1
|
Li Q, Liu L, Liu Y, Zheng T, Chen N, Du P, Ye H. Exploration of key genes associated with oxidative stress in polycystic ovary syndrome and experimental validation. Front Med (Lausanne) 2025; 12:1493771. [PMID: 40083347 PMCID: PMC11904916 DOI: 10.3389/fmed.2025.1493771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction The current study demonstrated that oxidative stress (OS) is closely related to the pathogenesis of polycystic ovary syndrome (PCOS). However, there are numerous factors that lead to OS, therefore, identifying the key genes associated with PCOS that contribute to OS is crucial for elucidating the pathogenesis of PCOS and selecting appropriate treatment strategies. Methods Four datasets (GSE95728, GSE106724, GSE138572, and GSE145296) were downloaded from the gene expression omnibus (GEO) database. GSE95728 and GSE106724 were combined to identify differentially expressed genes (DEGs) in PCOS. weighted gene correlation network analysis (WGCNA) was used to screen key module genes associated with PCOS. Differentially expressed OS related genes (DE-OSRGs) associated with PCOS were obtained by overlapping DEGs, key module genes, and OSRGs. Subsequently, the optimal machine model was obtained to identify key genes by comparing the performance of the random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM). The molecular networks were constructed to reveal the non-coding regulatory mechanisms of key genes based on GSE138572 and GSE145296. The Drug-Gene Interaction Database (DGIdb) was used to predict the potential therapeutic agents of key genes for PCOS. Finally, the expression of key OSRGs was validated by RT-PCR. Results In this study, 8 DE-OSRGs were identified. Based on the residuals and root mean square error of the three models, the best performance of RF was derived and 7 key genes (TNFSF10, CBL, IFNG, CP, CASP8, APOA1, and DDIT3) were identified. The GSEA enrichment analysis revealed that TNFSF10, CP, DDIT3, and INFG are all enriched in the NOD-like receptor signaling pathway and natural killer cell-mediated cytotoxicity pathways. The molecular regulatory network uncovered that both TNFSF10 and CBL are regulated by non-coding RNAs. Additionally, 70 potential therapeutic drugs for PCOS were predicted, with ibuprofen associated with DDIT3 and IFNG. RT-qPCR validation confirmed the expression trends of key genes IFNG, DDIT3, and APOA1 were consistent with the dataset, and the observed differences were statistically significant (P < 0.05). Conclusion The identification of seven key genes and molecular regulatory networks through bioinformatics analysis is of great significance for exploring the pathogenesis and therapeutic strategies of PCOS.
Collapse
Affiliation(s)
- Qinhua Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Lei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yuhan Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- China Three Gorges University, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tingting Zheng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Ningjing Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Peiyao Du
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Hong Ye
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Wyse BA, Salehi R, Russell SJ, Sangaralingam M, Jahangiri S, Tsang BK, Librach CL. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front Endocrinol (Lausanne) 2023; 14:1205385. [PMID: 37404312 PMCID: PMC10315679 DOI: 10.3389/fendo.2023.1205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The ovarian follicle consists of the oocyte, somatic cells, and follicular fluid (FF). Proper signalling between these compartments is required for optimal folliculogenesis. The association between polycystic ovarian syndrome (PCOS) and extracellular vesicular small non-coding RNAs (snRNAs) signatures in follicular fluid (FF) and how this relates to adiposity is unknown. The purpose of this study was to determine whether FF extracellular vesicle (FFEV)-derived snRNAs are differentially expressed (DE) between PCOS and non-PCOS subjects; and if these differences are vesicle-specific and/or adiposity-dependent. Methods FF and granulosa cells (GC) were collected from 35 patients matched by demographic and stimulation parameters. FFEVs were isolated and snRNA libraries were constructed, sequenced, and analyzed. Results miRNAs were the most abundant biotype present, with specific enrichment in exosomes (EX), whereas in GCs long non-coding RNAs were the most abundant biotype. In obese PCOS vs. lean PCOS, pathway analysis revealed target genes involved in cell survival and apoptosis, leukocyte differentiation and migration, JAK/STAT, and MAPK signalling. In obese PCOS FFEVs were selectively enriched (FFEVs vs. GCs) for miRNAs targeting p53 signalling, cell survival and apoptosis, FOXO, Hippo, TNF, and MAPK signalling. Discussion We provide comprehensive profiling of snRNAs in FFEVs and GCs of PCOS and non-PCOS patients, highlighting the effect of adiposity on these findings. We hypothesize that the selective packaging and release of miRNAs specifically targeting anti-apoptotic genes into the FF may be an attempt by the follicle to reduce the apoptotic pressure of the GCs and stave off premature apoptosis of the follicle observed in PCOS.
