
23
|
Wang ZZ, Wood MD, Mackinnon SE, Sakiyama-Elbert SE. A microfluidic platform to study the effects of GDNF on neuronal axon entrapment. J Neurosci Methods 2018; 308:183-191. [PMID: 30081039 DOI: 10.1016/j.jneumeth.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND One potential treatment strategy to enhance axon regeneration is transplanting Schwann Cells (SCs) that overexpress glial cell line-derived neurotrophic factor (GDNF). Unfortunately, constitutive GDNF overexpression in vivo can result in failure of regenerating axons to extend beyond the GDNF source, a phenomenon termed the "candy-store" effect. Little is known about the mechanism of this axon entrapment in vivo. NEW METHOD We present a reproducible in vitro culture platform using a microfluidic device to model axon entrapment and investigate mechanisms by which GDNF causes axon entrapment. The device is comprised of three culture chambers connected by two sets of microchannels, which prevent cell soma from moving between chambers but allow neurites to grow between chambers. Neurons from dorsal root ganglia were seeded in one end chamber while the effect of different conditions in the other two chambers was used to study neurite entrapment. RESULTS The results showed that GDNF-overexpressing SCs (G-SCs) can induce axon entrapment in vitro. We also found that while physiological levels of GDNF (100 ng/mL) promoted neurite extension, supra-physiological levels of GDNF (700 ng/mL) induced axon entrapment. COMPARISON WITH EXISTING METHOD All previous work related to the "candy-store" effect were done in vivo. Here, we report the first in vitro platform that can recapitulate the axonal entrapment and investigate the mechanism of the phenomenon. CONCLUSIONS This platform facilitates investigation of the "candy-store" effect and shows the effects of high GDNF concentrations on neurite outgrowth.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
24
|
Angiosome-Based Allografts: Vascularized Composite Allotransplantation for Tailored Subunit Reconstruction with Volkmann Ischemic Contracture as a Case in Point. Plast Reconstr Surg 2017; 139:1291e-1304e. [PMID: 28538571 DOI: 10.1097/prs.0000000000003360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND As we enter an age with new approaches to tissue reconstruction, the emphasis on the adage "like for like" has become even more relevant. This study illustrates the potential for several tailored vascularized composite allotransplantation reconstructive techniques and, in particular, for the management of Volkmann contracture. METHODS Twenty fresh cadaver dissections and 30 archival lead oxide radiographic studies were examined to (1) identify potential upper limb vascularized composite allotransplantation donor sites (i.e., elbow, forearm, and flexor tendon complex) and (2) demonstrate a "mock transplant" of the vascularized volar forearm allograft for a severe Volkmann ischemia defect. They were designed without skin to reduce antigenicity. RESULTS The elbow joint was supplied within the brachial angiosome and the flexor tendon complex of the flexor digitorum superficialis and flexor digitorum profundus by the superficial palmar arch of the ulnar angiosome. The forearm allograft of flexor muscles, median, ulnar, and anterior interosseous nerves, when harvested on the brachial vessels, was supplied within the radial, ulnar, and anterior interosseous angiosomes but could be based on the ulnar artery alone because of intramuscular connections with the other territories. A mock transplant was performed with a distal-to-proximal dissection of the allograft, facilitating the best and fastest technique. CONCLUSIONS This application of the angiosome concept highlights the anatomical feasibility of the volar forearm vascularized composite allotransplantation donor site focusing on a complex subunit problem in the upper limb-severe Volkmann ischemic contracture. It demonstrates the potential use and immunologic advantage of subdivided and modified nonskin variations of vascularized composite allotransplantation in reconstructive transplantation surgery. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
25
|
Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The Present and Future for Peripheral Nerve Regeneration. Orthopedics 2017; 40:e141-e156. [PMID: 27783836 DOI: 10.3928/01477447-20161019-01] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/23/2016] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injury can have a potentially devastating impact on a patient's quality of life, resulting in severe disability with substantial social and personal cost. Refined microsurgical techniques, advances in peripheral nerve topography, and a better understanding of the pathophysiology and molecular basis of nerve injury have all led to a decisive leap forward in the field of translational neurophysiology. Nerve repair, nerve grafting, and nerve transfers have improved significantly with consistently better functional