1
|
Zhao Y, Liao LB, Zhu ZW, Zhang LD, Xiong ZD, Song ZP, Yan N, Zhong AW, Zhang J, Zhou CC, Rong J. De novo assembly of a near-complete genome of aquatic vegetable Zizania latifolia in the Yangtze River Basin. Sci Data 2024; 11:1341. [PMID: 39695195 PMCID: PMC11655518 DOI: 10.1038/s41597-024-04220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
The cultivated Zizania latifolia, an aquatic vegetable prevalent in the Yangtze River Basin, represents a unique plant-fungus complex whose domestication is associated with host-parasite co-evolution. In this study, we present a high-quality, chromosome-scale genome assembly of cultivated Z. latifolia. We employed PacBio long-read sequencing and Hi-C technology to generate ~578.42 Mb genome assembly, which contains 47.59% repeat sequences with a contig N50 of ~33.75 Mb. The contigs were successfully clustered into 17 chromosomal-sized scaffolds with a GC content of 43.26%, showing 98.39% completeness in BUSCO analysis. In total, we predicted 39,934 protein-coding genes, 88.79% of which could be functionally annotated. This genome assembly provides a valuable resource for unraveling Z. latifolia's domestication process, and advances our understanding of the evolutionary history and agricultural potential of Z. latifolia.
Collapse
Affiliation(s)
- Yao Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Li-Bing Liao
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Zi-Wei Zhu
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China
| | - Li-Dong Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zi-Dong Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zhi-Ping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, P. R. China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Ai-Wen Zhong
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Jian Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Cheng-Chuan Zhou
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China.
| | - Jun Rong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China.
| |
Collapse
|
2
|
Jiang W, Hu Y, Wu J, Hu J, Tang J, Wang R, Ye Z, Zhang Y. Role of UeMsb2 in Filamentous Growth and Pathogenicity of Ustilago esculenta. J Fungi (Basel) 2024; 10:818. [PMID: 39728314 DOI: 10.3390/jof10120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Ustilago esculenta is a dimorphic fungus that specifically infects Zizania latifolia, causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of U. esculenta is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity. In this study, we cloned the UeMsb2 gene from U. esculenta (GenBank No. MW768949). The open reading frame of UeMsb2 is 3015 bp in length, lacks introns, encodes a 1004-amino-acid protein with a conserved serine-rich domain, and is localized to the vacuole. Expression analysis revealed that UeMsb2 is inducibly expressed during both hyphal growth and infection processes. Deletion of UeMsb2 did not affect haploid morphology or growth rate in vitro but significantly impaired the strain's mating ability, suppressed filamentous growth, slowed host infection progression, and downregulated the expression of b signaling pathway genes associated with pathogenicity. Notably, the deletion of UeMsb2 did not influence the in vitro growth of U. esculenta under hyperosmotic, thermal, or oxidative stress conditions. These findings underscore the critical role of UeMsb2 in regulating the pathogenicity of U. esculenta. This study provides insights into the interaction between U. esculenta and Z. latifolia, particularly the mechanisms that drive host stem swelling.
Collapse
Affiliation(s)
- Wanlong Jiang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yingli Hu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Juncheng Wu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jianglong Hu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jintian Tang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ran Wang
- China National Research Institute of Food and Fermentation Industries, Co., Ltd., Building 6, Yard 24, Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Zihong Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yafen Zhang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Wang S, Na X, Pu M, Song Y, Li J, Li K, Cheng Z, He X, Zhang C, Liang C, Wang X, Bi Y. The monokaryotic filamentous fungus Ustilago sp. HFJ311 promotes plant growth and reduces Cd accumulation by enhancing Fe transportation and auxin biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135423. [PMID: 39106721 DOI: 10.1016/j.jhazmat.2024.135423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 μM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Shengwang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaofan Na
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Meiyun Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yanfang Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Junjie Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Kaile Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhenyu Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoqi He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chuanji Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Cuifang Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Wu W, Han Y, Niu B, Yang B, Liu R, Fang X, Chen H, Xiao S, Farag MA, Zheng S, Xiao J, Chen H, Gao H. Recent advances in Zizania latifolia: A comprehensive review on phytochemical, health benefits and applications that maximize its value. Crit Rev Food Sci Nutr 2024; 64:7535-7549. [PMID: 36908217 DOI: 10.1080/10408398.2023.2186125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baiqi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shangyue Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Shiqi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Li Y, Hu C, Song R, Yin Z, Wang L, Shi L, Li W, Zheng Z, Yang M. The Difference in Diversity between Endophytic Microorganisms in White and Grey Zizania latifolia. J Fungi (Basel) 2023; 9:1067. [PMID: 37998872 PMCID: PMC10672487 DOI: 10.3390/jof9111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The Zizania latifolia is usually infected by the obligate parasitic fungus Ustilago esculenta to form an edible fleshy