Collapse
Affiliation(s)
- Brandon A. Wyse
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
| | - Reza Salehi
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Sahar Jahangiri
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- Research Department, CReATe Fertility Centre, Toronto, ON, Canada
- CReATe Biobank, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
3
|
Qiu X, Wei Y, Liu C, Ding C, Zhao S. Hyperandrogen enhances apoptosis of human ovarian granulosa cells via up-regulation and demethylation of PDCD4. Gynecol Endocrinol 2020; 36:333-337. [PMID: 31423917 DOI: 10.1080/09513590.2019.1653844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Apoptosis of granulosa cells (GCs) induced by hyperandrogen plays a key role in the pathogenesis of polycystic ovary syndrome (PCOS). However, the mechanism of androgen-induced apoptosis of GCs has not been clarified to date. Recent studies have reported that PDCD4 expression is higher in PCOS patients and might be a key factor in PCOS progression. In this study, we aimed to investigate the role of PDCD4 in regulating apoptosis of human GCs and whether hyperandrogen regulate PDCD4 expression through DNA methylation. Overexpression of PDCD4 in human ovarian granulosa cell line KGN cells promoted cells apoptosis. Meanwhile, expression of caspase-3 and caspase-9 were significantly elevated. High concentration of testosterone treatment resulted in up-regulation of PDCD4 and a significant increase of apoptosis in KGN cells. In addition, knockdown of PDCD4 in KGN cells treated with high concentration of testosterone abolished the hyperandrogen-induced apoptosis. Furthermore, high concentration of testosterone down-regulated DNMT1, DNMT3A and DNMT3B expression and the methylation level in the promoter region of PDCD4 was decreased. In conclusion, PDCD4 can promote apoptosis of human ovarian GCs. The mechanism of hyperandrogen-induced apoptosis may be mediated by PDCD4. Furthermore, the up-regulation of PDCD4 induced by hyperandrogen may through demethylation of its promoter regions.
Collapse
Affiliation(s)
- Xuemei Qiu
- Department of Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Youhua Wei
- Medical Heredity and Prenatal Screening Department, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Chengwen Liu
- Department of Obstetrics and Gynecology, Zaozhuang Maternal and Child Health Hospital, Zaozhuang, China
| | - Chen Ding
- Department of Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Shuqin Zhao
- Department of Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| |
Collapse
|
4
|
Mao Z, Fan L, Yu Q, Luo S, Wu X, Tang J, Kang G, Tang L. Abnormality of Klotho Signaling Is Involved in Polycystic Ovary Syndrome. Reprod Sci 2017; 25:372-383. [PMID: 28673204 DOI: 10.1177/1933719117715129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study investigated the involvement of the klotho-associated signaling in the apoptosis of granulosa cells (GCs) from the ovaries of patients with polycystic ovary syndrome (PCOS) and PCOS animals. Primary GCs were obtained from 26 healthy women and 43 women with PCOS. The PCOS animal model was established by the injection of dehydroepiandrosterone (DHEA). Klotho protein and associated microRNA expression in human primary GCs and rats' ovarian tissues were measured by Western blot and real-time polymerase chain reaction, respectively. Results showed that significantly lower miR-126-5p and miR-29a-5p microRNA expressions, higher klotho protein expression, lower insulin growth factor 1 (IGF-1R) and Wnt family member 1 (Wnt1) protein expressions, and lower Akt phosphorylation at Ser473 and Thr308 residues were observed in the GCs from patients with PCOS and the ovarian tissues of PCOS rats compared to that in GCs from healthy women and ovarian tissues of normal control rats, respectively. Knockdown of klotho gene expression normalized IGF-1R and Wnt1 protein expressions and Akt phosphorylation in GCs from patients with PCOS and the ovarian tissues from PCOS rats; it also blocked the effects of insulin on apoptosis and proliferation in GCs from patients with PCOS and inhibited caspase-3 activity in ovarian tissues of PCOS rats. Knockdown of klotho gene expression increased the pregnancy rate in DHEA-treated female rats and increased the body weight of their newborns through normalizing the ovarian function and decreasing the formation of cystic follicles. In conclusion, the miR-126-5p, miR-29a-5p/klotho/insulin-IGF-1, Wnt, and Akt signal pathway may be involved in the apoptosis of GCs and subsequent development of PCOS.
Collapse
Affiliation(s)
- Zenghui Mao
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Liqing Fan
- 2 Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, Hunan, People's Republic of China
| | - Qiao Yu
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Shuwei Luo
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Xianling Wu
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Jun Tang
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Gehua Kang
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Le Tang
- 1 Reproductive Medicine Center, Reproductive Medicine Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| |
Collapse
|
5
|
Altered FoxO3 expression and apoptosis in granulosa cells of women with polycystic ovary syndrome. Arch Gynecol Obstet 2016; 294:185-92. [PMID: 26993517 DOI: 10.1007/s00404-016-4068-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To determine the level of apoptosis, and alteration of FoxO3 (forkhead box O3 transcription factor) expression and phosphorylation in human granulosa cells amongst polycystic ovary syndrome (PCOS) patients and control group. METHODS We recruited infertile women with PCOS (n = 14) and compared them with infertile women due to tubal blockage or male factor infertility (n = 14, controls). GnRH agonist and gonadotropins were used for ovarian stimulation. Follicular fluids from large follicles (>16 mm) were pooled and granulosa cells (GCs) were isolated using cell strainer methodology. Apoptosis of purified GCs was measured by flow cytometry using Annexin V and propidium iodide. Quantitative real-time PCR and western blotting were performed to assess alteration of FoxO3 expression and phosphorylation in GCs. RESULTS There were higher percentages of early and late apoptosis in GCs of PCOS patients than in the control group. FoxO3 mRNA level and total FoxO3 protein were significantly higher in PCOS group than in the control group. The ratio of p-FoxO3/total FoxO3 decreased significantly in PCOS than in the control group. It was inferred that unphosphorylated (active form) FoxO3 was higher in GCs of PCOS patients. Apoptosis was significantly and positively correlated with the total FoxO3 and negatively correlated with the p-FoxO3 protein levels in PCOS patients. CONCLUSIONS Activation and overexpression of FoxO3 in granulosa cells of PCOS women correlated with higher apoptosis levels in these cells suggesting that FoxO3 may be a candidate for the higher apoptosis in granulosa cells from women with PCOS.