outcomes. Direct nerve repair with epineural microsutures is still the surgical treatment of choice when a tension-free coaptation in a well-vascularized bed can be achieved. In the presence of a significant gap (>2-3 cm) between the proximal and distal nerve stumps, primary end-to-end nerve repair often is not possible; in these cases, nerve grafting is the treatment of choice. Indications for nerve transfer include brachial plexus injuries, especially avulsion type, with long distance from target motor end plates, delayed presentation, segmental loss of nerve function, and broad zone of injury with dense scarring. Current experimental research in peripheral nerve regeneration aims to accelerate the process of regeneration using pharmacologic agents, bioengineering of sophisticated nerve conduits, pluripotent stem cells, and gene therapy. Several small molecules, peptides, hormones, neurotoxins, and growth factors have been studied to improve and accelerate nerve repair and regeneration by reducing neuronal death and promoting axonal outgrowth. Targeting specific steps in molecular pathways also allows for purposeful pharmacologic intervention, potentially leading to a better functional recovery after nerve injury. This article summarizes the principles of nerve repair and the current concepts of peripheral nerve regeneration research, as well as future perspectives. [Orthopedics. 2017; 40(1):e141-e156.].
Collapse
|
26
|
Lee DJ, Fontaine A, Meng X, Park D. Biomimetic Nerve Guidance Conduit Containing Intraluminal Microchannels with Aligned Nanofibers Markedly Facilitates in Nerve Regeneration. ACS Biomater Sci Eng 2016; 2:1403-1410. [DOI: 10.1021/acsbiomaterials.6b00344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Lee
- Department
of Bioengineering, University of Colorado Denver Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, Colorado 80045, United States
| | - Arjun Fontaine
- Department
of Bioengineering, University of Colorado Denver Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, Colorado 80045, United States
| | - Xianzhong Meng
- Department
of Surgery, University of Colorado Denver Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department
of Bioengineering, University of Colorado Denver Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
27
|
Zhu S, Liu J, Zheng C, Gu L, Zhu Q, Xiang J, He B, Zhou X, Liu X. Analysis of human acellular nerve allograft reconstruction of 64 injured nerves in the hand and upper extremity: a 3 year follow-up study. J Tissue Eng Regen Med 2016; 11:2314-2322. [PMID: 27098545 DOI: 10.1002/term.2130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/15/2015] [Accepted: 12/10/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shuang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Jianghui Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Liqiang Gu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Jianping Xiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Bo He
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Xiang Zhou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| | - Xiaolin Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou People's Republic of China
- Center for Peripheral Nerve Tissue-engineering and Technology Research Guangdong; Guangzhou People's Republic of China
| |
Collapse
|
28
|
Kaufman CL, Marvin MR, Chilton PM, Hoying JB, Williams SK, Tien H, Ozyurekoglu T, Ouseph R. Immunobiology in VCA. Transpl Int 2016; 29:644-54. [PMID: 26924305 DOI: 10.1111/tri.12764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
Abstract
Transplantation of vascularized composite tissue is a relatively new field that is an amalgamation of experience in solid organ transplantation and reconstructive plastic and orthopedic surgery. What is novel about the immunobiology of VCA is the addition of tissues with unique immunologic characteristics such as skin and vascularized bone, and the nature of VCA grafts, with direct exposure to the environment, and external forces of trauma. VCAs are distinguished from solid organ transplants by the requirement of rigorous physical therapy for optimal outcomes and the fact that these procedures are not lifesaving in most cases. In this review, we will discuss the immunobiology of these systems and how the interplay can result in pathology unique to VCA as well as provide potential targets for therapy.
Collapse
Affiliation(s)
| | | | | | - James B Hoying
- Cardiovascular Innovation Institute, Louisville, KY, USA
| | | | - Huey Tien
- Christine M. Kleinert Institute, Louisville, KY, USA
| | | | - Rosemary Ouseph
- Kidney Disease Program, University of Louisville, Louisville, KY, USA
| |
Collapse
|
29
|
Abstract
This article provides an overview of the management of traumatic peripheral nerve injuries. It examines the basic pathophysiology of peripheral nerve injuries, along with the clinical presentation, diagnostic work-up, and treatment options and outcomes for the various classifications of traumatic peripheral nerve injuries.