stem which is an aquatic vegetable called Jiaobai in China. The infection by the teliospore (T) strain of U. esculenta induces Z. latifolia forming gray fleshy stems, while the mycelia-teliospore (MT) strain of U. esculenta induces white fleshy stems which are more suitable for edibility than gray fleshy stems. The mechanism of this phenomenon is still largely unknown. One of the possible causes is the diversity of endophytic microbial communities between these two fleshy stems. Therefore, we utilized fungal ITS1 and bacterial 16S rDNA amplicon sequencing to investigate the diversity of endophytic microbial communities in the two different fleshy stems of Z. latifolia. The results revealed that the α diversity and richness of endophytic fungi in white Z. latifolia were significantly greater than in gray Z. latifolia. The dominant fungal genus in both fleshy stems was U. esculenta, which accounted for over 90% of the endophytic fungi. The community composition of endophytic fungi in gray and white Z. latifolia was different except for U. esculenta, and a negative correlation was observed between U. esculenta and other endophytic fungi. In addition, the dominant bacterial genus in gray Z. latifolia was Alcaligenaceae which is also negatively correlated with other bacterium communities. Additionally, the co-occurrence network of white Z. latifolia was found to have a stronger scale, connectivity, and complexity compared to that of gray Z. latifolia. And the detected beneficial bacteria and pathogens in the stems of Z. latifolia potentially compete for resources. Furthermore, the function of endophytic bacteria is more abundant than endophytic fungi in Z. latifolia. This research investigated the correlation between the development of Z. latifolia fleshy stems and endophytic microbial communities. Our findings indicate that the composition of endophytic microbial communities is closely related to the type of Z. latifolia fleshy stems. This research also suggests the potential utilization of specific microbial communities to enhance the growth and development of Z. latifolia, thereby contributing to the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Cailin Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Zhihui Yin
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Lingyun Wang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Lin Shi
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Zhaisheng Zheng
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| |
Collapse
|
6
|
Li S, Yang M, Yao T, Xia W, Ye Z, Zhang S, Li Y, Zhang Z, Song R. Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant. Front Microbiol 2023; 14:1199907. [PMID: 37555064 PMCID: PMC10405623 DOI: 10.3389/fmicb.2023.1199907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Smut fungi display a uniform life cycle including two phases: a saprophytic phase in vitro and a parasitic phase in host plants. Several apathogenic smut fungi are found, lacking suitable hosts in their habitat. Interestingly, MT-type Ustilago esculenta was found to maintain a parasitic life, lacking the saprophytic phase. Its long period of asexual proliferation in plant tissue results in severe defects in certain functions. In this study, the growth dynamics of U. esculenta in plant tissues were carefully observed. The mycelia of T- and MT-type U. esculenta exhibit rapid growth after karyogamy and aggregate between cells. While T-type U. esculenta successfully forms teliospores after aggregation, the aggregated mycelia of MT-type U. esculenta gradually disappeared after a short period of massive proliferation. It may be resulted by the lack of nutrition such as glucose and sucrose. After overwintering, infected Zizania latifolia plants no longer contained diploid mycelia resulting from karyogamy. This indicated that diploid mycelia failed to survive in plant tissues. It seems that diploid mycelium only serves to generate teliospores. Notably, MT-type U. esculenta keeps the normal function of karyogamy, though it is not necessary for its asexual life in plant tissue. Further investigations are required to uncover the underlying mechanism, which would improve our understanding of the life cycle of smut fungi and help the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Shiyu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shangfa Zhang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zhongjin Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| |
Collapse
|
7
|
Chigira Y, Sasaki N, Komatsu K, Mashimo K, Tanaka S, Numamoto M, Moriyama H, Motobayashi T. Mating Types of Ustilago esculenta Infecting Zizania latifolia Cultivars in Japan Are Biased towards MAT-2 and MAT-3. Microbes Environ 2023; 38:ME23034. [PMID: 37704449 PMCID: PMC10522849 DOI: 10.1264/jsme2.me23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Zizania latifolia cultivars infected by the endophytic fungus Ustilago esculenta develop an edible stem gall. Stem gall development varies among cultivars and individuals and may be affected by the strain of U. esculenta. To isolate haploids from two Z. latifolia cultivars in our paddy fields, Shirakawa and Ittenkou, we herein performed the sporadic isolation of U. esculenta strains from stem gall tissue, a PCR-based assessment of the mating type, and in vitro mating experiments. As a result, we obtained heterogametic strains of MAT-2 and MAT-3 as well as MAT-2, but not MAT-3, haploid strains. Another isolation method, in which we examined poorly growing small clusters of sporidia derived from teliospores, succeeded in isolating a MAT-3 haploid strain. We also identified the mating types of 10 U. esculenta strains collected as genetic resources from different areas in Japan. All strains, except for one MAT-1 haploid strain, were classified as MAT-2 haploid strains or heterogametic strains of MAT-2 and MAT-3. The isolated strains of MAT-1, MAT-2, and MAT-3 mated with each other to produce hyphae. Collectively, these results indicate that the mating types of U. esculenta infecting Z. latifolia cultivars in Japan are biased towards MAT-2 and MAT-3 and that U. esculenta populations in these Japanese cultivars may be characterized by the low isolation efficiency of the MAT-3 haploid.
