1
|
Mannitol Augments the Effects of Systemical Stem Cell Transplantation without Increasing Cell Migration in a Stroke Animal Model. Tissue Eng Regen Med 2020; 17:695-704. [PMID: 32901436 DOI: 10.1007/s13770-020-00293-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mannitol increases blood-brain barrier permeability and can improve the efficiency of systemically administered stem cells by facilitating stem cell entry from the periphery into the injured brain. The aim of this study was to elucidate the neuroprotective effects of a combination of mannitol pretreatment and stem cell transplantation on stroke-induced neural injury. METHODS The experimental rats were randomly assigned to three groups 24 h after middle cerebral artery occlusion and reperfusion. One group received intravenous (IV) injections of phosphate-buffered saline (vehicle), another group received IV injections of human adipose-derived stem cells (hADSCs), and the last group received IV injections of hADSCs 10 min after IV mannitol injections. Neurobehavioral functions and infarct volume were compared. Immunohistochemistry (IHC) analyses were performed using antibodies against ionized calcium binding adapter-1 (IBA-1), rat endothelial antigen-1 (RECA-1), and bromodeoxyuridine/doublecortin (BrdU/DCX). RESULTS PKH-26 labeling revealed no difference in the number of stem cells that had migrated into the injured brain, and hADSC transplantation did not improve the infarct volume. However, neurobehavioral functions improved in the mannitol group. IHC showed higher numbers of RECA-1-positive cells in the peri-infarcted brain and BrdU-/DCX-colocalized cells in the subventricular zone in the mannitol group. IBA-1-positive cell number decreased in the hADSC-only and mannitol-pretreatment groups compared with the vehicle group even though there was no difference between the former two groups. CONCLUSION Combinatorial treatment with mannitol and hADSC transplantation may have better therapeutic potential than hADSC monotherapy for ischemic stroke.
Collapse
|
2
|
Marques BL, Carvalho GA, Freitas EMM, Chiareli RA, Barbosa TG, Di Araújo AGP, Nogueira YL, Ribeiro RI, Parreira RC, Vieira MS, Resende RR, Gomez RS, Oliveira-Lima OC, Pinto MCX. The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 2019; 95:98-110. [PMID: 30550812 DOI: 10.1016/j.semcdb.2018.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Stroke consists of an abrupt reduction of cerebral blood flow resulting in hypoxia that triggers an excitotoxicity, oxidative stress, and neuroinflammation. After the ischemic process, neural precursor cells present in the subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus proliferate and migrate towards the lesion, contributing to the brain repair. The neurogenesis is induced by signal transduction pathways, growth factors, attractive factors for neuroblasts, transcription factors, pro and anti-inflammatory mediators and specific neurotransmissions. However, this endogenous neurogenesis occurs slowly and does not allow a complete restoration of brain function. Despite that, understanding the mechanisms of neurogenesis could improve the therapeutic strategies for brain repair. This review presents the current knowledge about brain repair process after stroke and the perspectives regarding the development of promising therapies that aim to improve neurogenesis and its potential to form new neural networks.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo A Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elis M M Freitas
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raphaela A Chiareli
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thiago G Barbosa
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Armani G P Di Araújo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Yanley L Nogueira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raul I Ribeiro
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo C Parreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato S Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Onésia C Oliveira-Lima
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
3
|
Tang L, Lu X, Zhu R, Qian T, Tao Y, Li K, Zheng J, Zhao P, Li S, Wang X, Li L. Adipose-Derived Stem Cells Expressing the Neurogenin-2 Promote Functional Recovery After Spinal Cord Injury in Rat. Cell Mol Neurobiol 2016; 36:657-67. [PMID: 26283493 PMCID: PMC11482400 DOI: 10.1007/s10571-015-0246-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/25/2015] [Indexed: 12/12/2022]
Abstract
Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2-ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague-Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2-ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2-ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2-ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2-ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2-ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone.