Collapse
|
6
|
The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res 2015; 363:589-97. [PMID: 26022337 DOI: 10.1007/s00441-015-2212-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction.
Collapse
|
7
|
Yang Y, Sun M, Shan Y, Zheng X, Ma H, Ma W, Wang Z, Pei X, Wang Y. Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. Reprod Sci 2015; 22:572-84. [PMID: 25332219 PMCID: PMC4519763 DOI: 10.1177/1933719114553445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endoplasmic reticulum stress (ERS), which is a novel pathway of regulating cellular apoptosis and the function of ERS during corpus luteum (CL) regression, is explored. Early-luteal stage (day 2), mid-luteal stage (day 7), and late-luteal stage (day 14 and 20) were induced, and the apoptosis of luteal cells was detected by a terminal 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) assay. The apoptotic cells were increased with the regression of CL, especially during the late-luteal stage. The ERS markers glucose-regulated protein 78 (Grp78), CCAAT/enhancer-binding protein homologous protein (CHOP), X-box binding protein 1 (XBP1), activating transcription factor 6α (ATF6α), eukaryotic initiation factor 2α (eIF2α), inositol-requiring protein 1α (IRE1α), caspase 12, and apoptosis marker caspase 3 were analyzed by real-time polymerase chain reaction (PCR) and immunohistochemistry, in agreement with the results of the TUNEL assay; the expression levels of CHOP, caspase 12, and caspase 3 were increased during the process of CL regression. Luteal cells were isolated and cultured in vitro, and the apoptosis of luteal cells was induced by prostaglandin F2α. The ERS was attenuated by the ERS inhibitor tauroursodeoxycholic acid, and the apoptotic rate was analyzed by flow cytometry. The ERS markers Grp78, CHOP, XBP1s, ATF6α, eIF2α, IRE1α, caspase 12, and apoptotic execute marker caspase 3 were analyzed by real-time PCR and immunofluorescence, and the results suggested that the expression of CHOP, caspase 12, and caspase 3 were increased, and there was increased apoptosis of luteal cells. But the expression of IRE1α/XBP1s and eIF2α was not detected. Taken together, the ERS is involved in the CL regression of rats through the CHOP and caspase 12 pathway.
Collapse
Affiliation(s)
- Yanzhou Yang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Miao Sun
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Yuanyuan Shan
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Xiaomin Zheng
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Huiming Ma
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Wenzhi Ma
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Zhisheng Wang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Xiuying Pei
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Yanrong Wang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| |
Collapse
|
8
|
Ni XR, Sun ZJ, Hu GH, Wang RH. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular HMGB1. Reprod Sci 2014; 22:271-7. [PMID: 25228632 DOI: 10.1177/1933719114549852] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. Insulin resistance/hyperinsulinemia is a prevalent finding in women with PCOS, which indicates that insulin resistance/hyperinsulinemia may be an important player in the pathogenesis of the PCOS. However, the underlying mechanism of insulin resistance/hyperinsulinemia on the pathogenesis of the PCOS remains elusive. In this study, we found an increased high-mobility group box 1 (HMGB1) in the serum from women with PCOS having insulin resistance/hyperinsulinemia. Furthermore, we discovered that high concentration of insulin, which mimics insulin resistance model, promoted apoptosis in primary cultured rat ovarian granulosa cells (GCs) via its effect on the increase in extracellular HMGB1. Our data presented the first evidence that increased HMGB1 induced by insulin resistance/hyperinsulinemia promoted apoptosis of ovarian GCs, which provided new molecular basis for the PCOS pathogenesis.
Collapse
Affiliation(s)
- Xiao-Rong Ni
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Zhou-Jun Sun
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Guo-Hua Hu
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| | - Rong-Hui Wang
- Gynecology Department, Shanghai Traditional Chinese Medicine Hospital, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zhao KK, Cui YG, Jiang YQ, Wang J, Li M, Zhang Y, Ma X, Diao FY, Liu JY. Effect of HSP10 on apoptosis induced by testosterone in cultured mouse ovarian granulosa cells. Eur J Obstet Gynecol Reprod Biol 2013; 171:301-6. [DOI: 10.1016/j.ejogrb.2013.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/12/2013] [Accepted: 09/22/2013] [Indexed: 02/04/2023]
|