Collapse
Affiliation(s)
- Yuka Chigira
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Nobumitsu Sasaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kouji Mashimo
- Field Science Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shigeyuki Tanaka
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Minori Numamoto
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Motobayashi
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Transcriptome Comparison between Two Strains of Ustilago esculenta during the Mating. J Fungi (Basel) 2022; 9:jof9010032. [PMID: 36675853 PMCID: PMC9862937 DOI: 10.3390/jof9010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.
Collapse
|
9
|
Li F, Zhang J, Zhong H, Chen J. Germicide Fenaminosulf Promots Gall Formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta. BMC PLANT BIOLOGY 2022; 22:418. [PMID: 36042398 PMCID: PMC9426258 DOI: 10.1186/s12870-022-03803-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Zizania latifolia is a popular aquatic vegetable in China because of its enlarged edible stems resulting from persistent infection by a fungal endophyte, Ustilago esculenta. Fenaminosulf (FM) is a germicide that can be used to improve agricultural crop yields. In Z. latifolia fields, appropriate spraying of FM not just controls diseases, but also promotes an earlier harvest of Z. latifolia. In this study, we show that the timing of gall formation was advanced and the plant's yield was increased significantly under a high concentration treatment of FM. Yet FM had a strong inhibitory effect on the growth of U. esculenta in vitro, while the transcript levels of mating-type alleles, cell metabolism-related genes and chitin synthase genes were all substantially downregulated. Through a transcriptome analysis, we investigated changes in gene expression of the host Z. latifolia and fungal endophyte U. esculenta in response to FM. FM directly affected the growth of Z. latifolia by altering the expression level of genes involved in plant-pathogen interactions, plant hormone signal transduction and some metabolism pathways. By contrast, FM had little effect on U. esculenta growing inside of Z. latifolia. Collectively, our results provide a more in-depth understanding of the molecular processes that promote gall formation in Z. latifolia, while also identifying potential targets for genetic manipulation to improve the yield and quality of Z. latifolia, in a safer and more effective way.
Collapse
Affiliation(s)
- Fang Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Zhong
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Liu R, Wang H, Yang H, Zhang H, Chen J, Gao H, Chen H. Effect of ozone treatment on lignification and postharvest quality of water bamboo shoots. EFOOD 2022. [DOI: 10.1002/efd2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Huizhi Wang
- Zhejiang Agricultural and Rural Big Data Development Center Hangzhou China
| | - Hailong Yang
- School of Life and Environmental Sciences Wenzhou University Wenzhou China
| | - Hanqing Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Jisuan Chen
- Ningbo Haitong Food Group Co., Ltd. Ningbo China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences; Key Laboratory of Post‐Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables China National Light Industry Hangzhou China
| |
Collapse
|
11
|
Xiao Z, Deng J, Zhou X, Zhu L, He X, Zheng J, Guo D, Zhang J. Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China. J Zhejiang Univ Sci B 2022; 23:328-338. [PMID: 35403387 DOI: 10.1631/jzus.b2100682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (β-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (β-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.
Collapse
Affiliation(s)
- Zilan Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianping Deng
- Plant Protection and Plant Inspection Station of Jinyun County, Jinyun 321401, China
| | - Xiaojun Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Liyan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Jingwu Zheng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Deping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. ,
| | - Jingze Zhang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zhang ZP, Song SX, Liu YC, Zhu XR, Jiang YF, Shi LT, Jiang JZ, Miao MM. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. Int J Mol Sci 2021; 22:ijms222212258. [PMID: 34830140 PMCID: PMC8618054 DOI: 10.3390/ijms222212258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Si-Xiao Song
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yan-Cheng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Xin-Rui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yi-Feng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Ling-Tong Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Jie-Zeng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Ma YM, Zhu JZ, Li XG, Wang LL, Zhong J. Identification and First Report of Fusarium andiyazi Causing Sheath Rot of Zizania latifolia in China. PLANTS 2021; 10:plants10091844. [PMID: 34579377 PMCID: PMC8468070 DOI: 10.3390/plants10091844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Zizania latifolia is a perennial plant native to East Asia. The swollen culm of Z. latifolia is a popular vegetable and traditional herbal medicine consumed in China and some other Asian countries. From 2019 to 2021, a sheath rot disease was found in Zhejiang Province of China. Symptoms mainly occurred in the leaf sheath showing as brown necrotic lesions surrounded by yellow halos. The pathogen fungal isolates were isolated from the affected sheaths. Ten representative isolates were selected for morphological and molecular identification by phylogenetic analyses of the translation elongation factor 1-α (TEF1) and the RNA polymerase II subunit beta (RPB2) gene regions. Based on the combined datasets, the fungal isolates were identified as Fusarium andiyazi. Koch’s postulates were confirmed by pathogenicity test, re-isolation and re-identification of the fungal isolates. To the best of our knowledge, this is the first report of sheath rot caused by F. andiyazi in Z. latifolia in China.