Collapse
Affiliation(s)
- Linjun Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Neurosurgery, Tongling Municipal Hospital, Tongling, 244000, Anhui, China
| | - Xiaocheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ronglan Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Tengda Qian
- Department of Neurosurgery, Jiangsu University Affiliated Jintan Hospital, Jintan, 213200, Jiangsu, China
| | - Yi Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jinyu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Penglai Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Shuai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Yeh DC, Chan TM, Harn HJ, Chiou TW, Chen HS, Lin ZS, Lin SZ. Adipose Tissue-Derived Stem Cells in Neural Regenerative Medicine. Cell Transplant 2015; 24:487-92. [PMID: 25647067 DOI: 10.3727/096368915x686940] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.
Collapse
Affiliation(s)
- Da-Chuan Yeh
- Department of Internal Medicine, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Medical Education and Research, China Medical University-An-Nan Hospital, Tainan, Taiwan
| | - Horng-Jyh Harn
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Shui Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Zung-Sheng Lin
- Department of Surgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|
5
|
Chan TM, Harn HJ, Lin HP, Chiu SC, Lin PC, Wang HI, Ho LI, Chuu CP, Chiou TW, Hsieh AC, Chen YW, Ho WY, Lin SZ. The use of ADSCs as a treatment for chronic stroke. Cell Transplant 2015; 23:541-7. [PMID: 24816449 DOI: 10.3727/096368914x678409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stroke is one of the disorders for which clinically effective therapeutic modalities are most needed, and numerous ways have been explored to attempt to investigate their feasibilities. However, ischemic- or hemorrhagic-induced inflammatory neuron death causes irreversible injuries and infarction regions, and there are currently no truly effective drugs available as therapy. It is therefore urgent to be able to provide a fundamental treatment method to regenerate neuronal brain cells, and therefore, the use of stem cells for curing chronic stroke could be a major breakthrough development. In this review, we describe the features and classification of stroke and focus on the benefits of adipose tissue-derived stem cells and their applications in stroke animal models. The results show that cell-based therapies have resulted in significant improvements in neuronal behaviors and functions through different molecular mechanisms, and no safety problems have so far arisen after transplantation. Further, we propose a clinical possibility to create a homing niche by reducing the degree of invasive intracerebroventricular transplantation and combining it with continuous intravenous administration to achieve a complete cure.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Du G, Liu Y, Dang M, Zhu G, Su R, Fan Y, Tan Z, Wang LX, Fang J. Comparison of administration routes for adipose-derived stem cells in the treatment of middle cerebral artery occlusion in rats. Acta Histochem 2014; 116:1075-84. [PMID: 24962764 DOI: 10.1016/j.acthis.2014.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
Given that adult adipose tissue is an abundant, accessible and safe source of stem cells, the use of adipose-derived stem cells (ADSCs) provides a promising approach in ischemic stroke. The delivery route, however, for transplantation of ADSCs in clinical application remains controversial regarding the time window, cell type, safety issues, 'first pass' effect and therapeutic effect. To determine the optimal administration route in transplantation of ADSCs, we compared the therapeutic effect of the three mainly used administration routes of ADSCs in a middle cerebral artery occlusion (MCAO) rat model. Cells isolated from the adipose tissue of adult rodents were differentiated and characterized in vitro, and further transplanted in vivo by intravenous, intra-arterial or intra-ventricular delivery. The infarct volume, expression of neurotrophic factors and the neurobehavioral improvements were evaluated after the equal dose of BrdU labeled ADSCs transplantation. Our results indicated that the equal dose of ADSCs delivered intravenously were effective in improving the neurological outcome and reducing the infarct volume after ischemic brain injury in long term duration in contrast to intra-arterial and intra-ventricular delivery. At 1-7 days after transplantation, the increased expression levels of BDNF, VEGF, bFGF, Bcl-2, IL-10 and decreased levels of caspase-3 and TNF-α in the intra-ventricular and intra-arterial groups were significant in contrast to the intravenous group. There was no significant difference among the three groups after 7 days. Our findings suggest that compared with the intra-ventricular delivery, intravascular injection allows higher dose injection with fewer invasions and appears to be optimal in application with regard to therapeutic efficacy, safety and feasibility.
