1
|
Liao X, Zhang Y, Xu J, Yin J, Li S, Dong K, Shi X, Xu W, Ma D, Chen X, Yu X, Yang Y. A Narrative Review on Cognitive Impairment in Type 2 Diabetes: Global Trends and Diagnostic Approaches. Biomedicines 2025; 13:473. [PMID: 40002886 PMCID: PMC11852642 DOI: 10.3390/biomedicines13020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetes is a chronic disease that affects many people, with both its incidence and prevalence rising globally. Diabetes can lead to various complications, among which cognitive impairment in diabetic patients significantly impacts their daily life and blood glucose management, complicating treatment and worsening prognosis. Therefore, the early diagnosis and treatment of cognitive impairment are essential to ensure the health of diabetic patients. However, there is currently no widely accepted and effective method for the early diagnosis of diabetes-related cognitive impairment. This review aims to summarize potential screening and diagnostic methods, as well as biomarkers, for cognitive impairment in diabetes, including retinal structure and function examination, brain imaging, and peripheral blood biomarkers, providing valuable information and support for clinical decision making and future research.
Collapse
Affiliation(s)
- Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xi Chen
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
2
|
Yitao L, Lv Z, Xin W, Yongchen F, Ying W. Dynamic brain functional states associated with inhibition control under different altitudes. Cogn Neurodyn 2024; 18:1931-1941. [PMID: 39104701 PMCID: PMC11297874 DOI: 10.1007/s11571-023-10054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 11/04/2023] [Indexed: 08/07/2024] Open
Abstract
Chronic exposure to the hypobaric hypoxia environment of plateau could influence human cognitive behaviours which are supported by dynamic brain connectivity states. Until now, how functional connectivity (FC) of the brain network changes with altitudes is still unclear. In this article, we used EEG data of the Go/NoGo paradigm from Weinan (347 m) and Nyingchi (2950 m). A combination of dynamic FC (dFC) and the K-means cluster was employed to extract dynamic FC states which were later distinguished by graph metrics. Besides, temporal properties of networks such as fractional windows (FW), transition numbers (TN) and mean dwell time (MDT) were calculated. Finally, we successfully extracted two different states from dFC matrices where State 1 was verified to have higher functional integration and segregation. The dFC states dynamically switched during the Go/NoGo tasks and the FW of State 1 showed a rise in the high-altitude participants. Also, in the regional analysis, we found higher state deviation in the fronto-parietal cortices and enhanced FC strength in the occipital lobe. These results demonstrated that long-term exposure to the high-altitude environment could lead brain networks to reorganize as networks with higher inter- and intra-networks information transfer efficiency, which could be attributed to a compensatory mechanism to the compromised brain function due to the plateau environment. This study provides a new perspective in considering how the plateau impacted cognitive impairment.
Collapse
Affiliation(s)
- Lin Yitao
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhou Lv
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wei Xin
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Fan Yongchen
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wu Ying
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
3
|
Zhou M, Liu X, Wu Y, Xiang Q, Yu R. Liver Lipidomics Analysis Revealed the Protective mechanism of Zuogui Jiangtang Qinggan Formula in type 2 diabetes mellitus with non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118160. [PMID: 38588985 DOI: 10.1016/j.jep.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.
Collapse
Affiliation(s)
- Min Zhou
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China
| | - Xiu Liu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Yongjun Wu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Qin Xiang
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| |
Collapse
|