Collapse
Affiliation(s)
- Ya-Min Ma
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
- Jinyun Plant Protective Station, Daqiao North Road 290, Lishui 321400, China
| | - Jun-Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
| | - Xiao-Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Nongda Road 1, Changsha 410128, China
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| | - Lai-Liang Wang
- Lishui Institute of Agricultural and Forestry Sciences, Liyang Stress 827, Lishui 323000, China
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (Y.-M.M.); (J.-Z.Z.)
- Correspondence: (X.-G.L.); (L.-L.W.); (J.Z.)
| |
Collapse
|
14
|
Li CX, Shen LR. New observations on the effect of camellia oil on fatty liver disease in rats. J Zhejiang Univ Sci B 2021; 21:657-667. [PMID: 32748581 DOI: 10.1631/jzus.b2000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats' hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.
Collapse
Affiliation(s)
- Chun-Xue Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Li-Rong Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Wang ZH, Yan N, Luo X, Guo SS, Xue SQ, Liu JQ, Zhang SS, Zheng LW, Zhang JZ, Guo DP. Role of Long Noncoding RNAs ZlMSTRG.11348 and UeMSTRG.02678 in Temperature-Dependent Culm Swelling in Zizania latifolia. Int J Mol Sci 2021; 22:ijms22116020. [PMID: 34199611 PMCID: PMC8199642 DOI: 10.3390/ijms22116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host-pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.
Collapse
Affiliation(s)
- Zheng-Hong Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Xi Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Sai-Sai Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shu-Qin Xue
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jiang-Qiong Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shen-Shen Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Li-Wen Zheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jing-Ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| |
Collapse
|
16
|
Li J, Lu Z, Yang Y, Hou J, Yuan L, Chen G, Wang C, Jia S, Feng X, Zhu S. Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:168-185. [PMID: 33400553 DOI: 10.1094/mpmi-05-20-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall-loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra-high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone-cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Zhiyuan Lu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Yang Yang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shaoke Jia
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xuming Feng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
17
|
Zhang Y, Hu Y, Cao Q, Yin Y, Xia W, Cui H, Yu X, Ye Z. Functional Properties of the MAP Kinase UeKpp2 in Ustilago esculenta. Front Microbiol 2020; 11:1053. [PMID: 32582058 PMCID: PMC7295950 DOI: 10.3389/fmicb.2020.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Ustilago esculenta undergoes an endophytic life cycle in Zizania latifolia. It induces the stem of its host to swell, forming the edible galls called jiaobai in China, which are the second most commonly cultivated aquatic vegetable in China. Z. latifolia raised for jiaobai can only reproduce asexually because the U. esculenta infection completely inhibits flowering. The infection and proliferation in the host plants during the formation of edible gall differ from those of conventional pathogens. Previous studies have shown a close relationship between mitogen-activated protein kinase (MAPK) and fungal pathogenesis. In this study, we explored the functional properties of the MAPK UeKpp2. Cross-species complementation assays were carried out, which indicated a functional complementation between the UeKpp2 of U. esculenta and the Kpp2 of Ustilago maydis. Next, UeKpp2 mutants of the UeT14 and the UeT55 sporidia background were generated; these showed an aberrant morphology of budding cells, and attenuated mating and filamentous growth in vitro, in the context of normal pathogenicity. Interestingly, we identified another protein kinase, UeUkc1, which acted downstream of UeKpp2 and may participate in the regulation of cell shape. We also found a defect of filamentous growth in UeKpp2 mutants that was not related to a defect of the induction of mating-type genes but was directly related to a defect in UeRbf1 induction. Overall, our results indicate an important role for UeKpp2 in U. esculenta that is slightly different from those reported for other smut fungi.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yingli Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
18
|
Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microb Pathog 2020; 143:104107. [PMID: 32120003 DOI: 10.1016/j.micpath.2020.104107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Abstract
Ustilago esculenta, a smut fungus, can induce the formation of culm galls in Zizania latifolia, a vegetable consumed in many Asian countries. Specifically, the mycelia-teliospore (M-T) strain of U. esculenta induces the Jiaobai (JB) type of gall, while the teliospore (T) strain induces the Huijiao (HJ) type. The underlying molecular mechanism responsible for the formation of the two distinct types of gall remains unclear. Our results showed that most differentially expressed genes relevant to effector proteins were up-regulated in the T strain compared to those in the M-T strain during gall formation, and the expression of teliospore formation-related genes was higher in the T strain than the M-T strain. Melanin biosynthesis was also clearly induced in the T strain. The T strain exhibited stronger pathogenicity and greater teliospore production than the M-T strain. We evaluated the implications of the gene regulatory networks in the development of these two type of culm gall in Z. latifolia infected with U. esculenta and suggested potential targets for genetic manipulation to modify the gall type for this crop.