Collapse
Affiliation(s)
- Matthew T Houdek
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Sönmez E, Siemionow MZ. Nerve Allograft Transplantation. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 25276813 DOI: 10.1155/2014/698256.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery.
Collapse
|
32
|
Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:698256. [PMID: 25276813 PMCID: PMC4167952 DOI: 10.1155/2014/698256] [Citation(s) in RCA: 642] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Abstract
Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery.
Collapse
Affiliation(s)
- D. Grinsell
- Plastic and Reconstructive Surgery Unit, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Melbourne, VIC 3065, Australia
| | - C. P. Keating
- Plastic and Reconstructive Surgery Unit, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Melbourne, VIC 3065, Australia
| |
Collapse
|
33
|
Elliott RM, Tintle SM, Levin LS. Upper extremity transplantation: current concepts and challenges in an emerging field. Curr Rev Musculoskelet Med 2014; 7:83-8. [PMID: 24241894 PMCID: PMC4094126 DOI: 10.1007/s12178-013-9191-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Collapse
Affiliation(s)
- River M. Elliott
- />The Curtis National Hand Center, 3333 North Calvert Street, Baltimore, MD 21209 USA
| | - Scott M. Tintle
- />Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, America Building, 19 2nd Floor, Bethesda, MD 20889-5600 USA
| | - L. Scott Levin
- />Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
34
|
Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013; 5:045007. [PMID: 24192236 DOI: 10.1088/1758-5082/5/4/045007] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rupture of a nerve is a debilitating injury with devastating consequences for the individual's quality of life. The gold standard of repair is the use of an autologous graft to bridge the severed nerve ends. Such repair however involves risks due to secondary surgery at the donor site and may result in morbidity and infection. Thus the clinical approach to repair often involves non-cellular solutions, grafts composed of synthetic or natural materials. Here we report on a novel approach to biofabricate fully biological grafts composed exclusively of cells and cell secreted material. To reproducibly and reliably build such grafts of composite geometry we use bioprinting. We test our grafts in a rat sciatic nerve injury model for both motor and sensory function. In particular we compare the regenerative capacity of the biofabricated grafts with that of autologous grafts and grafts made of hollow collagen tubes by measuring the compound action potential (for motor function) and the change in mean arterial blood pressure as consequence of electrically eliciting the somatic pressor reflex. Our results provide evidence that bioprinting is a promising approach to nerve graft fabrication and as a consequence to nerve regeneration.
Collapse
Affiliation(s)
- Christopher M Owens
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
35
|
Nerve regeneration in rat limb allografts: evaluation of acute rejection rescue. Plast Reconstr Surg 2013; 131:499e-511e. [PMID: 23542267 DOI: 10.1097/prs.0b013e31828275b7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Successful nerve regeneration is critical to the functional success of composite tissue allografts. The present study was designed to characterize the effect of acute rejection on nerve regeneration and functional recovery in the setting of orthotopic limb transplantation. METHODS A rat orthotopic limb transplantation model was used to evaluate the effects of acute rejection on nerve regeneration and motor recovery. Continuous administration of FK506 (full suppression), administration of FK506 for the first 8 of 12 weeks (late rejection), or delayed administration of FK506/dexamethasone following noticeable rejection (early rejection) was used to preclude or induce rejection following limb transplantation. Twelve weeks postoperatively, nerve regeneration was assessed by means of histomorphometric analysis of explanted sciatic nerve, and motor recovery was assessed by means of evoked muscle force measurement in extensor digitorum longus muscle. RESULTS A single episode of acute rejection that occurs immediately or late after reconstruction does not significantly alter the number of regenerating axonal fibers. Acute rejection occurring late after reconstruction adversely affects extensor digitorum longus muscle function in composite tissue allografts. CONCLUSIONS Collected data reinforce that adequate immunosuppressant administration in cases of allogeneic limb transplantation ensures levels of nerve regeneration and motor functional recovery equivalent to that of syngeneic transplants. Prompt rescue following acute rejection was further demonstrated not to significantly affect nerve regeneration and functional recovery postoperatively. However, instances of acute rejection that occur late after reconstruction affect graft function. In total, the present study begins to characterize the effect of immunosuppression regimens on nerve regeneration and motor recovery in the setting of composite tissue allografts.
