1
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
2
|
Del Gaizo M, Sergio I, Lazzari S, Cialfi S, Pelullo M, Screpanti I, Felli MP. MicroRNAs as Modulators of the Immune Response in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:829. [PMID: 35055013 PMCID: PMC8776227 DOI: 10.3390/ijms23020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.
Collapse
Affiliation(s)
- Martina Del Gaizo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy;
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
3
|
Yan W, Song L, Wang H, Yang W, Hu L, Yang Y. Extracellular vesicles carrying miRNA-181b-5p affects the malignant progression of acute lymphoblastic leukemia. J Transl Med 2021; 19:511. [PMID: 34922585 PMCID: PMC8684212 DOI: 10.1186/s12967-021-03174-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To investigate how serum extracellular vesicles (EVs)-carried miRNA-181b-5p affected the proliferation, cell cycle and apoptosis of acute lymphoblastic leukemia (ALL) cells. Methods Differentially expressed miRNAs related to ALL were screened by bioinformatics analysis, and the localization of target miRNA was searched by its expression. qRT-PCR was adopted to confirm the expression of miRNA-181b-5p. Flow cytometry and fluorescence microscopy were applied to evaluate EVs internalization. MTT assay was employed to verify the proliferation of ALL cells. Cell cycle and apoptosis were analyzed by flow cytometry. Transwell assay was applied to evaluate migration and invasion abilities. Results High expression of miRNA-181b-5p was proved in ALL cell lines, and miRNA-181b-5p enriched in the exosomes and vesicles of blood cells. In the meantime, it was found that EVs carrying miRNA-181b-5p could be internalized by ALL cells and thus the expression of miRNA-181b-5p was up-regulated. Cell function assays showed that the proliferation, migration, invasion abilities of ALL cell lines were promoted in miRNA-181b-5p mimic group or the group co-culturing ALL-derived EVs and BALL-1 cell lines. The percentage of cells in G0/G1 phase was reduced and cell apoptosis was also inhibited. Conclusion miRNA-181b-5p carried by EVs in peripheral blood of ALL patients can enter ALL cells and thus promote the malignancy of ALL cells.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110000, People's Republic of China
| | - Li Song
- National Drug Clinical Trial Institute Office, Qingdao Women and Children's Hospital, Qingdao, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110000, People's Republic of China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110000, People's Republic of China
| | - Liang Hu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
4
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
5
|
Desoky AE, Badrawy H, Razik DIAE, Riad KF, Abdelhamid ON, Hassan E. Predictive Value of miRNA-181a in Pediatric Acute Lymphoblastic Leukemia. JOURNAL OF CANCER THERAPY 2020; 11:673-682. [DOI: 10.4236/jct.2020.1111057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Jiang K, Sun F, Zhu J, Luo G, Ban Y, Zhang P. miR-33a inhibits cell growth in renal cancer by downregulation of MDM4 expression. Mol Genet Genomic Med 2019; 7:e833. [PMID: 31250570 PMCID: PMC6687894 DOI: 10.1002/mgg3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNA‐33a (miR‐33a) plays the role of the tumor suppressor gene by regulating the expression level of downstream genes. However, the effects of miR‐33a in renal cell cancer (RCC) remain unknown. Our study was designed to investigate the expression level and potential function of miR‐33a in RCC. Methods RT‐qPCR was applied to measure the levels of miR‐33a in RCC tissues and cell lines. Western blotting and luciferase reporter assay were used to detect the relationship between miR‐33a and Mouse double minute 4 (MDM4) in RCC cells. CCK‐8 and flow cytometry were applied to detected cell viability and cell cycle. Animal models and TUNEL assay were applied to detect the effect of miR‐33a on the growth of RCC and cell apoptosis. Results We found that the levels of miR‐33a were significantly decreased in RCC tissues and cell lines. Moreover, the low expression of miR‐33a in RCC patients indicated a shorter overall survival (OS). Notably, MDM4 as a direct target of miR‐33a in RCC, the expression level of MDM4 was significantly increased in RCC cells group than the control group. Furthermore, miR‐33a overexpression significantly inhibited RCC cells growth than the control group, while the inhibitory effects of miR‐33a were reversed upon the overexpression of MDM4. Luciferase reporter assays showed that there was a direct interaction between miR‐33a and 3′ UTR of MDM4 mRNA. In vivo, tumor volumes and weight were significantly decreased in the transfected miR‐33a mimics group than the control group. Conclusion Taken together, our study indicates that miR‐33a inhibits RCC cell growth by targeting MDM4.