Collapse
|
19
|
Zhang Y, Liu H, Cao Q, Ge Q, Cui H, Yu X, Ye Z. Cloning and characterization of the UePrf1 gene in Ustilago esculenta. FEMS Microbiol Lett 2019; 365:4956762. [PMID: 29617942 DOI: 10.1093/femsle/fny081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/12/2022] Open
Abstract
Ustilago esculenta, an obligate parasite of Zizania latifolia, is a typical dimorphic fungus which induces host stem swelling and inhibits host inflorescence development, but is not found in host leaves. Previous studies have shown that dimorphic switching is essential for fungal pathogenicity and is regulated by protein kinase A and mitogen-activated protein kinase (MAPK) signaling pathways that are integrated by Prf1 in Ustilago maydis. In this study we identified a Prf1 homolog in U. esculenta, designated UePrf1, encoding 830 amino acids with a conserved high mobility group domain located between amino acids 124 and 195. UePrf1 was upregulated during the mating process, which induces dimorphism in U. esculenta. In vitro, UePrf1 mutants showed defects in the mating process, including cell fusion and hyphal growth. UePrf1 mutants also show reduced expression of a genes, even during the cell fusion process. Additionally, the defect in hyphal growth of the UeKpp2 and UeKpp6 mutants (MAPK signaling pathway mutants) was partially counteracted by UePrf1 overexpression, along with induced b gene expression. These results provide evidence that UePrf1 is a key factor coordinating dimorphism in U. esculenta and suggest a conserved role for UePrf1 in the regulation of the a and b genes.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Honglei Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
20
|
Tu Z, Yamada S, Hu D, Ito Y, Iwasaki T, Yamaguchi A. Microbial Diversity in the Edible Gall on White Bamboo Formed by the Interaction between Ustilago esculenta and Zizania latifolia. Curr Microbiol 2019; 76:824-834. [PMID: 31020346 DOI: 10.1007/s00284-019-01693-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022]
Abstract
An edible gall is formed between the third and fourth nodes beneath the apical meristem near the base of Zizania latifolia shoots. This gall is harbored by and interacts with the smut fungus Ustilago esculenta. The gall is also a valuable vegetable called "white bamboo," jiaobai or gausun in China and makomotake in Japan. Five samples of the galls harvested at different stages of swelling were used to isolate microorganisms by culturing. Isolated fungal and bacterial colonies were identified by DNA sequencing and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, respectively. Several strains of U. esculenta as well as 6 other species of fungi and 10 species of bacteria were isolated. The microbiome was also evaluated by simple and outlined DNA profiling with automated rRNA intergenic spacer analysis (ARISA), and the amount of DNA of U. esculenta was determined by qPCR. At least 16 species of fungi and 40 species of bacteria were confirmed by ARISA of the overall sample. Interestingly, the greatest bacterial diversity, i.e., 18 species, was observed in the most mature sample, whereas the fungal diversity observed in this sample, i.e., 4 species, was rather poor. Based on qPCR, U. esculenta occurred in samples from all stages; however, the abundance of U. esculenta exhibited unique U-shaped relationships with growth. These results may explain why the interaction between U. esculenta and Z. latifolia also influences the unique microbial diversity observed throughout the growth stages of the swollen shoot, although the limited sample size does not allow conclusive findings.
Collapse
Affiliation(s)
- Zhihao Tu
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Sayumi Yamada
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Dagula Hu
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Yoshitada Ito
- Ito Farm, Ogohara 595-1, Komono-cho, Mie, 510-1222, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Akihiro Yamaguchi
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan.
| |
Collapse
|
21
|
Liang SW, Huang YH, Chiu JY, Tseng HW, Huang JH, Shen WC. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb. Fungal Genet Biol 2019; 126:61-74. [PMID: 30794950 DOI: 10.1016/j.fgb.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 11/29/2022]
Abstract
Zizania latifolia Turcz., which is mainly distributed in Asia, has had a long cultivation history as a cereal and vegetable crop. On infection with the smut fungus Ustilago esculenta, Z. latifolia becomes an edible vegetable, water bamboo. Two main cultivars, with a green shell and red shell, are cultivated for commercial production in Taiwan. Previous studies indicated that cultivars of Z. latifolia may be related to the infected U. esculenta isolates. However, related research is limited. The infection process of the corn smut fungus Ustilago maydis is coupled with sexual development and under control of the mating type locus. Thus, we aimed to use the knowledge of U. maydis to reveal the mating system of U. esculenta. We collected water bamboo samples and isolated 145 U. esculenta strains from Taiwan's major production areas. By using PCR and idiomorph screening among meiotic offspring and field isolates, we identified three idiomorphs of the mating type locus and found no sequence recombination between them. Whole-genome sequencing (Illumina and PacBio) suggested that the mating system of U. esculenta was bipolar. Mating type locus 1 (MAT-1) was 552,895 bp and contained 44% repeated sequences. Sequence comparison revealed that U. esculenta MAT-1 shared high gene synteny with Sporisorium reilianum and many repeats with Ustilago hordei MAT-1. These results can be utilized to further explore the genomic diversity of U. esculenta isolates and their application for water bamboo breeding.