Collapse
Affiliation(s)
- Guojia Du
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan, China
| | - Muren Dang
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China.
| | - Guohua Zhu
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Riqing Su
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yandong Fan
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Zeming Tan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Li Xin Wang
- Department of Neurology, Guang Dong Hospital of Chinese Traditional Medicine, China
| | - Jiasheng Fang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
7
|
Yang Q, Du X, Fang Z, Xiong W, Li G, Liao H, Xiao J, Wang G, Li F. Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro. PLoS One 2014; 9:e86334. [PMID: 24466033 PMCID: PMC3897681 DOI: 10.1371/journal.pone.0086334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/09/2013] [Indexed: 01/15/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) promotes neuron recruitment and neurogenic activity. However, no evidence suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically modified rat adipose-derived stem cells (ADSCs) with the CGRP gene (CGRP-ADSCs) and subsequently cultured in complete neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin, MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a greater proliferation than un-transduced (ADSCs) and Vector-transduced (Vector-ADSCs) ADSCs (p<0.05), and lower rates of apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p<0.05); however, GFAP was distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt 3a, Wnt 5a and β-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in therapeutic strategies for spinal cord injury.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Xingli Du
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
- * E-mail:
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| |
Collapse
|
8
|
Effect of CGRP-adenoviral vector transduction on the osteoblastic differentiation of rat adipose-derived stem cells. PLoS One 2013; 8:e72738. [PMID: 24023640 PMCID: PMC3758345 DOI: 10.1371/journal.pone.0072738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/11/2013] [Indexed: 11/30/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) promotes osteoblast recruitment and osteogenic activity. However, no evidence suggests that CGRP could affect the differentiation of stem cells toward osteoblasts. In this study, we genetically modified adipose-derived stem cells (ADSCs) by introducing the CGRP gene through adenoviral vector transduction and investigated on cellular proliferation and osteoblast differentiation in vitro and osteogenesis in vivo as well. For the in vitro analyses, rat ADSCs were transducted with adenoviral vectors containing the CGRP gene (Ad-CGRP) and were cultured in complete osteoblastic medium. The morphology, proliferative capacity, and formation of localized regions of mineralization in the cells were evaluated. The expression of alkaline phosphatase (ALP) and special markers of osteoblasts, such as Collagen I, Osteocalcin (BPG) and Osteopontin (OPN), were measured by cytochemistry, MMT, RT-PCR, and Western blot. For the in vivo analyses, the Ad-CGRP-ADSCs/Beta-tricalcium phosphate (β-TCP) constructs were implanted in rat radial bone defects for 12 weeks. Radiography and histomorphology evaluations were carried out on 4 weeks and 12 weeks. Our analyses indicated that heterogeneous spindle-shaped cells and localized regions of mineralization were formed in the CGRP-transduced ADSCs (the transduced group). A higher level of cellular proliferation, a high expression level of ALP on days 7 and 14 (p<0.05), and increased expression levels of Collagen I, BPG and OPN presented in transduced group (p<0.05). The efficiency of new bone formation was dramatically enhanced in vivo in Ad-CGRP-ADSCs/β-TCP group but not in β-TCP group and ADSCs/β-TCP group. Our results reveal that ADSCs transduced with an Ad-CGRP vector have stronger potential to differentiate into osteoblasts in vitro and are able to regenerate a promising new tissue engineering bone in vivo. Our findings suggest that CGRP-transduced ADSCs may serve as seed cells for bone tissue engineering and provide a potential way for treating bone defects.