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression. J Immunol Res 2019; 2019:5601396. [PMID: 31346528 PMCID: PMC6620846 DOI: 10.1155/2019/5601396] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system. While in adults, there is a higher chance of relapse. ALL may affect B-cell or T-cell lineages. Different genetic alterations characterize the two ALL forms. Deregulated Notch, either Notch1 or Notch3, and CXCR4 receptor signaling are involved in ALL disease development and progression. By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized. Notably, the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL. These two receptor pathways intersect other critical signals in the proliferative, differentiation, and metabolic programs of lymphocyte transformation. Also, the identification of the crosstalks in leukemia-stroma interaction within the tumor microenvironment may unveil new targetable mechanisms in disease relapse. Further studies are required to identify new challenges and opportunities to develop more selective and safer therapeutic strategies in ALL progression, possibly contributing to improve conventional hematological cancer therapy.
Collapse
|
8
|
Rashed WM, Hammad AM, Saad AM, Shohdy KS. MicroRNA as a diagnostic biomarker in childhood acute lymphoblastic leukemia; systematic review, meta-analysis and recommendations. Crit Rev Oncol Hematol 2019; 136:70-78. [PMID: 30878131 DOI: 10.1016/j.critrevonc.2019.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Several studies detected abnormal mi-RNAs expression levels in childhood Acute Lymphoblastic Leukemia (ALL) with potential diagnostic value. We conducted a systematic search on certain microRNAs in childhood ALL. We included 17 studies with a total of 928 ALL children and 307 controls. Ten studies provided miRNAs expression levels and seven provided frequency data. Sensitivity and specificity of a single miRNA ranged from 46.55% to 100% and from 71.8% to 100%, respectively. The highest diagnostic odds ratio (DOR) was for the diagnostic panel (miR-128a and miR-223) reaching 546 [95% CI: 73.768-4041.282]. Also, miR-128a, miR-128b, miR-223, let-7b, miR-155 and miR-24 can be used as diagnostic discriminatory biomarkers between ALL and AML. Further large cohort studies are needed to confirm our results.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital 57357 (CCHE-57357), Egypt.
| | - Ali M Hammad
- Kasr Alainy School of Medicine, Cairo University, Egypt
| | - Anas M Saad
- Faculty of Medicine, Ain Shams University, Egypt
| | - Kyrillus S Shohdy
- Clinical Oncology Department, Kasr Alainy School of Medicine, Cairo University, Egypt
| |
Collapse
|
9
|
Ehsanpour A, Saki N, Bagheri M, Maleki Behzad M, Abroun S. The Expression of Microvesicles in Leukemia: Prognostic Approaches. CELL JOURNAL 2019; 21:115-123. [PMID: 30825284 PMCID: PMC6397602 DOI: 10.22074/cellj.2019.5847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
Microvesicles (MVs) are the smallest subclass of the extracellular vesicles (EVs) spontaneously secreted by the external
budding from the cell membranes in physiologic and pathologic conditions. The MVs derived from leukemic cells (LCs) can
be detected by the expression of specific cluster of differentiation (CD) markers indicating their cellular origin while they can
transfer different agents such as microRNAs, cytokines, and chemokines. The secretion of these agents from MVs can affect
the vital processes of LCs such as cell cycle, proliferation, differentiation, and apoptosis. According to the effects of MVs
components on the vital processes of LCs, it has been postulated that a change in the expression of MVs might be involved
in the progression and prognosis of leukemia. However, further studies are needed to confirm the association between the
presence of MVs and their components with the prognosis of leukemia. It seems that the identification of the prognostic values
and the application of them for the detection of MVs in leukemia can provide new therapeutic targets for monitoring the status
of patients with leukemia.