Collapse
Affiliation(s)
- Syun-Wun Liang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan, ROC; Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jian-Ying Chiu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Hsin-Wan Tseng
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Jin-Hsing Huang
- Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung 41362, Taiwan, ROC
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
22
|
Zhang Y, Yin Y, Hu P, Yu J, Xia W, Ge Q, Cao Q, Cui H, Yu X, Ye Z. Mating-type loci of Ustilago esculenta are essential for mating and development. Fungal Genet Biol 2019; 125:60-70. [PMID: 30685508 DOI: 10.1016/j.fgb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/19/2022]
Abstract
Ustilago esculenta is closely related to the smut fungus Ustilago maydis and, in an endophytic-like life in the plant Zizania latifolia, only infects host stems and causes swollen stems to form edible galls called Jiaobai in China. In order to study its different modes of invasion and sites of symptom development from other smut fungi at the molecular level, we first characterized the a and b mating-type loci of U. esculenta. The a loci contained three a mating-type alleles, encoding two pheromones and one pheromone receptor per allele. The pheromone/receptor system controlled the conjugation formation, the initial step of mating, in which each pheromone was specific for recognition by only one mating partner. In addition, there are at least three b alleles identified in U. esculenta, encoding two subunits of heterodimeric homeodomain transcription factors bE and bW, responsible for hyphal growth and invasiveness. Hyphal formation, elongation and invasion after mating of two compatible partners occurred, only when a heterodimer complex was formed by the bE and bW proteins derived from different alleles. We also demonstrated that even with only one paired pheromone-pheromone receptor, the active b locus heterodimer triggered hyphal growth and infection.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiajia Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
23
|
Zhao Y, Song Z, Zhong L, Li Q, Chen J, Rong J. Inferring the Origin of Cultivated Zizania latifolia, an Aquatic Vegetable of a Plant-Fungus Complex in the Yangtze River Basin. FRONTIERS IN PLANT SCIENCE 2019; 10:1406. [PMID: 31787995 PMCID: PMC6856052 DOI: 10.3389/fpls.2019.01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/10/2019] [Indexed: 05/10/2023]
Abstract
Crop domestication is one of the essential topics in evolutionary biology. Cultivated Zizania latifolia, domesticated as the special form of a plant-fungus (the host Zizania latifolia and the endophyte Ustilago esculenta) complex, is a popular aquatic vegetable endemic in East Asia. The rapid domestication of cultivated Z. latifolia can be traced in the historical literature but still need more evidence. This study focused on deciphering the genetic relationship between wild and cultivated Z. latifolia, as well as the corresponding parasitic U. esculenta. Twelve microsatellites markers were used to study the genetic variations of 32 wild populations and 135 landraces of Z. latifolia. Model simulations based on approximate Bayesian computation (ABC) were then performed to hierarchically infer the population history. We also analyzed the ITS sequences of the smut fungus U. esculenta to reveal its genetic structure. Our results indicated a significant genetic divergence between cultivated Z. latifolia and its wild ancestors. The wild Z. latifolia populations showed significant hierarchical genetic subdivisions, which may be attributed to the joint effect of isolation by distance and hydrological unconnectedness between watersheds. Cultivated Z. latifolia was supposedly domesticated once in the low reaches of the Yangtze River. The genetic structure of U. esculenta also indicated a single domestication event, and the genetic variations in this fungus might be associated with the diversification of cultivars. These findings provided molecular evidence in accordance with the historical literature that addressed the domestication of cultivated Z. latifolia involved adaptive evolution driven by artificial selection in both the plant and fungus.
Collapse
Affiliation(s)
- Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Zhiping Song
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Lan Zhong
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, China
| | - Qin Li
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jiakuan Chen
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Jun Rong,
| |
Collapse
|
24
|
Jose RC, Bengyella L, Handique PJ, Talukdar NC. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Microb Pathog 2018; 126:79-84. [PMID: 30367966 DOI: 10.1016/j.micpath.2018.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The perennial wild rice Zizania latifolia is confined in the swampy habitat and wetland of the Indo-Burma biodiversity hotspot of India and infection by the biotrophic fungus Ustilago esculenta is hallmarked by swellings that develop to form localized smut-gall at the topmost internodal region. The cellular and proteomic events involved in the non-systemic colonization of Z. latifolia by U. esculenta leading to smut-gall formation is poorly understood. Proteins were extracted from the smut-gall region at the topmost internodal region below the apical meristematic tissue from the infected and uninfected parts of Z. latifolia. By combining transmission electron microscopy (TEM) and fluorescent microscopy (FM), we showed that U. esculenta hyphal morphological transitions and movement occurred both intercellularly and intracellularly while sporulation occurred intracellularly in selective cells. Following proteome profiling using two dimensional SDS-PAGE at different phenological phases of smut-gall development and U. esculenta infection, differentially expressed proteins bands and their relative abundance were detected and subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Importantly, the fungus explores at least 7 metabolic pathways and 5 major biological processes to subdue the host defense and thrive successfully on Z. latifolia. The fungus U. esculenta produces proteases and energy acquisition proteins those enhance it's defensive and survival mode in the host. The identified differentially regulated proteins shed-light into why inflorescence is being replaced by bulbous smut-gall at late stages of the disease, as well as the development of resistance in some Z. latifolia plants against U. esculenta infection.