Collapse
|
9
|
Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y, Zeng WG, Ni HJ, Zhao B, Chen YF, Tang ZP. Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 2012; 18:847-54. [PMID: 22934896 DOI: 10.1111/j.1755-5949.2012.00382.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
AIMS To examine whether transplantation of adipose-derived stem cells (ADSCs) induces neural differentiation and improves neural function in a rat intracerebral hemorrhage (ICH) model. METHODS Adipose-derived stem cells cells were isolated from inguinal fat pad of rat. ICH was induced by injection of collagenase type IV into the right basal ganglia of rat. Forty-eight hours after ICH, ADSCs cells (10 μL of 2-4 × 10(7) cells/mL) were injected into the right lateral cerebral ventricle. The differentiation of ADSCs was detected in vitro and in vivo. The neural function was evaluated with Zea Longa 5-grade scale at day 1, 3, 7, 14, or 28. RESULTS Our data demonstrated that ADSCs differentiated into cells that shared the similarities of neurons or astrocytes in vitro. Transplantation of ADSCs decreased cell apoptosis and the transplanted ADSCs were able to differentiate into neuron-like and astrocyte-like cells around the hematoma, accompanied with upregulation of vascular endothelial growth factor expression and improvement of neural function. CONCLUSIONS Our data suggest that transplantation of ADSCs could be a therapeutic approach for ICH stroke.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, University Hospital of Hubei Institute for Nationalities, Enshi, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer. Brain Res 2012; 1440:23-33. [PMID: 22284617 DOI: 10.1016/j.brainres.2011.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 12/12/2022]
Abstract
Cell therapy is one of the approaches taken to treatment of spinal cord disorders. In this study, adipose-derived stem cells (ADSCs) were induced to form motoneuron-like cells (MNLCs) using selegiline as preinducer, as well as Shh and all trans-retinoic acid (RA) as inducers. Selegiline was reported to induce the embryonic stem cells and bone marrow stromal cells into neuronal phenotype. ADSCs were evaluated using CD90, CD44, CD 49d, CD106, CD31, CD45, lipogenesis and osteogenesis. Dose response and time course studies were used in selecting the optimal concentration for selegiline using the percentage of viable cells (PVC) and percentages of immunoreactive cells (PIC) to nestin and neurofilament 68. Accordingly, such studies were used in selecting the optimal dose for RA using PVC and PIC to islet-1 and oligo-2. The expression of islet-1, oligo-2 and HLXB9 was evaluated using RT-PCR and immunocytochemistry. Real-time PCR was utilized in order to quantify the expression of islet-1, oligo-2 and HLXB9. ADSCs were immunoreactive to CD90, CD44 and CD 49d with consistent differentiation osteogenic and lipogenic cells. The optimal concentrations of selegiline and RA were 10⁻⁹ mM and 2 × 10⁻⁸ M, respectively. After two days, MNLCs showed high oligo-2 expression. MNLCs innervated myotubes; also, the release rate of synaptic vesicles using FM1-43 followed exponential decay model, and this rate in the induced MNLCs was approximately three times of that in the preinduced cells.
Collapse
|
11
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 PMCID: PMC11498601 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Dana Marekova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Pivonkova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Katarina Masinova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Rodriguez JP, Minev B, Bogin V, Ramos F, Woods EJ, Murphy MP, Patel AN, Harman RJ, Riordan NH. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010; 3:30. [PMID: 21070647 PMCID: PMC2989319 DOI: 10.1186/1755-7682-3-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/11/2010] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy for spinal cord injury (SCI) is overviewed focusing on bone marrow mononuclear cells, olfactory ensheathing cells, and mesenchymal stem cells. A case is made for the possibility of combining cell types, as well as for allogeneic use. We report the case of 29 year old male who suffered a crush fracture of the L1 vertebral body, lacking lower sensorimotor function, being a score A on the ASIA scale. Stem cell therapy comprised of intrathecal administration of allogeneic umbilical cord blood ex-vivo expanded CD34 and umbilical cord matrix MSC was performed 5 months, 8 months, and 14 months after injury. Cell administration was well tolerated with no adverse effects observed. Neuropathic pain subsided from intermittent 10/10 to once a week 3/10 VAS. Recovery of muscle, bowel and sexual function was noted, along with a decrease in ASIA score to "D". This case supports further investigation into allogeneic-based stem cell therapies for SCI.
Collapse
|