Collapse
Affiliation(s)
- Ali Ehsanpour
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
10
|
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233:5642-5654. [DOI: 10.1002/jcp.26290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM)University of ParmaParmaItaly
- CoreLabHospital‐University of ParmaParmaItaly
| | - George A. Calin
- Departments of Experimental Therapeutics and LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNA Interference and Non‐Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
11
|
Swellam M, Hashim M, Mahmoud MS, Ramadan A, Hassan NM. Aberrant Expression of Some Circulating miRNAs in Childhood Acute Lymphoblastic Leukemia. Biochem Genet 2018; 56:283-294. [PMID: 29460192 DOI: 10.1007/s10528-018-9844-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/27/2018] [Indexed: 01/23/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer commonly affecting children due to dysregulation of miRNA expression. In the current study, authors investigated the expression profile for miRNA-125b-1 and miRNA-203 among childhood ALL. Blood samples were collected from newly diagnosed childhood ALL and healthy control children. The expression profile for candidate miRNAs was detected using quantitative RT-PCR analysis. Statistical analysis were performed using receiver operating characteristic curve (ROC) to examine the diagnostic efficacy of the two miRNA and their levels among ALL clinicopathological factors and phenotypes. The median expression level for miRNA-125b-1 was significantly high in childhood ALL; while miRNA-203 level was significantly low in childhood ALL as compared to control ones. MiRNA-125-1 reported significant increase in T-ALL as compared to other ALL phenotypes. Median miRNA-203 level was high in T-ALL followed by pre-B-ALL although no significant difference was reported. Clinicopathological factors did not emphasize significance with either detected miRNAs. Using ROC curve the diagnostic efficacy was significant with an area under the curve 0.858 for miRNA-125b-1 (83.72, 100%) and 0.878 for miRNA-203 (97.67, 86.96%). The combination of the two key miRNAs revealed absolute sensitivity (100%). MiRNA-125b-1 and miRNA-203 can be useful molecular markers for diagnosis of ALL. Further studies with large cohort are warranted to validate these results.
Collapse
Affiliation(s)
- Menha Swellam
- Genetic Engineering and Biotechnology Research Division, Biochemistry Department, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, El-Bohouth Street, Dokki, Giza, 12622, Egypt. .,Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Maha Hashim
- Genetic Engineering and Biotechnology Research Division, Biochemistry Department, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, El-Bohouth Street, Dokki, Giza, 12622, Egypt.,Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Magda Sayed Mahmoud
- Genetic Engineering and Biotechnology Research Division, Biochemistry Department, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, El-Bohouth Street, Dokki, Giza, 12622, Egypt.,Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Amal Ramadan
- Genetic Engineering and Biotechnology Research Division, Biochemistry Department, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, El-Bohouth Street, Dokki, Giza, 12622, Egypt.,Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Naglaa M Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo, Egypt
| |
Collapse
|
12
|
miR-206 inhibits renal cell cancer growth by targeting GAK. ACTA ACUST UNITED AC 2016; 36:852-858. [PMID: 27924503 DOI: 10.1007/s11596-016-1674-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/18/2016] [Indexed: 12/17/2022]
Abstract
Renal cell cancer (RCC) remains one of the most lethal types of cancer in adults. MicroRNAs (miRNAs) play key roles in the pathogenesis of RCC. The role of miR-206 in RCC has not been fully understood. The purpose of this study was to examine the role of miR-206 in the regulation of proliferation and metastasis of RCC and the possible mechanism. miR-206 expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RCC cell lines (786-O and OS-RC-2 cells) and clinical samples. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] method, colony formation and transwell assay were used to detect the tumor-suppressing ability of miR-206 in RCC. Luciferase assay was performed to verify the precise target of miR-206. The results showed that the expression of miR-206 was significantly down-regulated in RCC tissues and cells. The expression level of cyclin G-associated kinase (GAK), a master regulator of tumor proliferation and metastasis, was up-regulated with the decrease in miR-206 in RCC tissues as well as RCC cell lines. In addition, the miR-206 inhibitor promoted the proliferation, migration and invasion of 786-O and OS-RC-2 cells. Bioinformatics combined with luciferase and Western blot assays revealed that miR-206 inhibited the expression of GAK. Moreover, miR-206 regulates RCC cell growth partly through targeting GAK. Our study indicated that miR-206 functions as a tumor suppressor in regulating the proliferation, migration and invasion of RCC by directly targeting GAK, and it holds promises as a potential therapeutic target for RCC.