Collapse
Affiliation(s)
- Robinson C Jose
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India; Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India; Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| | - Louis Bengyella
- Tree Fruit Research and Extension Center (TFREC), College of Agricultural, Human and Natural Resource Sciences (CAHNRS), Washington State University, USA; Department of Biological Control, Advanced Biotech Cooperative, Cameroon
| | - Pratap J Handique
- Department of Biotechnology, Guwahati University, Guwahati, 781014, Assam, India
| | - Narayan C Talukdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
25
|
Zhang Y, Ge Q, Cao Q, Cui H, Hu P, Yu X, Ye Z. Cloning and Characterization of Two MAPK Genes UeKpp2 and UeKpp6 in Ustilago esculenta. Curr Microbiol 2018; 75:1016-1024. [PMID: 29594403 PMCID: PMC6018589 DOI: 10.1007/s00284-018-1483-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/24/2018] [Indexed: 02/03/2023]
Abstract
Ustilago esculenta, resembling a fungal endophyte in Zizania latifolia, inhibits the host plant flowering and induces the host stems to swell and form edible galls. It is well believed that when and how the fungus infects and proliferates in the host plants during the host development is of importance in the edible gall formation. Mitogen-activated protein kinases (MAPKs) have been found to play an important role in sensing environment cues and regulating infection. Two MAPK genes UeKpp2 and UeKpp6 from U. esculenta were cloned and suggested to be involved in the Fus3/Kss1 pathway by a phylogenetic analysis with the neighbor-joining method. Quantitative RT-PCR (qRT-PCR) analyses indicated that expression of UeKpp2 and UeKpp6 were induced during mating and infection processes, and their expression patterns displayed differentially under different carbon and nitrogen sources. In addition, subcellular localization of UeKpp2 or UeKpp6 fused with the reporter green fluoresce protein was observed by confocal laser scanning microscope, and yeast two-hybrid assays were carried out. Results showed that both UeKpp2 and UeKpp6 were located in cytoplasm and interacted with UePrf1, indicating their involvement in hyphal growth and host-pathogen regulation. Only UeKpp2 but not UeKpp6 interacted with the upstream MAPK kinase UeFuz7, implying an additional MAPK pathway, in which UeKpp6 involved, existed.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
26
|
Yan N, Du Y, Liu X, Chu C, Shi J, Zhang H, Liu Y, Zhang Z. Morphological Characteristics, Nutrients, and Bioactive Compounds of Zizania latifolia, and Health Benefits of Its Seeds. Molecules 2018; 23:E1561. [PMID: 29958396 PMCID: PMC6100627 DOI: 10.3390/molecules23071561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Zizania latifolia (tribe Oryzeae Dum., subfamily Oryzoideae Care, family Gramineae) is native to East Asian countries. The seeds of Z. latifolia (Chinese wild rice) have been consumed as a cereal in China for >3000 years. Z. latifolia forms swollen culms when infected with Ustilago esculenta, which is the second most-cultivated aquatic vegetable in China. The current review summarizes the nutrients and bioactive compounds of Z. latifolia, and health benefits of its seeds. The seeds of Z. latifolia contain proteins, minerals, vitamins, and bioactive compounds, the activities of which—for example, antioxidant activity—have been characterized. Various health benefits are associated with their consumption, such as alleviation of insulin resistance and lipotoxicity, and protection against cardiovascular disease. Chinese wild rice may be used to prevent and treat metabolic disease, such as diabetes, obesity, and cardiovascular diseases. Various compounds were isolated from the swollen culm, and aerial parts of Z. latifolia. The former suppresses osteoclast formation, inhibits growth of rat glioma cells, and may act as antioxidants and immunomodulators in drugs or foods. The latter exerts anti-fatigue, anti-inflammatory, and anti-allergic effects. Thus, Z. latifolia may be used to produce nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
27
|
Zhang Y, Cao Q, Hu P, Cui H, Yu X, Ye Z. Investigation on the differentiation of two Ustilago esculenta strains - implications of a relationship with the host phenotypes appearing in the fields. BMC Microbiol 2017; 17:228. [PMID: 29212471 PMCID: PMC5719756 DOI: 10.1186/s12866-017-1138-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ustilago esculenta, a pathogenic basidiomycete fungus, infects Zizania latifolia to form edible galls named Jiaobai in China. The distinct growth conditions of U. esculenta induced Z. latifolia to form three different phenotypes, named male Jiaobai, grey Jiaobai and white Jiaobai. The aim of this study is to characterize the genetic and morphological differences that distinguish the two U. esculenta strains. RESULTS In this study, sexually compatible haploid sporidia UeT14/UeT55 from grey Jiaobai (T strains) and UeMT10/UeMT46 from white Jiaobai (MT strains) were isolated. Meanwhile, we successfully established mating and inoculation assays. Great differences were observed between the T and MT strains. First, the MT strains had a defect in development, including lower teliospore formation frequency and germination rate, a slower growth rate and a lower growth mass. Second, they differed in the assimilation of nitrogen sources in that the T strains preferred urea and the MT strains preferred arginine. In addition, the MT strains were more sensitive to external signals, including pH and oxidative stress. Third, the MT strains showed an infection defect, resulting in an endophytic life in the host. This was in accordance with multiple mutated