Collapse
|
36
|
Functional Outcomes following Multiple Acute Rejections in Experimental Vascularized Composite Allotransplantation. Plast Reconstr Surg 2013; 131:720e-730e. [DOI: 10.1097/prs.0b013e3182879e85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
He B, Zhu Q, Chai Y, Ding X, Tang J, Gu L, Xiang J, Yang Y, Zhu J, Liu X. Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold: a prospective, multicentre controlled clinical trial. J Tissue Eng Regen Med 2013; 9:286-95. [PMID: 23436764 DOI: 10.1002/term.1707] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/25/2012] [Accepted: 12/20/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Bo He
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Qingtang Zhu
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Yimin Chai
- Department of Orthopedics Shanghai JiaoTong University Affiliated Sixth People's, Hospital Shanghai China
| | - Xiaoheng Ding
- Department of Hand Surgery, Chinese People's Liberation Army No. 401 Hospital Qingdao China
| | - Juyu Tang
- Department of Orthopedics Xiangya Hospital Central South University Changsha China
| | - Liqiang Gu
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jianping Xiang
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Yuexiong Yang
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jiakai Zhu
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Xiaolin Liu
- Department of Orthopaedic and Microsurgery The First Affiliated Hospital of Sun Yat‐sen University No. 58 Zhongshan Road 2 Guangzhou 510080 China
| |
Collapse
|
38
|
Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012; 4:022001. [PMID: 22406433 DOI: 10.1088/1758-5082/4/2/022001] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts.
Collapse
Affiliation(s)
- Francoise Marga
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sedaghati T, Yang SY, Mosahebi A, Alavijeh MS, Seifalian AM. Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem 2012; 58:288-300. [PMID: 21995532 DOI: 10.1002/bab.51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.
Collapse
Affiliation(s)
- Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
40
|
Glaus SW, Johnson PJ, Mackinnon SE. Clinical strategies to enhance nerve regeneration in composite tissue allotransplantation. Hand Clin 2011; 27:495-509, ix. [PMID: 22051390 PMCID: PMC3212838 DOI: 10.1016/j.hcl.2011.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reinnervation of a hand transplant ultimately dictates functional recovery but provides a significant regenerative challenge. This article highlights interventions to enhance nerve regeneration through acceleration of axonal regeneration or augmentation of Schwann cell support and discuss their relevance to composite tissue allotransplantation. Surgical techniques that may be performed at the time of transplantation to optimize intrinsic muscle recovery--including appropriate alignment of ulnar nerve motor and sensory components, transfer of the distal anterior interosseous nerve to the recurrent motor branch of the median nerve, and prophylactic release of potential nerve entrapment points--are also presented.
Collapse
|
41
|
Abstract
In the past decade, more than 100 different composite tissue allotransplantation (CTA) procedures have been performed around the world including more than 50 hand and 8 facial transplants with encouraging graft survival and excellent functional outcomes. Broader clinical application of CTA, however, continues to be hampered by requirement for long-term, high-dose, multidrug maintenance immunosuppression to prevent graft rejection mediated particularly by composite tissue allograft's highly immunogenic skin component. Medication toxicity could result in severe adverse events including metabolic and infectious complications or malignancy. Notably, unlike in solid organs, clinical success is dictated not only by graft acceptance and survival but also by nerve regeneration, which determines ultimate functional outcomes. Novel strategies such as cellular and biologic therapies that integrate the concepts of immune regulation with those of nerve regeneration have shown promising results in small and large animal models. Clinical translation of these insights to reconstructive transplantation and CTA could further minimize the need of immunosuppression and optimize functional outcomes. This will enable wider application of such treatment options for patients in need of complex reconstructive surgery for congenital deformities or devastating injuries that are not amenable to standard methods of repair.