Collapse
|
13
|
Chen X, Xiong W, Li H. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia. Oncol Lett 2016; 12:4937-4948. [PMID: 28105201 PMCID: PMC5228523 DOI: 10.3892/ol.2016.5308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting microRNA gene network analysis, the present study revealed that the miR-15a/b, miR-16, miR-17 and miR-30 families were likely to play a role in the regulation of the MAPK signaling pathway. Since K562 cells presented the t(9;22) translocation, the current study further examined the predicted function of 12 microRNAs located in chromosomes 9 [Homo sapiens (hsa)-let-7a, hsa-let-7f, miR-126, miR-126*, miR-23b, miR-24, miR-27b and miR-7] and 22 (hsa-let-7b, miR-1249, miR-130b and miR-185), which were expressed both in MVs derived from K562 cells and in K562 cells. The present study identified microRNAs of MVs from leukemia and normal cells, and characterized the expression of specific microRNAs. The current study is also the first to identify and characterize distinct microRNA expression between MVs derived from K562 cells and K562 cells. These findings highlight that a number of microRNAs from leukemia-derived MVs may contribute to the development of hematopoietic malignancies. Further investigation may reveal the function of these differentially expressed microRNAs and may provide potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomei Chen
- Center for Biotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wei Xiong
- Center of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine at Binjiang, Hangzhou, Zhejiang 310009, P.R. China
| | - Huiyu Li
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Lu L, Guo D, Chen X, Xiong W, Jie S, Li H. Abnormal miRNAs Targeting Chromosome Open Reading Frame Genes were Enriched in Microvesicles Derived from the Circulation of HCC. Biochem Genet 2015; 54:120-33. [PMID: 26615601 DOI: 10.1007/s10528-015-9705-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/21/2015] [Indexed: 02/06/2023]
Abstract
In this study, we detected the expression profiles of microRNAs (miRNAs) packaged within microvesicles (MVs) from blood samples of HCC patients and healthy donors. Using microarray analysis, there were 83 down-regulated and 92 over-expressed miRNAs in HCC circulation-derived MVs relative to control group. Then potential functions of the dysregulated MVs miRNAs were investigated with bioinformatic tools. We found that 664 Corf genes were targeted by 72 altered MVs miRNAs and some of these target genes were reported to be associated with tumorous activities. Gene Ontology annotation demonstrated that biological roles of the target Corf genes mainly contained the regulation of growth, cell death, macromolecule metabolism, etc. As regulated by abnormal MVs miRNAs, functions of target Corf genes might be interrupted, which were much likely to contribute to HCC occurrence and progression.
Collapse
Affiliation(s)
- Li Lu
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Guo
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Xiaomei Chen
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghua Jie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyu Li
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther 2015; 8:2903-14. [PMID: 26508875 PMCID: PMC4610789 DOI: 10.2147/ott.s92470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), a new class of noncoding RNAs, which can hybridize to target messenger RNAs and regulate their expression posttranscriptionally, express differentially in distinct stages of lymphopoiesis and influence the direction of lymphoid precursor maturation. Hence, there is aberrant expression of miRNAs involved in malignant lymphopoiesis, and these aberrations can be used as signatures of acute lymphoblastic leukemia (ALL) with different subtypes. In addition, changes in the expression of several miRNAs may have functional relevance with leukemogenesis or drug resistance. As a result, the reversal of the expression of these miRNAs may alleviate the disease to some extent and improve clinical outcomes. However, among the studies of miRNAs, there are still some problems that need to be solved to understand the function of miRNAs in ALL more thoroughly.
Collapse
Affiliation(s)
- Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Zixue Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|