pathogenic genes discovered in the MT strains by the non-synonymous mutation analysis of the genome re-sequencing data between the MT and T strains (GenBank accession numbers of the genome re-sequencing data: JTLW00000000 for MT strains and SRR5889164 for T strains). CONCLUSION The MT strains appeared to have defects in growth and infection and were more sensitive to external signals compared to the T strains. They displayed an absolutely stable endophytic life in the host without an infection cycle. Accordingly, they had multiple gene mutations occurring, especially in pathogenicity. In contrast, the T strains, as phytopathogens, had a complete survival life cycle, in which the formation of teliospores is important for adaption and infection, leading to the appearance of the grey phenotype. Further studies elucidating the molecular differences between the U. esculenta strains causing differential host phenotypes will help to improve the production and formation of edible white galls.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
28
|
Wang ZD, Yan N, Wang ZH, Zhang XH, Zhang JZ, Xue HM, Wang LX, Zhan Q, Xu YP, Guo DP. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. PLANT MOLECULAR BIOLOGY 2017; 95:533-547. [PMID: 29076026 DOI: 10.1007/s11103-017-0658-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/31/2017] [Indexed: 05/21/2023]
Abstract
We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at -7, 1 and 10 DAS of culm gall development were analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield of this crop.
Collapse
Affiliation(s)
- Zhi-Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ning Yan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zheng-Hong Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Huan Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing-Ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Min Xue
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Li-Xia Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ping Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Jose RC, Goyari S, Louis B, Waikhom SD, Handique PJ, Talukdar NC. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Microb Pathog 2016; 98:6-15. [DOI: 10.1016/j.micpath.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
|
30
|
Guo L, Qiu J, Han Z, Ye Z, Chen C, Liu C, Xin X, Ye CY, Wang YY, Xie H, Wang Y, Bao J, Tang S, Xu J, Gui Y, Fu F, Wang W, Zhang X, Zhu Q, Guang X, Wang C, Cui H, Cai D, Ge S, Tuskan GA, Yang X, Qian Q, He SY, Wang J, Zhou XP, Fan L. A host plant genome (Zizania latifolia) after a century-long endophyte infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:600-609. [PMID: 26072920 DOI: 10.1111/tpj.12912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Despite the importance of host-microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. The vegetable crop 'Jiaobai' with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia-endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has a significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant-pathogen interaction pathway in Jiaobai. These results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jie Qiu
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | - Zihong Ye
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiufang Xin
- Howard Hughes Medical Institute, Department of Energy Plant Research Laboratory, and Department of Plant Biology, Michigan State University, East Lansing, MI, 48864, USA
| | - Chu-Yu Ye
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | - Yu Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Jiandong Bao
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - She Tang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Yijie Gui
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Fei Fu
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Weidi Wang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | - Xingchen Zhang
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | - Haifeng Cui
- College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts-University of Kiel, D-24118, Kiel, Germany
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Sheng Yang He
- Howard Hughes Medical Institute, Department of Energy Plant Research Laboratory, and Department of Plant Biology, Michigan State University, East Lansing, MI, 48864, USA
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xue-Ping Zhou
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310058, China
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 2014; 9:e114196. [PMID: 25464336 PMCID: PMC4252105 DOI: 10.1371/journal.pone.0114196] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Wei-Ta Fang
- Graduate Institute of Environmental Education, National Taiwan Normal University, Taipei 116, Taiwan, R.O.C
| | - Li-Ying Shin
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
32
|
Zhang JZ, Guan PG, Tao G, Ojaghian MR, Hyde KD. Ultrastructure and phylogeny of Ustilago coicis. J Zhejiang Univ Sci B 2013; 14:336-45. [PMID: 23549851 DOI: 10.1631/jzus.b1200239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town, Jinyun County, Zhejiang Province of China. In this paper, ultrastructural assessments on fungus-host interactions and teliospore development are presented, and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon. Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction, and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane. Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium. In addition, internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U. coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae).
Collapse
Affiliation(s)
- Jing-ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|