Collapse
Affiliation(s)
- Gerald Brandacher
- Divison of Plastic and Reconstructive Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
42
|
Zaidi HA, Pendleton C, Pradilla G, Cohen-Gadol AA, Belzberg AJ, Quiñones-Hinojosa A. Harvey Cushing's innovative attempt at xenotransplanting a rabbit spinal cord in a patient after resection of a peripheral nerve tumor in 1902. Neurosurgery 2011; 68:773-8; discussion 778-80. [PMID: 21311303 DOI: 10.1227/neu.0b013e3182077239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE A review of Harvey Cushing's surgical cases at Johns Hopkins Hospital revealed new information about his early work using nerve xenografts to repair peripheral nerve injuries. METHODS The Johns Hopkins Hospital surgical records from 1896 to 1912 were reviewed. A single case in which Cushing used a xenograft to repair a peripheral nerve defect was selected for further study. RESULTS In August 1902, a 23-year-old woman presented with tingling and numbness in her left foot and focal tenderness in the popliteal region. Cushing performed an exploratory operation, revealing an encapsulated tumor originating from the internal popliteal nerve. After resecting the segment of involved nerve, Cushing harvested the spinal cord from a rabbit and used it to span the 18-cm defect. At a 5-month postoperative follow-up, according to Cushing's clinical notes, the patient had partially regained some sensation in her leg and foot. Seven months later, the patient presented with a local tumor recurrence, and her leg was amputated. An examination of the amputated specimen demonstrated that the xenograft was still intact without gross evidence of xenograft rejection. CONCLUSION Despite its questionable functional success, we report a previously unpublished operative case by Harvey Cushing in which a rabbit spinal cord was transplanted into a human to bridge a sciatic nerve gap. This sheds light on the potential for animal tissue as a source for the treatment of neurological disease in humans.
Collapse
Affiliation(s)
- Hasan A Zaidi
- Department of Neurosurgery and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
43
|
Whitlock EL, Myckatyn TM, Tong AY, Yee A, Yan Y, Magill CK, Johnson PJ, Mackinnon SE. Dynamic quantification of host Schwann cell migration into peripheral nerve allografts. Exp Neurol 2010; 225:310-9. [PMID: 20633557 DOI: 10.1016/j.expneurol.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs.
Collapse
Affiliation(s)
- Elizabeth L Whitlock
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mohseni MA, Pour JS, Pour JG. Primary and delayed repair and nerve grafting for treatment of cut median and ulnar nerves. Pak J Biol Sci 2010; 13:287-92. [PMID: 20506716 DOI: 10.3923/pjbs.2010.287.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traumatic cutting of peripheral nerves of median and ulnar in forearm and wrist can cause disablating sensory and motor disorders in patients' hands. We conducted the present study to compare the results of three surgical methods for repair of injured median and ulnar nerves. We studied 85 patients aged 12-59 years (average, 34 +/- 18 years) with 105 cut median and ulnar nerves at forearm and wrist presenting to Tabriz Shohada hospital from 1994 to 2003. The patients followed for 2-10 years. Sixty patients (65 nerves) underwent primary repair, 16 (25 nerves) treated with delayed method and 9 (15 nerves) received nerve graft. Success was obtained in all patients underwent primary repair. The excellent results were common in younger patients. Of 65 nerves (60 patients) repaired by primary method, 25 had excellent result. Of 16 patients 25 nerves (16 patients) underwent delayed repair, 7 was unsuccessful. Of 15 nerves (9 patients) underwent delayed repair, 5 was unsuccessful. It is concluded that the recovery following primary repair was faster than other methods. For reaching excellent results in repairing peripheral nerves, it is important to considering all rules needed for repairing cut peripheral nerves, as well as accurate evaluation and correct repair of injured surrounding soft tissue such as tendons and their synovium and injured vessels.
Collapse
Affiliation(s)
- Mohammad-Ali Mohseni
- Department of Orthopedics, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|